Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in ‘Muscat Hamburg’ Grape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Site, Cluster-Thinning Treatments, and Sampling
2.2. Analysis of Berry Maturity Parameters
2.3. Analysis of Berry Monoterpene Profiles
2.4. RNA-Seq and Transcriptome Analyses
2.5. qRT-PCR Validation of RNA-Seq Data
2.6. Statistical Analyses
3. Results and Discussion
3.1. Effects of Cluster Thinning on the Technological Parameters of Grape Berries
3.2. Effects of Cluster Thinning on Volatile Monoterpene Compounds in Grape
3.3. Transcriptome Analysis of Grapes Receiving Different Cluster-Thinning Treatments
3.4. WGCNA of the DEGs
3.5. DEGs Involved in the Terpenoid Backbone Biosynthetic Pathway
3.6. Validation of DEG Profiling by qRT-PCR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rutan, T.E.; Mandy, H.J.; Kilmartin, P.A. Effect of cluster thinning vitis vinifera cv. pinot noir on wine volatile and phenolic composition. J. Agric. Food Chem. 2018, 66, 10053–10066. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Blanco, J.A.; Tardaguila, J. Effects of mechanical thinning on fruit and wine composition and sensory attributes of Grenache and Tempranillo varieties (Vitis vinifera L.). Aust. J. Grape Wine R. 2010, 16, 314–326. [Google Scholar] [CrossRef]
- Fanzone, M.; Zamora, F.; Jofre, V.; Assof, M.; Pena-Neira, A. Phenolic composition of malbec grape skins and seeds from valle de uco (Mendoza, Argentina) during ripening. Effect of cluster thinning. J. Agric. Food Chem. 2011, 59, 6120–6136. [Google Scholar] [CrossRef] [PubMed]
- Škrab, D.; Sivilotti, P.; Comuzzo, P.; Voce, S.; Degano, F.; Carlin, S.; Arapitsas, P.; Masuero, D.; Vrhovšek, U. Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines. Metabolites 2021, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Zha, Q.; He, Y.; Tian, Y.; Jiang, A. Influence of cluster thinning and girdling on aroma composition in ‘jumeigui’ table grape. Sci. Rep. 2020, 10, 6877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, M.; Esteruelas, M.; González, E.; Kontoudakis, N.; Jiménez, J.; Fort, F.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Effect of two different treatments for reducing grape yield in vitis vinifera cv syrah on wine composition and quality: Berry thinning versus cluster thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; Van den Heuvel, J.E. Impact of shoot and cluster thinning on yield, fruit composition, and wine quality of Corot noir. Am. J. Enol. Vitic. 2012, 63, 49–56. [Google Scholar] [CrossRef]
- Kok, D. Infuences of pre- and post-véraison cluster thinning treatments on grape composition variables and monoterpene levels of Vitis vinifera L. cv. Sauvignon Blanc. J. Food Agric. Env. 2011, 9, 22–26. [Google Scholar]
- Mawdsley, P.; Peterson, J.C.D.; Casassa, L.F. Multi-year study of the effects of cluster thinning on vine performance, fruit and wine composition of Pinot noir (clone 115) in California’s Edna Valley Ava (USA). Sci. Hortic. 2019, 256, 108631. [Google Scholar] [CrossRef]
- Frioni, T.; Zhuang, S.; Palliotti, A.; Sivilotti, P.; Falchi, R.; Sabbatini, P. Leaf removal and cluster thinning efficiencies are highly modulated by environmental conditions in cool climate viticulture. Am. J. Enol. Vitic. 2017, 68, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Cañón, P.M.; González, Á.S.; Alcalde, J.A.; Bordeu, E. Red wine phenolic composition: The effects of summer pruning and cluster thinning. Cienc. e Investig. Agrar. 2014, 41, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Palliotti, A.; Cartechini, A. Cluster thinning effects on yield and grape composition in different grapevine cultivars. Acta Hortic. 2000, 512, 111–119. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Price, S.F.; Wardle, D.A.; Watson, B.T.; Stewart, B. Fruit environment and crop level effects on Pinot noir.1. Vine performance and fruit composition in British-Columbia. Am. J. Enol. Vitic. 1994, 45, 452–459. [Google Scholar]
- Keller, M.; Mills, L.J.; Wample, R.L.; Spayd, S.E. Cluster thinning effects on three deficit-irrigated Vitis vinifera Cultivars. Am. J. Enol. Vitic. 2005, 56, 91–103. [Google Scholar]
- Wang, Y.; He, Y.N.; Chen, W.K.; He, F.; Chen, W.; Cai, X.D. Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. Food Chem. 2018, 248, 101–110. [Google Scholar] [CrossRef]
- Xi, X.; Zha, Q.; Jiang, A.; Tian, Y. Impact of cluster thinning on transcriptional regulation of anthocyanin biosynthesis-related genes in ‘Summer Black’ grapes. Plant Physiol. Bioch. 2016, 104, 180–187. [Google Scholar] [CrossRef]
- Gamero, E.; Oreno, D.; Talaverano, I.; Prieto, M.H.; Valdés, M.E. Effects of irrigation and cluster thinning on tempranillo grape and wine composition. South Afr. J. Enol. Vitic. 2014, 35, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for sparkling wine production: A review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.F.; Ren, R.H.; Ma, X.; Fang, Y.L.; Zhang, Z.W.; Ju, Y.L. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis Vinifera L. cultivars. Food Res. Int. 2020, 137, 109736. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.F.; Ma, X.; Tang, Y.L.; Wang, Y.; Wu, B.W.; Jiao, X.L.; Zhang, Z.W.; Ju, Y.L. Effect of cluster zone leaf removal on monoterpene profles of Sauvignon Blanc grapes and wines. Food Res. Int. 2020, 131, 109028. [Google Scholar] [CrossRef] [PubMed]
- Godshaw, J.; Hjelmeland, A.K.; Zweigenbaum, J.; Ebeler, S.E. Changes in glycosylation patterns of monoterpenes during grape berry maturation in six cultivars of Vitis Vinifera. Food Chem. 2019, 297, 124921. [Google Scholar] [CrossRef]
- Yue, X.F.; Liu, S.Q.; Wei, S.C.; Fang, Y.L.; Zhang, Z.W.; Ju, Y.L. Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in “Muscat Hamburg” Grapes. J. Agric. Food Chem. 2021, 69, 4164–4176. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Zhong, G.Y.; Gao, Y.; Lan, Y.B.; Duan, C.Q.; Pan, Q.H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol. 2015, 15, 240. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.Q.; Brotchie, J.; Pang, M.; Marriott, P.J.; Howella, K.; Zhang, P.Z. Free terpene evolution during the berry maturation of five Vitis Vinifera L. cultivars. Food Chem. 2019, 299, 125101. [Google Scholar] [CrossRef] [PubMed]
- Hubert, A.; Peggy, R.; Schneider, R.; Ojeda, H.; Laurent, T. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2018, 99, 975–985. [Google Scholar]
- Yue, X.F.; Wei, S.C.; Liu, W.H.; Lu, J.S.; Fang, Y.L.; Zhang, Z.W.; Ju, Y.L. Effect of rain-shelter cultivation on the monoterpenes profile of Muscat Hamburg grapes and wines. Sci. Hortic. 2021, 285, 110136. [Google Scholar] [CrossRef]
- Li, X.Y.; Wen, Y.Q.; Meng, N.; Qian, X.; Pan, Q.H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis Vinifera varieties. Front. Plant Sci. 2017, 8, 1226–1239. [Google Scholar] [CrossRef]
- Li, W.; Li, W.F.; Yang, S.; Ma, Z.; Chen, B. Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. J. Agric. Food Chem. 2020, 68, 5270–5281. [Google Scholar] [CrossRef]
- Ju, Y.L.; Yue, X.F.; Cao, X.L.; Wei, X.L.; Fang, Y.L. First study on the fatty acids and their derived volatile profiles from six chinese wild spine grape clones (vitis davidii foex). Sci. Hortic. 2021, 275, 109709. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, Y.; Gao, C.; Ma, J.; Ren, X. Transcriptome analysis reveals new insights into MdBAK1-mediated plant growth in Malus Domestica. J. Agric. Food Chem. 2019, 67, 9757–9771. [Google Scholar] [CrossRef]
- Gatti, M.; Bernizzoni, F.; Civardi, S.; Poni, S. Effects of cluster thinning and preflowering leaf removal on growth and grape composition in cv. Sangiovese. Am. J. Enol. Viticult. 2012, 63, 325–332. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Song, S.; Xu, W.; Wang, S. Evolution of volatile compounds during the development of muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera). Food Chem. 2019, 309, 125778. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.N.; He, L.; He, F.; Chen, W.; Duan, C.Q. Changes in global aroma profiles of Cabernet sauvignon in response to cluster thinning. Food Res. Int. 2019, 122, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Peña, R.M.; Barciela, J.; Herrero, C.; García-Martín, S. Optimization of solid-phase microextraction methods for GC-MS determination of terpenes in wine. J. Sci. Food Agric. 2005, 85, 1227–1234. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Sparacio, A.; Giglio, D.; Sparla, S. Effects of cluster thinning on wine quality of syrah cultivar (Vitis vinifera L.). Eur. Food Res. Technol. 2016, 242, 1719–1726. [Google Scholar] [CrossRef]
- Bubola, M.; Peršurić, D.; Kovačević, G.K. Impact of cluster thinning on productive characteristics and wine phenolic composition of cv. Merlot. J. Food Agric. Environ. 2011, 9, 36–39. [Google Scholar]
- Costantini, L.; Kappel, C.D.; Trenti, M.; Battilana, J.; Emanuelli, F.; Sordo, M.; Moretto, M.; Camps, C.; Larcher, R.; Delrot, S.; et al. Drawing links from transcriptome to metabolites: The evolution of aroma in the ripening berry of Moscato Bianco (Vitis vinifera L.). Front. Plant. Sci. 2017, 8, 780. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Ju, Y.; Fang, Y.; Zhang, Z. Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in ‘Muscat Hamburg’ Grape. Foods 2021, 10, 2718. https://doi.org/10.3390/foods10112718
Yue X, Ju Y, Fang Y, Zhang Z. Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in ‘Muscat Hamburg’ Grape. Foods. 2021; 10(11):2718. https://doi.org/10.3390/foods10112718
Chicago/Turabian StyleYue, Xiaofeng, Yanlun Ju, Yulin Fang, and Zhenwen Zhang. 2021. "Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in ‘Muscat Hamburg’ Grape" Foods 10, no. 11: 2718. https://doi.org/10.3390/foods10112718
APA StyleYue, X., Ju, Y., Fang, Y., & Zhang, Z. (2021). Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in ‘Muscat Hamburg’ Grape. Foods, 10(11), 2718. https://doi.org/10.3390/foods10112718