Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Flours
2.3. Instant Soup Preparation
2.4. Flow Behaviour of Instant Soups
2.5. Powder Flowability
2.6. Apparent Bulk Density
2.7. Particle Size Distribution
2.8. Light Microscopy
2.9. HS-SPME-GC-MS Volatile Fingerprinting
2.10. Data Analysis
3. Results and Discussion
3.1. Swelling Behaviour of the Soups
3.2. Flow Behaviour of the Instant Soups
3.3. Flow Behaviour of the Dry Soup Powders
3.4. HS-SPME-GC-MS Volatile Fingerprinting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chung, H.J.; Liu, Q.; Hoover, R.; Warkentin, T.D.; Vandenberg, B. In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem. 2008, 111, 316–321. [Google Scholar] [CrossRef]
- de la Rosa-Millán, J.; Orona-Padilla, J.L.; Flores-Moreno, V.M.; Serna-Saldívar, S.O. Effect of jet-cooking and hydrolyses with amylases on the physicochemical and in vitro digestion performance of whole chickpea flours. Int. J. Food Sci. Technol. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Oliete, B.; Rosell, C.M.; Pando, V.; Fernández, E. Studies on Cake Quality Made of Wheat-Chickpea Flour Blends. LWT-Food Sci. Technol. 2008, 41, 1701–1709. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Meares, C.A.; Bogracheva, T.Y.; Hill, S.E.; Hedley, C.L. Development and Testing of Methods to Screen Chickpea Flour for Starch Characteristics. Starch/Staerke 2004, 56, 215–224. [Google Scholar] [CrossRef]
- Noordraven, L.E.C.; Bernaerts, T.; Mommens, L.; Hendrickx, M.E.; Loey, A.M. Van Impact of cell intactness and starch state on the thickening potential of chickpea flours in water-flour systems. LWT-Food Sci. Technol. 2021, 146, 111409. [Google Scholar] [CrossRef]
- Vaclavik, V.A.; Christian, E.W. Starches in Food. In Essentials of Food Science; Springer: New York, NY, USA, 2003; pp. 49–67. ISBN 978-0-306-47363-0. [Google Scholar]
- Tangsrianugul, N.; Wongsagonsup, R.; Suphantharika, M. Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars. Int. J. Biol. Macromol. 2019, 137, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.E. Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization. Cereal Chem. 1992, 69, 632–636. [Google Scholar]
- Kethireddipalli, P.; Hung, Y.C.; Phillips, R.D.; McWatters, K.H. Evaluating the role of cell wall material and soluble protein in the functionality of cowpea (Vigna unguiculata) pastes. Food Chem. Toxicol. 2002, 67, 53–59. [Google Scholar] [CrossRef]
- Islam, M.; Sarker, M.N.I.; Islam, M.S.; Prabakusuma, A.S.; Mahmud, N.; Fang, Y.; Yu, P.; Xia, W. Development and Quality Analysis of Protein Enriched Instant Soup Mix. Food Nutr. Sci. 2018, 09, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.; Tiwari, R.; Kumar, S.; Kohli, D. Production and evaluation of instant herbal mix soup. Int. J. Agric. Sci. Res. 2017, 7, 37–42. [Google Scholar]
- Wood, J.A.; Grusak, M.A. Nutritional Value of Chickpea. In Chickpea Breeding and Management; Yadav, S.S., Ed.; Cromwell Press: Trowbridge, UK, 2007; pp. 101–142. [Google Scholar]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F. Volatile Components of Chickpea (Cicer arietinum L.) Seed. J. Agric. Food Chem. 1989, 37, 659–662. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Shariati-Ievari, S.; Ryland, D.; Edel, A.; Nicholson, T.; Suh, M.; Aliani, M. Sensory and Physicochemical Studies of Thermally Micronized Chickpea (Cicer arietinum) and Green Lentil (Lens culinaris) Flours as Binders in Low-Fat Beef Burgers. J. Food Sci. 2016, 81, S1230–S1242. [Google Scholar] [CrossRef] [PubMed]
- Lasekan, O.; Juhari, N.H.; Pattiram, P.D. Headspace Solid-phase Microextraction Analysis of the Volatile Flavour Compounds of Roasted Chickpea (Cicer arietinum L.). J. Food Process. Technol. 2011, 02, 1000112. [Google Scholar] [CrossRef] [Green Version]
- Noordraven, L.E.C.; Buvé, C.; Chen, C.; Hendrickx, M.E.; Loey, A.M. Van Impact of Processing and Storage Conditions on the Volatile Profile of Whole Chickpeas (Cicer arietinum L.). ACS Food Sci. Technol. 2021, 1, 1095–1108. [Google Scholar] [CrossRef]
- Bott, L.; Chambers, E.I. Sensory Characteristics of Combinations of Chemicals Potentially Associated with Beany Aroma in Foods. J. Sens. Stud. 2006, 21, 308–321. [Google Scholar] [CrossRef]
- Murat, C.; Bard, M.-H.; Dhalleine, C.; Cayot, N. Characterisation of odour active compounds along extraction process from pea flour to pea protein extract. Food Res. Int. 2013, 53, 31–41. [Google Scholar] [CrossRef]
- Wang, K.; Arntfield, S.D. Effect of protein-flavour binding on flavour delivery and protein functional properties: A special emphasis on plant-based proteins. Flavour Fragr. J. 2017, 32, 92–101. [Google Scholar] [CrossRef]
- Gremli, H.A. Interaction of flavor compounds with soy protein. J. Am. Oil Chem. Soc. 1974, 51, 95–97. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Boutboul, A.; Giampaoli, P.; Feigenbaum, A.; Ducruet, V. Influence of the nature and treatment of starch on aroma retention. Carbohydr. Polym. 2002, 47, 73–82. [Google Scholar] [CrossRef]
- Leturia, M.; Benali, M.; Lagarde, S.; Ronga, I.; Saleh, K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technol. 2014, 253, 406–423. [Google Scholar] [CrossRef]
- Schulze, D. Flow properties of powders and bulk solids (fundamentals). Powder Technol. 2014, 65, 321–333. [Google Scholar]
- Nziu, P.; Masu, L.; Mendonidis, P. Flowability of Spherically Shaped Titanium Grade 5 Alloy Powders. Metal. Int. 2014, XIX, 18–28. [Google Scholar]
- Gnagne, E.H.; Petit, J.; Gaiani, C.; Scher, J.; Amani, G.N. Characterisation of flow properties of foutou and foufou flours, staple foods in West Africa, using the FT4 powder rheometer. J. Food Meas. Charact. 2017, 11, 1128–1136. [Google Scholar] [CrossRef]
- Davis, M.T.; Potter, C.B.; Walker, G.M. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int. J. Pharm. 2018, 544, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebede, B.T.; Grauwet, T.; Palmers, S.; Vervoort, L.; Carle, R.; Hendrickx, M.; Van Loey, A. Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chem. 2014, 153, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, L.; Grauwet, T.; Kebede, B.T.; Van Der Plancken, I.; Timmermans, R.; Hendrickx, M.; Van Loey, A. Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice pasteurisation. Food Chem. 2012, 134, 2303–2312. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, X. Pre-gelatinized Modification of Starch. In Physical Modifications of Starch; Sui, Z., Kong, X., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 51–62. [Google Scholar]
- Hubbe, M.A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources 2017, 12, 9556–9661. [Google Scholar] [CrossRef]
- Kim, S.G.; Yoo, W.; Yoo, B. Effect of thickener type on the rheological properties of hot thickened soups suitable for elderly people with swallowing difficulty. Prev. Nutr. Food Sci. 2014, 19, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Eerlingen, R.C.; Jacobs, H.; Block, K.; Delcour, J.A. Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydr. Res. 1997, 297, 347–356. [Google Scholar] [CrossRef]
- Crawford, N.C.; Popp, L.B.; Johns, K.E.; Caire, L.M.; Peterson, B.N.; Liberatore, M.W. Shear thickening of corn starch suspensions: Does concentration matter? J. Colloid Interface Sci. 2013, 396, 83–89. [Google Scholar] [CrossRef]
- Ang, C.L.; Tha Goh, K.K.; Lim, K.; Matia-Merino, L. Rheological characterization of a physically-modified waxy potato starch: Investigation of its shear-thickening mechanism. Food Hydrocoll. 2021, 120, 106908. [Google Scholar] [CrossRef]
- Barnes, H.A. The flow of suspensions. In A Handbook of Elementary Rheology; The University of Wales Institute of Non-Newtonian Fluid Mechanics, Department of Mathematics, University of Wales Aberystwyth: Aberystwyth, Wales, 2000; pp. 119–140. ISBN 0953803201. [Google Scholar]
- Tseng, W.J.; Wu, C.H. Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. Ceram. Int. 2003, 29, 821–828. [Google Scholar] [CrossRef]
- Kim, W.; Choi, S.G.; Kerr, W.L.; Johnson, J.W.; Gaines, C.S. Effect of heating temperature on particle size distribution in hard and soft wheat flour. J. Cereal Sci. 2004, 40, 9–16. [Google Scholar] [CrossRef]
- Maranzano, B.J.; Wagner, N.J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 2001, 114, 10514. [Google Scholar] [CrossRef] [Green Version]
- Dintzis, F.R.; Berhow, M.A.; Bagley, E.B.; Wu, Y.V.; Felker, F.C. Shear-Thickening Behavior and Shear-Induced Structure in Gently Solubilized Starches. Cereal Chem. 1996, 73, 638–643. [Google Scholar]
- Steffe, J.F. Introduction to Rheology. In Rheological Methods in Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1996; pp. 1–93. ISBN 0963203614. [Google Scholar]
- Brown, E.; Jaeger, H.M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 2014, 77. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 1974, 46, 491–506. [Google Scholar] [CrossRef]
- Dudhat, S.M.; Kettler, C.N.; Dave, R.H. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends. AAPS PharmSciTech 2017, 18, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Azarnia, S.; Boye, J.I.; Warkentin, T.; Malcolmson, L.; Sabik, H.; Bellido, A.S. Volatile flavour profile changes in selected field pea cultivars as affected by crop year and processing. Food Chem. 2011, 124, 326–335. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Azarnia, S.; Simpson, B.K. Volatile Flavor Profile of Saskatchewan Grown Pulses as Affected by Different Thermal Processing Treatments. Int. J. Food Prop. 2016, 19, 2251–2271. [Google Scholar] [CrossRef] [Green Version]
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal newly found in human body odor tends to increase with aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Jirovetz, L.; Buchbauer, G.; Shafi, P.M.; Rosamma, M.K.; Geissler, M. Analysis of the composition and aroma of the essential leaf oil of Syzygium travancoricum from South India by GC-FID, GC-MS, and olfactometry. Seasonal changes of composition. Chromatographia 2001, 53, 372–374. [Google Scholar] [CrossRef]
- Kesen, S. Character zat on of aroma and aroma-active compounds of Turkish turmeric (Curcuma longa) extract. J. Raw Mater. Process. Foods 2020, 1, 13–21. [Google Scholar]
- Lin, W.; Lin, S. Floral Scent Composition in Luculia gratissima (Wallich) Sweet Analyzed by HS-SPME-GC-MS. J. Essent. Oil-Bear. Plants 2016, 19, 1801–1806. [Google Scholar] [CrossRef]
- Neiens, S.D.; Geißlitz, S.M.; Steinhaus, M. Aroma-active compounds in Spondias mombin L. fruit pulp. Eur. Food Res. Technol. 2017, 243, 1073–1081. [Google Scholar] [CrossRef]
- Whitfield, F.B.; Mottram, D.S. Volatiles from interactions of maillard reactions and lipids. Crit. Rev. Food Sci. Nutr. 1992, 31, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Azarnia, S.; Boye, J.I.; Warkentin, T.; Malcolmson, L. Changes in volatile flavour compounds in field pea cultivars as affected by storage conditions. Int. J. Food Sci. Technol. 2011, 46, 2408–2419. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Rosario Dambruoso, P.; de Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT-Food Sci. Technol. 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Liao, X.; Yan, J.; Wang, B.; Meng, Q.; Zhang, L.; Tong, H. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’. Food Res. Int. 2020, 136, 109355. [Google Scholar] [CrossRef] [PubMed]
Reference Soup | Chickpea-Flour-Containing Soups | |||
---|---|---|---|---|
Ingredients | Low c (%) | Medium c (%) | High c (%) | |
Potato Starch | 16.51 | 0.00 | 0.00 | 0.00 |
Chickpea Flour | 0.00 | 8.78 | 16.51 | 24.24 |
Maltodextrin | 7.73 | 15.46 | 7.73 | 0.00 |
Sunflower Oil Creamer | 23.01 | 23.01 | 23.01 | 23.01 |
Roux (70% wheat flour) | 17.49 | 17.49 | 17.49 | 17.49 |
Soup Base | 35.26 | 35.26 | 35.26 | 35.26 |
REF | NG-O | PG-O | INS | |
---|---|---|---|---|
Bulk Density (g/mL) | 0.459 ± 0.001 b | 0.423 ± 0.014 c | 0.479 ± 0.005 b | 0.505 ± 0.004 a |
Flowability index (-) | 1.72 ± 0.09 a | 2.95 ± 0.58 a | 2.08 ± 0.31 a | 2.40 ± 0.08 a |
Basic flow energy (mJ) | 990.18 ± 4.68 a | 763.32 ± 1.00 b | 885.28 ± 65.14 ab | 828.00 ± 0.02 b |
Specific energy (mJ/g) | 10.79 ± 0.29 a | 6.07 ± 0.11 c | 6.04 ± 0.37 c | 9.06 ± 0.11 b |
Stability Index (-) | 1.17 ± 0.23 a | 1.17 ± 0.21 a | 0.95 ± 0.04 a | 0.95 ± 0.02 a |
Flow Rate Index (-) | 1.18 ± 0.02 a | 1.10 ± 0.00 a | 1.05 ± 0.02 a | 1.01 ± 0.07 a |
REF Soup | NG-O Soup | ||||
VID | Compound | RI | VID | Compound | RI |
Terpenoids | Sulphur compounds | ||||
0.919 | valencene 1 | 1757 | 0.982 | benzothiazole | 1963 |
0.886 | α-curcumene | 1775 | 0.896 | diallyl disulphide | 1482 |
0.867 | β-bisabolene | 1725 | 0.885 | allyl-1-(E)-propenyl-disulphide | 1487 |
0.851 | α-farnesene | 1751 | Terpenoids | ||
0.843 | alloaromadendrene 1 | 1637 | 0.961 | calamenene | 1831 |
0.842 | (E)-α-bergamotene 1 | 1582 | −0.776 | verbenol | 1609 |
0.790 | γ-muurolene 1 | 1683 | Aldehydes | ||
0.773 | (E)-calamenene | 1831 | 0.936 | heptanal | 1190 |
0.763 | caryophyllene | 1589 | −0.712 | 2-methyl-butanal | 939 |
0.738 | γ-curcumene | 1688 | Alcohols | ||
0.708 | (E)-β-famescene | 1667 | 0.865 | 2-isopropyl-5-methyl-1-heptanol 1 | 1332 |
Esters | 0.724 | 1-octanol | 1563 | ||
0.905 | ethyl-dodecanoate | 1847 | Hydrocarbons | ||
0.848 | ethyl-decanoate | 1641 | 0.869 | 4,6,8-trimethyl-1-nonene 1 | 1542 |
Alcohols | 0.830 | 3-methyl-undecane | 1170 | ||
0.722 | (E)-2-nonenal | 1538 | 0.811 | 4,6-dimethyl-dodecane 1 | 1227 |
0.708 | (E)-2-butenal | 1048 | 0.750 | 3,3-dimethyl-octane 1 | 998 |
Hydrocarbons | 0.748 | 2,6,6-trimethyl-octane 1 | 1105 | ||
0.723 | undecane | 1098 | 0.744 | dodecane | 1203 |
Alcohols | 0.739 | 7-methyl-(E)-4-decene 1 | 1053 | ||
−0.759 | 1-octen-3-ol | 1455 | 0.731 | 4-methyl-decane | 1002 |
Unidentified | Ketones | ||||
0.841 | unidentified | - | −0.712 | 2-methyl-1-penten-3-one | 1071 |
0.840 | unidentified | - | −0.734 | 1-octen-3-one | 1303 |
Unidentified | |||||
0.873 | unidentified | ||||
0.828 | unidentified | ||||
0.790 | unidentified | ||||
0.753 | unidentified | ||||
0.744 | unidentified | ||||
0.738 | unidentified | ||||
−0.728 | unidentified | ||||
−0.905 | unidentified | ||||
PG-O Soup | INS Soup | ||||
VID | Compound | RI | VID | Compound | RI |
Alcohols | Ketones | ||||
0.869 | 3-methyl-1-butanol | 1216 | 0.976 | (E,Z)-3,5-octadien-2-one | 1525 |
0.799 | ethanol | 953 | 0.975 | 3-octen-2-one | 1409 |
−0.740 | 1-heptanol | 1460 | 0.930 | 2-heptanone | 1187 |
−0.752 | 1-octanol | 1563 | 0.841 | (E,E)-3,5-octadien-2-one | 1575 |
Aldehydes | Benzene derivatives | ||||
0.803 | 3-methylbutanal | 942 | 0.911 | benzaldehyde | 1529 |
0.725 | 2-methylbutanal | 939 | Esters | ||
−0.795 | (E)-2-butenal | 1048 | 0.834 | γ-nonalactone | 2039 |
Hydrocarbons | −0.779 | ethyl-octanoate | 1438 | ||
−0.707 | dodecane | 1203 | Alcohols | ||
−0.767 | 2,4,6-trimethyldecane 1 | 1084 | 0.813 | 1-hexanol | 1358 |
−0.852 | 2,2,4,6,6-pentamethyl-heptane | 970 | −0.732 | 2-isopropyl-5-methyl-1-heptanol 1 | 1331 |
−0.853 | 4,7-dimethyl-undecane1 | 1091 | −0.746 | 2-nonanol | 1524 |
−0.892 | 3,5-dimethyl-octane 1 | 1017 | Aldehydes | ||
Terpenoids | 0.742 | hexanal | 1089 | ||
−0.711 | 3-carene 1 | 1140 | Hydrocarbons | ||
−0.853 | α-phellandrene | 1158 | 0.726 | Tridecane | 1301 |
Unidentified | −0.732 | 3,3-dimethyl-octane 1 | 998 | ||
0.940 | unidentified | - | −0.732 | 4-methyl-decane | 1002 |
−0.711 | unidentified | - | −0.758 | 3-methyl-undecane | 1170 |
−0.760 | unidentified | - | Terpenoids | ||
0.708 | β-pinene | 1096 | |||
Sulphur compounds | |||||
−0.778 | Allyl methyl disulphide | 1281 | |||
Unidentified | |||||
−0.711 | unidentified | ||||
−0.723 | unidentified | ||||
−0.726 | unidentified | ||||
−0.842 | unidentified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noordraven, L.E.C.; Kim, H.-J.; Hoogland, H.; Grauwet, T.; Van Loey, A.M. Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application. Foods 2021, 10, 2622. https://doi.org/10.3390/foods10112622
Noordraven LEC, Kim H-J, Hoogland H, Grauwet T, Van Loey AM. Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application. Foods. 2021; 10(11):2622. https://doi.org/10.3390/foods10112622
Chicago/Turabian StyleNoordraven, Laura E. C., Hyun-Jung Kim, Hans Hoogland, Tara Grauwet, and Ann M. Van Loey. 2021. "Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application" Foods 10, no. 11: 2622. https://doi.org/10.3390/foods10112622
APA StyleNoordraven, L. E. C., Kim, H. -J., Hoogland, H., Grauwet, T., & Van Loey, A. M. (2021). Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application. Foods, 10(11), 2622. https://doi.org/10.3390/foods10112622