Effects of Ultrasound Technology on the Qualitative Properties of Italian Extra Virgin Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mechanical Extraction Process
- Control test (CTRL) hammer crusher without ultrasound treatment;
- Test 1 (US) hammer crusher and ultrasound treatment;
- Test 2 (DS) de-stoning machine without ultrasound treatment;
- Test 3 (DS-US) de-stoning machine and ultrasound treatment.
2.2. Chemical Analysis
2.2.1. Merceological Parameters
2.2.2. Nutritional and Nutraceutical Analysis
2.2.3. Organoleptic Assessment
2.3. Statistical Analysis
3. Results and Discussion
3.1. General Aspects
3.2. Merceological Parameters
3.3. Nutritional and Nutraceutical Analysis
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veneziani, G.; Sordini, B.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Servili, M. Improvement of olive oil mechanical extraction: New technologies, process efficiency and Extra Virgin Olive Oil quality. In Products from Olive Tree; Boskou, D., Clodoveo, M.L., Eds.; Intech Open: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Cacchiarelli, L.; Sabbatini, V. Exploring quality and its value in the Italian olive oil market: A panel data analysis. Agric. Food Econ. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- USDA FAS Report 2017. Available online: https://www.fas.usda.gov/data/italy-italian-olive-oil-overview-2016 (accessed on 26 September 2021).
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. 3 factors affecting extra-virgin olive oil composition. Hortic. Rev. 2011, 38, 83. [Google Scholar]
- Aydar, A.Y. Emerging extraction technologies in olive oil production. In Technological Innovation in the Olive Oil Production Chain; Muzzalupo, I., Ed.; Intech Open: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Gila, A.; Sánchez-Ortiz, A.; Jiménez, A.; Beltrán, G. The ultrasound application does not affect to the thermal properties and chemical composition of virgin olive oils. Ultrason. Sonochem. 2021, 70, 105–320. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Veneziani, G.; Taticchi, A.; Romaniello, R.; Tamborrino, A.; Leone, A. Low-frequency, high-power ultrasound treatment at different pressures for olive paste: Effects on olive oil yield and quality. Ultrason. Sonochemistry 2019, 59, 104–747. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Tomasone, R.; Cedrola, C.; Fedrizzi, M.; Veneziani, G.; Servili, M. Use of Ultrasound in the Extraction Process of Virgin Olive Oil and Influence on Malaxation Time. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; MID-TERM AIIA 2019. Lecture Notes in Civil. Engineering; Springer Nature: Cham, Switzerland, 2020; Volume 67. [Google Scholar] [CrossRef]
- Veneziani, G.; Nucciarelli, D.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Tomasone, R.; Pagano, M.; Servili, M. Application of low temperature during the malaxation phase of Virgin Olive Oil mechanical extraction processes of three different Italian cultivars. Foods 2021, 10, 1578. [Google Scholar] [CrossRef]
- Beltran, G.; Uceda, M.; Jimenez, A.; Aguilera, M.P. Olive oil extractability index as a parameter for olive cultivar characterisation. J. Sci. Food Agric. 2003, 83, 503–506. [Google Scholar] [CrossRef]
- European Commission. Commission Delegated Regulation (EU) 2015/1830 of 8 July 2015 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Comm. 2015, 266, 9–13. [Google Scholar]
- AOAC. Approved methods of Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Virginia, VA, USA, 1995. [Google Scholar]
- International Olive Council (IOC). Determination of Composition of Triacylglycerols and Composition and Content of Di-Acylglycerols by Capillary Gas Chromatography, In Vegetable Oils; COI/T.20/Doc. No 32; 2013; Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 25 September 2021).
- EEC. European Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Comm. 1991, 248, 1–110. [Google Scholar]
- Cucurachi, A. L’esame nel visibile degli oli d’oliva vergini, dei rettificati e delle miscele. Riv. It. Sost. Grasse 1969, 46, 449–458. [Google Scholar]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Minnocci, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Sebastiani, L.; Servili, M. High vacuum-assisted extraction affects virgin olive oil quality: Impact on phenolic and volatile compounds. Food Chem. 2021, 342, 128–369. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Method for the Organoleptic Assessment of Extra Virgin Olive Oil Applying to Use a Designation of Origin. COI/T.20/Doc. n. 22, November 2005. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 25 September 2021).
- Hammer, O.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Miho, H.; Díez, C.M.; Mena-Bravo, A.; de Medina, V.S.; Moral, J.; Melliou, E.; Magiatis, P.; Rallo, L.; Barranco, D.; Priego-Capote, F. Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey. Food Chem. 2018, 266, 192–199. [Google Scholar] [CrossRef]
- Aprea, E.; Gasperi, F.; Betta, E.; Sani, G.; Cantini, C. Variability in volatile compounds from lipoxygenase pathway in extra virgin olive oils from Tuscan olive germoplasm by quantitative SPME/GC-MS. J. Mass Spectrom. 2018, 53, 824–832. [Google Scholar] [CrossRef]
- Serrano, A.; De la Rosa, R.; Sánchez-Ortiz, A.; Cano, J.; Pérez, A.G.; Sanz, C.; León, L. Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT 2021, 136, 110–257. [Google Scholar] [CrossRef]
- Gallina-Toschi, T.; Cerretani, L.; Bendini, A.; Bonoli-Carbognin, M.; Lercker, G. Oxidative stability and phenolic content of virgin olive oil: An analytical approach by traditional and high-resolution techniques. J. Sep. Sci. 2005, 28, 859–870. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Sestili, S.; Di Vincenzo, D. Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 587–601. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A.; Rotondi, A.; Lercker, G.; Gallina-Toschi, T. Analytical comparison of monovarietal virgin olive oils obtained by both a continuous industrial plant and a low-scale mill. Eur. J. Lipid. Sci. Technol. 2005, 107, 93–100. [Google Scholar] [CrossRef]
- Tamborrino, A.; Servili, M.; Leon, A.; Romaniello, R.; Perone, C.; Veneziani, G. Partial de-stoning of olive paste to increase olive oil quality, yield, and sustainability of the olive oil extraction process. Eur. J. Lipid. Sci. Technol. 2020, 122, 2000129. [Google Scholar] [CrossRef]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical characterization of virgin olive oil obtained using an ultrasound-assisted extraction at an industrial scale: Influence of olive maturity index and malaxation time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Tekin, A.; Turan, S. Improving olive oil quality with double protection: Destoning and malaxation in nitrogen atmosphere. Eur. J. Lipid Sci. Technol. 2011, 113, 637–643. [Google Scholar] [CrossRef]
- Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G. Effect of olive stoning on the volatile and phenolic composition of virgin olive oil. J. Agric. Food Chem. 2007, 55, 7028–7035. [Google Scholar] [CrossRef] [PubMed]
- Rivera del Álamo, R.M.; Fregapane, G.; Aranda, F.; Gómez-Alonso, S.; Salvador, M.D. Sterol and alcohol composition of Cornicabra virgin olive oil: The campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chem. 2004, 84, 533–537. [Google Scholar] [CrossRef]
- Amirante, P.; Catalano, P.; Amirante, R.; Clodoveo, M.L.; Montel, G.L.; Leone, A.; Tamborrino, A. Prove sperimentali di estrazione di oli extravergini di oliva da paste snocciolate. In OLIVO & OLIO; Edagricole: Bologna, Italy, 2002; Volume 5, pp. 16–22. [Google Scholar]
- Ranalli, A.; Benzi, M.; Gomes, T.; Delcuratolo, D.; Marchegiani, D.; Lucera, L. Concentration of natural pigments and other bioactive components in pulp oils from de-stoned olives. Innov. Food Sci. Emerg. Technol. 2007, 8, 437–442. [Google Scholar] [CrossRef]
- Stefanoudaki, E.; Kotsifaki, F.; Koutsaftakis, A. The potential of HPLC triglyceride profiles for the classification of Cretan olive oils. Food Chem. 1997, 60, 425–432. [Google Scholar] [CrossRef]
- Aranda, F.; Gomez-Alonso, S.; Del Álamo, R.R.; Salvador, M.D.; Fregapane, G. Triglyceride, total and 2-Position fatty acid composition of Cornicabra virgin olive oil: Comparison with other Spanish cultivars. Food Chem. 2004, 86, 485–492. [Google Scholar] [CrossRef]
- Diaz, T.G.; Merás, I.D.; Casas, J.S.; Franco, M.A. Characterization of virgin olive oils according to its triglycerides and sterols composition by chemometric methods. Food Control. 2005, 16, 339–347. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Effect of green Spanish-style processing (Manzanilla and Hojiblanca) on the quality parameters and fatty acid and triacylglycerol compositions of olive fat. Food Chem. 2015, 188, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Sicari, V.; Leporini, M.; Giuffré, A.M.; Aiello, F.; Falco, T.; Pagliuso, M.T.; Ruffolo, A.; Reitano, A.; Romeo, R.; Tundis, R.; et al. Quality parameters, chemical compositions and antioxidant activities of Calabrian (Italy) monovarietal extra virgin olive oils from autochthonous (Ottobratica) and allochthonous (Coratina, Leccino, and Nocellara Del Belice) varieties. J. Food Meas. Charact. 2021, 15, 363–375. [Google Scholar] [CrossRef]
- Cecchi, T.; Passamonti, P.; Alfei, B.; Cecchi, P. Monovarietal extra virgin olive oils from the Marche region, Italy: Analytical and sensory characterization. Int. J. Food Prop. 2011, 14, 483–495. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Durante, V.; La Notte, D.; Punzi, R.; Gambacorta, G. Ultrasound-assisted extraction of virgin olive oil to improve the process efficiency. Eur. J. Lipid Sci. Technol. 2013, 115, 1062–1069. [Google Scholar] [CrossRef]
- Restuccia, D.; Clodoveo, M.L.; Corbo, F.; Loizzoa, M.R. De-Stoning technology for improving olive oil nutritional and sensory features: The right idea at the wrong time. Food Res. Int. 2018, 106, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Criado-Navarro, I.; Ledesma-Escobar, C.A.; Olmo-Peinado, J.M.; Parrado-Martínez, M.J.; Vílchez-García, P.J.; Espejo-Calvo, J.A.; Priego-Capote, F. Influence of fruit destoning on bioactive compounds of virgin olive oil. LWT 2021, 145, 111–354. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Sifola, M.I.; Selvaggini, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Servili, M. Irrigation and fruit canopy position modify oil quality of olive trees (cv. Frantoio). J. Sci. Food Agric. 2017, 97, 3530–3539. [Google Scholar] [CrossRef] [Green Version]
- Rallo, L.; Diez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Runcio, A.; Sorgonà, L.; Mincione, A.; Santacaterina, S.; Poiana, M. Volatile compounds of virgin olive oil obtained from Italian cultivars grown in Calabria: Effect of processing methods, cultivar, stone removal, and antracnose attack. Food Chem. 2008, 106, 735–740. [Google Scholar] [CrossRef]
- Jiménez, A.; Beltrán, G.; Uceda, M. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrason. Sonochem. 2007, 14, 725–731. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Dugo, G.; Leone, A.; Tamborrino, A. Advance technology in virgin olive oil production from traditional and de-stoned pastes: Influence of the introduction of a heat exchanger on oil quality. Food Chem. 2006, 98, 797–805. [Google Scholar] [CrossRef]
A | ||||||||||||||||||
Source | Degrees of Freedom | Mean Square | ||||||||||||||||
A414 | A446 | A474 | A531 | A664 | R474/664 | Diglycerides | ||||||||||||
Sampling (S) | 3 | ns | ns | ns | ns | ns | ns | ns | ||||||||||
Genotype (G) | 2 | 5.81 *** | 4.52 *** | 3.06 *** | 0.017 *** | 0.66 *** | 4.02 *** | 1.96 *** | ||||||||||
Process (P) | 3 | 0.74 *** | 0.85 *** | 0.71 *** | 0.0003 *** | 0.14 *** | 2.40 *** | 0.14 *** | ||||||||||
G × P | 6 | 0.22 *** | 0.22 *** | 0.18 *** | 0.001 *** | 0.05 *** | 0.31 ** | 0.06 *** | ||||||||||
G × S | 6 | 0.01 ns | 0.01 ns | 0.01 ns | 0.0002 ns | 0.001 ns | 0.04 ns | 0.005 ns | ||||||||||
P × S | 9 | 0.01 ns | 0.01 ns | 0.01 ns | 0.0007 ns | 0.002 ns | 0.13 ns | 0.009 ns | ||||||||||
G × P × S | 18 | 0.01 ns | 0.01 ns | 0.01 ns | 0.0009 ns | 0.001 ns | 0.07 ns | 0.005 ns | ||||||||||
Total | 47 | |||||||||||||||||
B | ||||||||||||||||||
Source | DF | Mean Square | ||||||||||||||||
LLL | OLLn + PoLL | PLLn | OLL | OOLn + PoOL | PLL + PoPoO | POLn + PpoPo + PPoL | OOL + LnPP | PoOO | SLL + PLO | PoOP + SpoL + SOLn + SPoPo | PLP + OOO + PoPP | SOL + POO | POP | SOO | POS + SLS | |||
Sampling (S) | 3 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Genotype (G) | 2 | 0.073 *** | 0.222 *** | 0.034 *** | 9.42 *** | 0.186 ** | 2.355 *** | 1.29 *** | 73.2 *** | 4.35 *** | 54.95 *** | 2.9 *** | 575 *** | 13.7 *** | 7.6 *** | 1.67 *** | 0.68 *** | |
Process (P) | 3 | 0.001 * | 0.0001 ns | 0.0002 ns | 0.28 *** | 0.011 ns | 0.009 ** | 0.15 *** | 1.9 *** | 0.02 *** | 0.14 ** | 0.4 *** | 3.9 *** | 1.9 *** | 0.8 *** | 1.13 *** | 0.06 *** | |
G × P | 6 | 0.001 ** | 0.0012 * | 0.0007 ns | 0.07 *** | 0.025 * | 0.012 ** | 0.13 *** | 0.6 ** | 0.03 *** | 0.09 *** | 0.4 *** | 3.5 *** | 1.9 *** | 0.7 *** | 0.13 *** | 0.1 *** | |
G × S | 6 | 0.0001 ns | 0.0002 ns | 0.0002 ns | 0.004 ns | 0.009 ns | 0.001 ns | 0.0005 ns | 0.04 ns | 0.001 ns | 0.01 ns | 0.0002 ns | 0.3 ns | 0.03 ns | 0.002 ns | 0.007 ns | 0.001 ns | |
P × S | 9 | 0.0002 ns | 0.0007 ns | 0.0004 ns | 0.004 ns | 0.006 ns | 0.001 ns | 0.005 ns | 0.08 ns | 0.001 ns | 0.01 ns | 0.001 ns | 0.2 ns | 0.02 ns | 0.006 ns | 0.003 ns | 0.002 ns | |
G × P × S | 18 | 0.0001 ns | 0.0003 ns | 0.0004 ns | 0.008 ns | 0.007 ns | 0.002 ns | 0.004 ns | 0.1 ns | 0.001 ns | 0.01 ns | 0.001 ns | 0.2 ns | 0.01 ns | 0.007 ns | 0.01 ns | 0.004 ns | |
Total | 47 | |||||||||||||||||
C | ||||||||||||||||||
Source | DF | Mean Square | ||||||||||||||||
Cholesterol | Brassicasterol | 24-Metilencholesterol | Campesterol | Campestanol | Stigmasterol | D-7-Campesterol | D-5,23-Stigmastadienol | Clerosterol | β-Sitosterol | Sitostanol | D-5-Avenasterol | D-5,24-Sigmastadienol | D-7-Stigmastenol | D-7-Avenasterol | Apparent β-Sitosterol | Erythrodiol + Uvaol | ||
Sampling (S) | 3 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Genotype (G) | 2 | 0.07 *** | ns | 0.73 *** | 3.06 *** | 0.003 * | 0.66 *** | 0.01 ** | 0.15 *** | 0.08 *** | 24.5 *** | 0.20 *** | 38.64 *** | 0.28 *** | 0.01 ** | 0.09 *** | 5.88 *** | 11.65 *** |
Process (P) | 3 | 0.005 ** | ns | 0.002 * | 0.05ns | 0.003 * | 0.001 ns | 0.003 * | 0.01 ** | 0.02 ns | 0.36 ** | 0.02 *** | 1.35 *** | 0.03 ** | 0.03 *** | 0.03 *** | 0.08 ns | 0.32 * |
G × P | 6 | 0.003 ns | ns | 0.008 *** | 0.07 *** | 0.002 ns | 0.02 *** | 0.002 ** | 0.001 *** | 0.02 *** | 0.37 *** | 0.18 *** | 0.05 *** | 0.04 *** | 0.02 ns | 0.01 *** | 0.17 *** | 0.55 *** |
G × S | 6 | 0.01 ns | ns | 0.0001 ns | 0.0002 ns | 0.0001 ns | 0.001 ns | 0.0001 ns | 0.00003 ns | 0.0001 ns | 0.02 ns | 0.002 ns | 0.01 ns | 0.001 ns | 0.001 ns | 0.001 ns | 0.01 ns | 0.003 ns |
P × S | 9 | 0.01ns | ns | 0.0001 ns | 0.0007 ns | 0.0002 ns | 0.001 ns | 0.0001 ns | 0.0001 ns | 0.0001 ns | 0.04 ns | 0.001 ns | 0.01 ns | 0.003 ns | 0.002 ns | 0.002 ns | 0.02 ns | 0.05 ns |
G × P × S | 18 | 0.01 ns | ns | 0.0001 ns | 0.0009 ns | 0.0001 ns | 0.001 ns | 0.0001 ns | 0.0001 ns | 0.0001 ns | 0.03 ns | 0.002 ns | 0.01ns | 0.003 ns | 0.002 ns | 0.002 ns | 0.01 ns | 0.02 ns |
Total | 47 | |||||||||||||||||
D | ||||||||||||||||||
Source | DF | Mean Square | ||||||||||||||||
Fitol | Geranil Geraniol | 1-Docosanol | 1-Tetracosanol | 1-Hexacosanol | 1-Octacosanol | β-amirin | Butirro Spermol | α-amirin | Cicloartenol | 24-Metilen Cicloartanol | Citrostadienol | |||||||
Sampling (S) | 3 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||||
Genotype (G) | 2 | 25,703 *** | 812 *** | 57.67 *** | 117.06 *** | 810.3 *** | 267.6 *** | 1391.8 *** | 10,517 *** | 248.6 *** | 560,339 *** | 21002.9 *** | 3380.6 *** | |||||
Process (P) | 3 | 171.6 *** | 26.7 *** | 2.01 ** | 19.35 *** | 387.8 *** | 112.4 *** | 360.8 *** | 1222 *** | 52.1 *** | 8283 *** | 273.4 *** | 2344.4 *** | |||||
G × P | 6 | 79.8 *** | 8.05 *** | 0.38 *** | 4.99 *** | 122.6 *** | 30.6 *** | 50.2 *** | 189.7 *** | 19.3 *** | 1082 *** | 160.1 *** | 337.6 *** | |||||
G × S | 6 | 3.04 ns | 0.41 ns | 0.06 ns | 0.5 ns | 1.6 ns | 1.9 ns | 0.9ns | 2.2 ns | 0.6 ns | 59.7 ns | 12.05 ns | 10.2 ns | |||||
P × S | 9 | 2.1 ns | 0.44 ns | 0.18 ns | 0.65 ns | 4.3 ns | 2.8 ns | 2.8ns | 2.8 ns | 0.2 ns | 17.7 ns | 7.88 ns | 18.1 ns | |||||
G × P × S | 18 | 3.8 ns | 0.11 ns | 0.05 ns | 0.27 ns | 1.8 ns | 1.6 ns | 2.6ns | 5.6 ns | 0.1 ns | 18.5 ns | 8.28 ns | 19.9 ns | |||||
Total | 47 | |||||||||||||||||
E | ||||||||||||||||||
Source | DF | Mean Square | ||||||||||||||||
FRUITINESS | BITTER | SPICY | HERB | ALMOND | ARTICHOKE | TOMATO | APPLE | AROMATIC HERBS | DEFECTS | |||||||||
Sampling (S) | 3 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||||||
Genotype (G) | 2 | 3.58 *** | 17.6 *** | 6.3 *** | 4.52 *** | 8.12 *** | 12.31 *** | 17.28 *** | ns | ns | ns | |||||||
Process (P) | 3 | 2.73 *** | 1.4 *** | 6.9 *** | 4.37 *** | 0.29 * | 1.08 * | 0.19 ** | ns | ns | ns | |||||||
G × P | 6 | 0.79 *** | 0.8 *** | 0.9 ** | 0.74 *** | 1.42 *** | 0.85 *** | 0.19 *** | ns | ns | ns | |||||||
G × S | 6 | 0.12 ns | 0.09 ns | 0.04 ns | 0.02 ns | 0.16 ns | 0.15 ns | 0.01 ns | ns | ns | ns | |||||||
P × S | 9 | 0.04 ns | 0.1 ns | 0.30 ns | 0.03 ns | 0.07 ns | 0.22 ns | 0.02 ns | ns | ns | ns | |||||||
G × P × S | 18 | 0.06 ns | 0.1 ns | 0.16 ns | 0.07 ns | 0.12 ns | 0.10 ns | 0.02 ns | ns | ns | ns | |||||||
Total | 47 |
Cultivar | Process | Free Acidity (%) | Peroxide Value (meq O2/Kg) | K232 | K270 | ∆ K |
---|---|---|---|---|---|---|
Peranzana | CTRL | 0.23 ± 0.01 a | 5.4 ± 0.06 a | 1.67 ± 0.02 a | 0.137 ± 0.003 a | −0.004 ± 0.0003 ab |
US | 0.25 ± 0.01 a | 5.6 ± 0.26 a | 1.64 ± 0.03 a | 0.129 ± 0.008 a | −0.004 ± 0.0003 a | |
DS | 0.25 ± 0.01 a | 5.0 ± 0.0001 a | 1.61 ± 0.06 a | 0.125 ± 0.007 a | −0.002 ± 0.0005 bc | |
DS-US | 0.25 ± 0.01 a | 5.8 ± 0.8 a | 1.62 ± 0.06 a | 0.132 ± 0.01 a | −0.002 ± 0.001 c | |
Canino | CTRL | 0.22 ± 0.01 a | 3.4 ± 0.3 a | 1.695 ± 0.079 a | 0.162 ± 0.004 a | −0.009 ± 0.001 a |
US | 0.23 ± 0.01 ab | 3.5 ± 0.4 a | 1.728 ± 0.026 a | 0.160 ± 0.001 a | −0.009 ± 0.001 a | |
DS | 0.20 ± 0.01 b | 3.5 ± 0.3 a | 1.721 ± 0.028 a | 0.162 ± 0.002 a | −0.008 ± 0.000 b | |
DS-US | 0.21 ± 0.01 ab | 3.4 ± 0.3 a | 1.687 ± 0.040 a | 0.162 ± 0.011 a | −0.007 ± 0.001 b | |
Coratina | CTRL | 0.24 ± 0.01 a | 3.4 ± 0.2 a | 1.650 ± 0.012 a | 0.167 ± 0.002 a | −0.001 ± 0.001 a |
US | 0.24 ± 0.01 a | 3.5 ± 0.1 a | 1.651 ± 0.012 a | 0.168 ± 0.009 a | −0.001 ± 0.001 a | |
DS | 0.23 ± 0.01 a | 3.4 ± 0.2 a | 1.651 ± 0.076 a | 0.168 ± 0.019 a | −0.001 ± 0.001 a | |
DS-US | 0.23 ± 0.01 a | 3.4 ± 0.3 a | 1.656 ± 0.048 a | 0.170 ± 0.005 a | −0.002 ± 0.000 a |
Cultivar | Process | Total Sterols | Total Diglycerides | Total Aliphatic Alcohols | Total Triterpene Alcohols |
---|---|---|---|---|---|
Peranzana | CTRL | 1257 ± 8 b | 1.91 ± 0.06 a | 72.5 ± 1.6 b | 567.7 ± 12.1 b |
US | 1341 ± 21 a | 1.82 ± 0.10 ab | 85.9 ± 5.0 a | 646.1 ± 27.4 a | |
DS | 955 ± 11 d | 1.60 ± 0.04 b | 59.4 ± 0.6 c | 472.6 ± 13.3 d | |
DS-US | 990 ± 15 c | 1.56 ± 0.20 b | 72.4 ± 5.0 b | 507.1 ± 6.5 c | |
Canino | CTRL | 1280 ± 17 b | 1.14 ± 0.04 a | 74.6 ± 1.4 b | 451.0 ± 6.3 b |
US | 1406 ± 13 a | 1.10 ± 0.08 ab | 89.0 ± 6.4 a | 494.5 ± 13.2 a | |
DS | 915 ± 7 d | 1.11 ± 0.01 ab | 46.8 ± 2.1 d | 374.7 ± 3.8 cd | |
DS-US | 967 ± 10 c | 1.09 ± 0.03 b | 55.0 ± 1.2 c | 388.9 ± 11.3 c | |
Coratina | CTRL | 1085 ± 9 a | 1.75 ± 0.01 b | 44.0 ± 0.3 ab | 687.8 ± 13.1 b |
US | 1089 ± 5 a | 1.90 ± 0.01 a | 47.0 ± 3.6 a | 748.3 ± 1.7 a | |
DS | 1017 ± 7 c | 1.45 ± 0.09 c | 42.4 ± 3.5 b | 594.6 ± 4.7 d | |
DS-US | 1059 ± 29 b | 1.74 ± 0.03 b | 44.4 ± 1.3 a | 650.2 ± 11.2 c |
Cultivar | Process | A 414 | A 446 | A 474 | A 531 | A 664 | R 474/664 |
---|---|---|---|---|---|---|---|
Peranzana | CTRL | 1.77 ± 0.03 b | 1.69 ± 0.05 b | 1.45 ± 0.05 b | 0.08 ± 0.00 a | 0.49 ± 0.00 bc | 2.95 ± 0.11 a |
US | 1.97 ± 0.06 a | 1.89 ± 0.06 a | 1.62 ± 0.04 a | 0.10 ± 0.00 a | 0.58 ± 0.04 a | 2.80 ± 0.11 a | |
DS | 1.36 ± 0.15 cd | 1.14 ± 0.06 d | 0.93 ± 0.13 dc | 0.08 ± 0.02 a | 0.36 ± 0.08 d | 2.73 ± 0.78 a | |
DS-US | 1.55 ± 0.13 dc | 1.31 ± 0.08 c | 0.99 ± 0.20 cd | 0.09 ± 0.02 a | 0.44 ± 0.03 cb | 2.25 ± 0.41 a | |
Canino | CTRL | 1.99 ± 0.08 b | 1.94 ± 0.08 b | 1.67 ± 0.09 b | 0.11 ± 0.01 b | 0.51 ± 0.04 bc | 3.27 ± 0.06 a |
US | 2.57 ± 0.09 a | 2.40 ± 0.11 a | 1.99 ± 0.18 a | 0.16 ± 0.01 a | 0.90 ± 0.07 a | 2.20 ± 0.02 d | |
DS | 1.44 ± 0.04 d | 1.37 ± 0.04 d | 1.14 ± 0.0 d | 0.08 ± 0.00 d | 0.38 ± 0.01 d | 3.01 ± 0.01 b | |
DS-US | 1.80 ± 0.06 c | 1.62 ± 0.00 c | 1.28 ± 0.08 c | 0.10 ± 0.00 c | 0.57 ± 0.02 cb | 2.27 ± 0.23 c | |
Coratina | CTRL | 0.70 ± 0.02 d | 0.72 ± 0.02 dc | 0.61 ± 0.01 dc | 0.04 ± 0.00 dc | 0.14 ± 0.00 d | 4.36 ± 0.10 a |
US | 0.83 ± 0.04 ba | 0.83 ± 0.03 ba | 0.69 ± 0.03 ba | 0.05 ± 0.01 ab | 0.20 ± 0.02 b | 3.49 ± 0.14 bc | |
DS | 0.75 ± 0.02 c | 0.75 ± 0.03 cd | 0.63 ± 0.02 cd | 0.04 ± 0.01 cd | 0.18 ± 0.01 c | 3.49 ± 0.02 bc | |
DS-US | 0.89 ± 0.05 ab | 0.87 ± 0.01 ab | 0.71 ± 0.03 ab | 0.05 ± 0.00 ba | 0.25 ± 0.02 a | 2.87 ± 0.09 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manganiello, R.; Pagano, M.; Nucciarelli, D.; Ciccoritti, R.; Tomasone, R.; Di Serio, M.G.; Giansante, L.; Del Re, P.; Servili, M.; Veneziani, G. Effects of Ultrasound Technology on the Qualitative Properties of Italian Extra Virgin Olive Oil. Foods 2021, 10, 2884. https://doi.org/10.3390/foods10112884
Manganiello R, Pagano M, Nucciarelli D, Ciccoritti R, Tomasone R, Di Serio MG, Giansante L, Del Re P, Servili M, Veneziani G. Effects of Ultrasound Technology on the Qualitative Properties of Italian Extra Virgin Olive Oil. Foods. 2021; 10(11):2884. https://doi.org/10.3390/foods10112884
Chicago/Turabian StyleManganiello, Rossella, Mauro Pagano, Davide Nucciarelli, Roberto Ciccoritti, Roberto Tomasone, Maria Gabriella Di Serio, Lucia Giansante, Paolo Del Re, Maurizio Servili, and Gianluca Veneziani. 2021. "Effects of Ultrasound Technology on the Qualitative Properties of Italian Extra Virgin Olive Oil" Foods 10, no. 11: 2884. https://doi.org/10.3390/foods10112884
APA StyleManganiello, R., Pagano, M., Nucciarelli, D., Ciccoritti, R., Tomasone, R., Di Serio, M. G., Giansante, L., Del Re, P., Servili, M., & Veneziani, G. (2021). Effects of Ultrasound Technology on the Qualitative Properties of Italian Extra Virgin Olive Oil. Foods, 10(11), 2884. https://doi.org/10.3390/foods10112884