Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses
Abstract
:1. Introduction
2. Material and Methods
2.1. Growth Treatments for Wheat and Barley Grass
2.2. Growth Parameters
2.3. Chlorophyll Content
2.4. Preparation of Grass Extract
2.5. Carotenoid Content
2.6. Bioactive Compound Analysis
2.6.1. Total Phenolic Content
2.6.2. Total Flavonoid Content
2.6.3. Total Vitamin C Content
2.7. Antioxidant Enzymes Activity
2.7.1. Guaiacol Peroxidase Activity (EC. 1.11.1.7)
2.7.2. Catalase Activity (EC. 1.11.1.6)
2.7.3. Glutathione Reductase (EC 1.6.4.2)
2.7.4. Superoxide Dismutase-like Activity (EC 1.15.1.1)
2.8. Analysis of Antioxidant Activity
2.8.1. 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) Antioxidant Assay
2.8.2. 2,2-Diphenyl-1-picrylhydrazyl Radical-Scavenging Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Growth Parameters
3.2. Chlorophyll and Carotenoids Analysis
3.3. Bioactive Compounds in Wheat and Barley Grass Extracts
3.4. Antioxidant Enzymes in Wheat and Barley Grass Extracts
3.5. Antioxidant Activities of Wheat and Barley Grass Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anzooman, M.; Christopher, J.; Mumford, M.; Dang, Y.P.; Menzies, N.W.; Kopittke, P.M. Selection for rapid germination and emergence may improve wheat seedling establishment in the presence of soil surface crusts. Plant Soil 2018, 426, 227–239. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Lee, Y.-T.; Mele, M.A.; Choi, I.-L.; Kang, H.-M. The effect of phosphorus and root zone temperature on anthocyanin of red romaine lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Chon, S.-U.; Kim, Y.-M. Phytotoxicity and DPPH radical scavenging activity of barley seedling extracts. Korean J. Crop Sci. 2006, 51, 322–328. [Google Scholar]
- Bello, Z.; Rensburg, L.V.; Dlamini, P. Response of glasshouse grown malt barley yield to water stress. Agron. J. 2017, 109, 769–781. [Google Scholar] [CrossRef]
- Imboden, L.; Afton, D.; Trail, F. Surface interactions of Fusarium graminearum on barley. Mol. Plant Pathol. 2018, 19, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.-Y.; Zheng, S.-S.; Naeem, M.K.; Niu, J.-Q.; Wang, N.; Li, Z.-J.; Wu, H.-L.; Ling, H.-Q. Screening wheat genotypes for better performance on reduced phosphorus supply by comparing glasshouse experiments with field trials. Plant Soil 2018, 430, 349–360. [Google Scholar] [CrossRef]
- Islam, M.Z.; Yu, D.S.; Lee, Y.T. The effect of heat processing on chemical composition and antioxidative activity of tea made from barley sprouts and wheat sprouts. J. Food Sci. 2019, 84, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Nemzer, B.; Devries, J.W. Sprouted Grains: Nutritional Value, Production, and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; van den Broeck, H.C.; Brouns, F.J.P.H.; de Brier, N.; et al. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baon, J.B.; Smith, S.E.; Alston, A.M. Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J. Plant Nutr. 2008, 17, 479–492. [Google Scholar] [CrossRef]
- Dixon, L.E.; Farré, A.; Finnegan, E.J.; Orford, S.; Griffiths, S.; Boden, S.A. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes Flowering Locus T1. Plant Cell Environ. 2018, 41, 1715–1725. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Pu, X.; Yang, J.; Du, J.; Yang, X.; Li, X.; Li, L.; Zhou, Y.; Yang, T. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxid. Med. Cell. Longev. 2018, 2018, 3232080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avisar, A.; Cohen, M.; Brenner, B.; Bronshtein, T.; Machluf, M.; Bar-Sela, G.; Aharon, A. Extracellular vesicles reflect the efficacy of wheatgrass juice supplement in colon cancer patients during adjuvant chemotherapy. Front. Oncol. 2020, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Moran, R. Formulate for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 1982, 69, 1376–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Putter, J. Peroxidase. In Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany, 1974; pp. 685–690. [Google Scholar]
- Aebi, H. Catalase. In Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany; Academic Press Inc.: New York, NY, USA, 1974; pp. 673–680. [Google Scholar]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, J.A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, K.; Gu, Y.; Zhang, L.; Li, W.; Li, Z. Effects of low-temperature stress and Brassinolide application on the photosynthesis and leaf structure of Tung tree seedlings. Front. Plant Sci. 2020, 10, 1767. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Greer, D.H.; Berry, J.A.; Björkman, O. Photoinhibition of photosynthesis in intact bean leaves: Role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta 1986, 2, 253–260. [Google Scholar]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Mohanty, S.; Tripathy, B.C. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol. 2009, 150, 1050–1061. [Google Scholar] [CrossRef]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B 2014, 137, 116–126. [Google Scholar] [CrossRef]
- Ramel, F.; Birtic, S.; Cuiné, S.; Triantaphylidès, C.; Ravanat, J.-L.; Havaux, M. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 2012, 158, 1267–1278. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Soengas, P.; Rodríguez, V.M.; Velasco, P.; Cartea, M.E. Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega 2018, 3, 5237–5243. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-H.; Huang, H.-C.; Lin, C.-Y. Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep. 2010, 29, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Garratt, L.C.; Janagoudar, B.S.; Lowe, K.C.; Anthony, P.; Power, J.B.; Davey, M.R. Salinity tolerance and antioxidant status in cotton cultures. Free Radic. Biol. Med. 2002, 33, 502–511. [Google Scholar] [CrossRef]
- Candan, N.; Tarhan, L. Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol. Biochem. 2003, 41, 35–40. [Google Scholar] [CrossRef]
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res. Int. 2019, 2019, 9732325. Available online: https://www.hindawi.com/journals/bmri/2019/9732325/ (accessed on 6 June 2021).
Grass Type | Day and Night Temperature | Grass Height (cm) | Grass Weight (g) | Grass Yield (g/m2) |
---|---|---|---|---|
Wheat | 10/5 °C | 8.32 ± 0.36 b z | 76.98 ± 3.06 b | 1182.44 ± 47.05 b |
20/15 °C | 15.29 ± 0.33 a | 113.77 ± 2.89 a | 1747.67 ± 44.37 a | |
30/25 °C | 13.60 ± 0.29 a | 92.79 ± 3.18 ab | 1425.40 ± 48.91 ab | |
p value | *** | *** | *** | |
Barley | 10/5 °C | 6.01 ± 0.32 c z | 59.66 ± 1.99 b | 916.44 ± 30.62 b |
20/15 °C | 13.97 ± 0.25 a | 105.21 ± 2.54 a | 1616.13 ± 39.09 a | |
30/25 °C | 11.52 ± 0.32 b | 88.63 ± 3.79 a | 1361.44 ± 58.23 a | |
p value | *** | *** | *** |
Grass Type | Day and Night Temperature | Phenolic (µg/mL) | Flavonoids (µg/mL) | Vitamin C (µg/mL) |
---|---|---|---|---|
Wheat | 10/5 °C | 144.15 ± 2.36 a z | 47.45 ± 4.29 a | 2.45 ± 0.29 a |
20/15 °C | 81.76 ± 1.46 b | 28.00 ± 3.67 b | 1.63 ± 0.15 b | |
30/25 °C | 97.22 ± 0.52 c | 36.18 ± 3.89 ab | 1.70 ± 0.03 b | |
p value | *** | * | * | |
Barley | 10/5 °C | 92.23 ± 1.73 a z | 36.86 ± 4.15 a | 1.95 ± 0.04 a |
20/15 °C | 75.67 ± 1.03 b | 23.55 ± 3.71 ab | 0.87 ± 0.02 c | |
30/25 °C | 80.42 ± 0.86 b | 31.73 ± 1.41 b | 1.36 ± 0.05 b | |
p value | *** | * | *** |
Grass Type | Day and Night Temperature | Guaiacol Peroxidase Activity (POD) (unit/min/mL) | Catalase Activity (CAT) (unit/min/mL) | Glutathione Reductase (GR) (unit/min/mL) | Superoxide Dismutase (SOD)-like Activity (%) |
---|---|---|---|---|---|
Wheat | 10/5 °C | 0.10 ± 0.01 a z | 14.33 ± 0.59 a | 0.18 ± 0.01 a | 34.55 ± 0.20 a |
20/15 °C | 0.07 ± 0.01 ab | 13.21 ± 0.35 ab | 0.14 ± 0.01 ab | 22.38 ± 1.47 ab | |
30/25 °C | 0.05 ± 0.01 b | 11.28 ± 0.59 b | 0.12 ± 0.01 b | 15.98 ± 2.91 b | |
p value | * | * | * | *** | |
Barley | 10/5 °C | 0.09 ± 0.02 a z | 16.07 ± 0.58 a | 0.06 ± 0.01 a | 12.43 ± 0.92 a |
20/15 °C | 0.06 ± 0.01 ab | 14.59 ± 0.52 ab | 0.04 ± 0.01 ab | 9.89 ± 1.03 ab | |
30/25 °C | 0.04 ± 0.01 b | 13.24 ± 0.59 b | 0.03 ± 0.01 b | 8.20 ± 0.36 b | |
p value | * | * | * | ** |
Grass Type | Day and Night Temperature | 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic Acid (ABTS) (IC50, µg/mL) | 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (IC50, µg/mL) |
---|---|---|---|
Wheat | 10/5 °C | 47.94 ± 0.1 a z | 39.26 ± 0.1 a |
20/15 °C | 43.64 ± 0.5 ab | 33.02 ± 0.0 c | |
30/25 °C | 45.80 ± 0.1 b | 36.53 ± 0.1 b | |
p value | *** | *** | |
Barley | 10/5 °C | 46.39 ± 0.2 a z | 11.70 ± 0.0 a |
20/15 °C | 42.46 ± 0.4 ab | 8.46 ± 0.0 c | |
30/25 °C | 43.79 ± 0.1 b | 10.68 ± 0.0 b | |
p value | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.Z.; Park, B.-J.; Lee, Y.-T. Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses. Foods 2021, 10, 2742. https://doi.org/10.3390/foods10112742
Islam MZ, Park B-J, Lee Y-T. Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses. Foods. 2021; 10(11):2742. https://doi.org/10.3390/foods10112742
Chicago/Turabian StyleIslam, Mohammad Zahirul, Buem-Jun Park, and Young-Tack Lee. 2021. "Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses" Foods 10, no. 11: 2742. https://doi.org/10.3390/foods10112742
APA StyleIslam, M. Z., Park, B. -J., & Lee, Y. -T. (2021). Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses. Foods, 10(11), 2742. https://doi.org/10.3390/foods10112742