A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma
Abstract
:1. Introduction
2. Microbicidal Effects of NTP on Cereals
2.1. Wheat
2.2. Rice
2.3. Maize
2.4. Barley
2.5. Miscellaneous
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, D.L.; Zeug, R.; Pettit, J. Appendix 1: Composition of grains and grain products. In Cereal Grains; Elsevier: Amsterdam, The Netherlands, 2010; pp. 487–493. [Google Scholar]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [Green Version]
- Homan, M.M. Beer and Its Drinkers: An Ancient Near Eastern Love Story. Near-East. Archaeol. 2004, 67, 84–95. [Google Scholar] [CrossRef]
- Ranieri, P.; Sponsel, N.; Kizer, J.; Rojas-Pierce, M.; Hernández, R.; Gatiboni, L.; Grunden, A.; Stapelmann, K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process. Polym. 2021, 18, 2000162. [Google Scholar] [CrossRef]
- Dudoiu, R.; Cristea, S.; Lupu, C.; Popa, D.; Oprea, M. Micoflora associated with maize grains during storage period. AgroLife Sci. J. 2016, 5, 63–68. [Google Scholar]
- Juarez-Morales, L.A.; Hernandez-Cocoletzi, H.; Chigo-Anota, E.; Aguila-Almanza, E.; Tenorio-Arvide, M.G. Chitosan-Aflatoxins B1, M1 Interaction: A Computational Approach. Curr. Org. Chem. 2017, 21, 2877–2883. [Google Scholar] [CrossRef]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Milani, J.; Maleki, G. Effects of processing on mycotoxin stability in cereals. J. Sci. Food Agric. 2014, 94, 2372–2375. [Google Scholar] [CrossRef] [PubMed]
- Sheijooni-Fumani, N.; Hassan, J.; Yousefi, S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid–liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2011, 34, 1333. [Google Scholar] [CrossRef]
- Moustafa, M.; Taha, T.; Elnouby, M.; El-Deeb, N.; Hamad, G.; Abusaied, M.A.; Alrumman, S. Potential detoxification of aflatoxin B2 using Kluyveromyces lactis and Saccharomyces cerevisiae integrated nanofibers. Biocell 2017, 41, 67. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Chizoba Ekezie, F.-G.; Sun, D.-W.; Cheng, J.-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017, 69, 46–58. [Google Scholar] [CrossRef]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M.; et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; Von dem Hagen, T.; Weltmann, K.-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011, 44, 013002. [Google Scholar] [CrossRef] [Green Version]
- Khun, J.; Scholtz, V.; Hozák, P.; Fitl, P.; Julák, J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018, 27, 065002. [Google Scholar] [CrossRef]
- Laroussi, M. Plasma Medicine: A Brief Introduction. Plasma 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Laroussi, M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009, 37, 714–725. [Google Scholar] [CrossRef]
- Laroussi, M.; Lu, X.; Keidar, M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 2017, 122, 020901. [Google Scholar] [CrossRef]
- Laroussi, M.; Akan, T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007, 4, 777–788. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kryštofová, S.; Medvecká, V.; Ďurišová, K.; Kaliňáková, B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5117–5129. [Google Scholar] [CrossRef]
- Yousfi, M.; Merbahi, N.; Sarrette, J.P.; Eichwald, O.; Ricard, A.; Gardou, J.P.; Ducasse, O.; Benhenni, M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In Biomedical Engineering—Frontiers and Challenges; Fazel, R., Ed.; InTech: London, UK, 2011. [Google Scholar]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Liu, D.X.; Liu, Z.C.; Chen, C.; Yang, A.J.; Li, D.; Rong, M.Z.; Chen, H.L.; Kong, M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016, 6, 23737. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Julák, J.; Scholtz, V. The potential for use of non-thermal plasma in microbiology and medicine. Epidemiol. Mikrobiol. Imunol. Cas. Spol. Epidemiol. Mikrobiol. Ceske Lek. Spol. JE Purkyne 2020, 69, 29–37. [Google Scholar]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K.; Weltmann, K.-D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019, 33, 1011–1026. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci. Technol. 2020, 99, 142–151. [Google Scholar] [CrossRef]
- Holubová, Ľ.; Kyzek, S.; Ďurovcová, I.; Fabová, J.; Horváthová, E.; Ševčovičová, A.; Gálová, E. Non-Thermal Plasma—A New Green Priming Agent for Plants? Int. J. Mol. Sci. 2020, 21, 9466. [Google Scholar] [CrossRef]
- Scholtz, V.; Šerá, B.; Khun, J.; Šerý, M.; Julák, J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019, 2019, 7917825. [Google Scholar] [CrossRef] [Green Version]
- Magallanes López, A.M.; Simsek, S. Pathogens control on wheat and wheat flour: A review. Cereal Chem. 2021, 98, 17–30. [Google Scholar] [CrossRef]
- Siddique, S.S.; Hardy, G.S.J.; Bayliss, K.L. Cold plasma: A potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018, 67, 1011–1021. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications: Cold plasma for effective fungal. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Bosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, M.; Mohammadi, M.A.; Khajavi, M.Z.; Ehsani, A.; Scholtz, V. Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J. Fungi 2021, 7, 395. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Hüberli, D.; Bayliss, K.L. Cold plasma: Exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop. Pasture Sci. 2020, 71, 715. [Google Scholar] [CrossRef]
- Al-Sharify, Z.T.; Al-Sharify, T.A.; al-Azawi, A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water (PAW). In Proceedings of the IOP Conference Series: Materials Science and Engineering, The International Conference on Engineering and Advanced Technology (ICEAT 2020), Assiut, Egypt, 11–12 February 2020; Volume 870, p. 012042. [Google Scholar] [CrossRef]
- Julák, J.; Hujacová, A.; Scholtz, V.; Khun, J.; Holada, K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018, 44, 125–136. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.J.; Ostrikov, K.K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef]
- Thomas-Popo, E.; Mendonça, A.; Misra, N.N.; Little, A.; Wan, Z.; Moutiq, R.; Coleman, S.; Keener, K. Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control 2019, 104, 231–239. [Google Scholar] [CrossRef]
- Butscher, D.; Zimmermann, D.; Schuppler, M.; Von Rohr, P.R. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control 2016, 60, 636–645. [Google Scholar] [CrossRef]
- Butscher, D.; Schlup, T.; Roth, C.; Müller-Fischer, N.; Gantenbein-Demarchi, C.; Von Rohr, P.R. Inactivation of microorganisms on granular materials: Reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. J. Food Eng. 2015, 159, 48–56. [Google Scholar] [CrossRef]
- Selcuk, M.; Oksuz, L.; Basaran, P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour. Technol. 2008, 99, 5104–5109. [Google Scholar] [CrossRef] [PubMed]
- Hoppanová, L.; Medvecká, V.; Dylíková, J.; Hudecová, D.; Kaliňáková, B.; Kryštofová, S.; Zahoranová, A. Low-temperature plasma applications in chemical fungicide treatment reduction. Acta Chim. Slovaca 2020, 13, 26–33. [Google Scholar] [CrossRef]
- Filatova, I.; Lyushkevich, V.; Goncharik, S.; Zhukovsky, A.; Krupenko, N.; Kalatskaja, J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D Appl. Phys. 2020, 53, 244001. [Google Scholar] [CrossRef]
- Iqbal, T.; Farooq, M.; Afsheen, S.; Abrar, M.; Yousaf, M.; Ijaz, M. Cold plasma treatment and laser irradiation of Triticum spp. seeds for sterilization and germination. J. Laser Appl. 2019, 31, 042013. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Los, A.; Ziuzina, D.; Boehm, D.; Bourke, P. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Int. J. Food Microbiol. 2020, 335, 108889. [Google Scholar] [CrossRef]
- Kordas, L.; Pusz, W.; Czapka, T.; Kacprzyk, R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Pol. J. Environ. Stud. 2015, 24, 433–438. [Google Scholar]
- Shahrzad Mohammadi, S.; Dorranian, D.; Tirgari, S.; Shojaee, M. The effect of non-thermal plasma to control of stored product pests and changes in some characters of wheat materials. J. Biodivers. Environ. Sci. 2015, 7, 150–156. [Google Scholar]
- Ratish Ramanan, K.; Sarumathi, R.; Mahendran, R. Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. J. Stored Prod. Res. 2018, 77, 126–134. [Google Scholar] [CrossRef]
- Carpen, L.; Chireceanu, C.; Teodorescu, M.; Chiriloaie, A.; Teodoru, A.; Dinescu, G. The effect of argon/oxygen and argon/nitrogen atmospheric plasma jet on stored products pests. Rom. J. Phys. 2019, 64, 503–516. [Google Scholar]
- Afsheen, S.; Fatima, U.; Iqbal, T.; Abrar, M.; Muhammad, S.; Saeed, A.; Isa, M.; Malik, M.F.; Shamas, S. Influence of cold plasma treatment on insecticidal properties of wheat seeds against red flour beetles. Plasma Sci. Technol. 2019, 21, 085506. [Google Scholar] [CrossRef]
- Zahoranová, A.; Henselová, M.; Hudecová, D. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process 2016, 36, 397–414. [Google Scholar] [CrossRef]
- Ochi, A.; Konishi, H.; Ando, S.; Sato, K.; Yokoyama, K.; Tsushima, S.; Yoshida, S.; Morikawa, T.; Kaneko, T.; Takahashi, H. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol. 2017, 66, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, N.; Yagyu, Y.; Yonesu, A.; Shiratani, M. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light. Jpn. J. Appl. Phys. 2014, 53, 05FR03. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, W.K.; Lee, J.W.; Chung, M.S.; Oh, S.W.; Shin, J.K.; Min, S.C. Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System. Food Bioprocess Technol. 2021, 14, 542–553. [Google Scholar] [CrossRef]
- Kang, M.H.; Pengkit, A.; Choi, K.; Jeon, S.S.; Choi, H.W.; Shin, D.B.; Choi, E.H.; Uhm, H.S.; Park, G. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma. PLoS ONE 2015, 10, e0139263. [Google Scholar] [CrossRef]
- Park, H.; Puligundla, P.; Mok, C. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT 2020, 131, 109508. [Google Scholar] [CrossRef]
- Khamsen, N.; Onwimol, D.; Teerakawanich, N.; Dechanupaprittha, S.; Kanokbannakorn, W.; Hongesombut, K.; Srisonphan, S. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl. Mater. Interfaces 2016, 8, 19268–19275. [Google Scholar] [CrossRef] [PubMed]
- Szőke, C.; Nagy, Z.; Gierczik, K.; Székely, A.; Spitkól, T.; Zsuboril, Z.T.; Galiba, G.; Marton, C.L.; Kutasi, K. Effect of the afterglows of low pressure Ar/N2-O2 surface-wave microwave discharges on barley and maize seeds. Plasma Process Polym. 2018, 15, 1700138. [Google Scholar] [CrossRef]
- Zahoranová, A.; Hoppanová, L.; Šimoncicová, J.; Tuceková, Z.; Medvecká, V.; Hudecová, D. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process 2018, 38, 969–988. [Google Scholar] [CrossRef]
- Brasoveanu, M.; Nemţanu, M.; Surdu-Bob, C.; Karaca, G.; Erper, I. Effect of glow discharge plasma on germination and fungal load of some cereal seeds. Rom. Rep. Phys. 2015, 67, 617–624. [Google Scholar]
- Durek, J.; Schlüter, O.; Roscher, A.; Durek, P.; Fröhling, A. Inhibition or Stimulation of Ochratoxin A Synthesis on Inoculated Barley Triggered by Diffuse Coplanar Surface Barrier Discharge Plasma. Front. Microbiol. 2018, 9, 2782. [Google Scholar] [CrossRef]
- Wannicke, N.; Wagner, R.; Stachowiak, J.; Nishime, T.M.; Ehlbeck, J.; Weltmann, K.D.; Brust, H. Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination. Plasma Process Polym. 2021, 18, 2000207. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Microbe-mediated control of mycotoxigenic grain fungi in stored rice with focus on aflatoxin biodegradation and biosynthesis inhibition. Mycobiology 2016, 44, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Naughton, L.M.; An, S.Q.; Hwang, I.; Chou, S.H.; He, Y.Q.; Tang, J.L.; Ryan, R.P.; Dow, J.M. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 2016, 18, 780–790. [Google Scholar] [CrossRef]
- Dasan, B.G.; Boyaci, I.H.; Mutlu, M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 2016, 70, 1–8. [Google Scholar] [CrossRef]
- Shaw, A.; Seri, P.; Borghi, C.A.; Shama, G.; Iza, F. A reference protocol for comparing the biocidal properties of gas plasma generating devices. J. Phys. D Appl. Phys. 2015, 48, 484001. [Google Scholar] [CrossRef] [Green Version]
- Khun, J.; Jirešová, J.; Kujalová, L.; Hozák, P.; Scholtz, V. Comparing the biocidal properties of non-thermal plasma sources by reference protocol. Eur. Phys. J. D 2017, 71, 263. [Google Scholar] [CrossRef]
- Julák, J.; Scholtz, V.; Vaňková, E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018, 34, 1–15. [Google Scholar] [CrossRef]
- Gilmore, B.F.; Flynn, P.B.; O’Brien, S.; Hickok, N.; Freeman, T.; Bourke, P. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018, 36, 627–638. [Google Scholar] [CrossRef] [PubMed]
Plant | Pathogen Name (and Source) | Plasma Apparatus | References | |
---|---|---|---|---|
Common Wheat | Triticum aestivum L. | bacteria—Escherichia coli, Salmonella enterica and natural microflora | dielectric barrier discharge system (60 Hz, 44 kV, 56.5 W, air) | [46] |
bacteria—artificially contaminated Geobacillus stearothermophilus and its endospores | atmospheric pressure dielectric barrier discharge (argon as a working gas, 8 kV, 10 kHz, or pulse frequency 5–15 kHz, pulse voltage 6–10 kV, Ar) | [47] | ||
bacteria—artificially deposited Bacillus amyloliquefaciens endospores | low pressure plasma circulating fluidized bed reactor (13.56 MHz, 8–12.8 mbar, oxygen gas admixture) | [48] | ||
fungi—artificial inoculation with Aspergillus parasiticus 798, Penicillum MS1982 | low pressure cold plasma prototype unit (1 kHz, 20 kV, 500 mTorr, 300 W, air or SF6) | [49] | ||
fungi—Fusarium culmorum-artificial | diffuse coplanar surface barrier discharge (14 kHz, 20 kV, 400 W, air) | [50] | ||
fungi—artificial inoculation with Fusarium culmorum + natural contamination Alternaria sp. and Fusarium sp. | planar geometry capacitively coupled plasma reactor (5.28 MHz, 200 Pa, 0.025 W cm−3, air) | [51] | ||
fungi (native microflora) | low pressure argon plasma produced by plasma-enhanced chemical vapor deposition (600–850 V) | [52] | ||
native microflora; artificial—bacteria—Escherichia coli, Bacillus atrophaeus var. niger, fungi-Penicillium verrucosum | dielectric barrier discharge closed system (80 kV, 50 Hz, air) | [53] | ||
native microflora Aspergillus candidus, A. flavus and Penicillium chrysogenum; artificial—bacteria—Escherichia coli, Bacillus atrophaeus, fungi—Penicillium verrucosum, P. citrinum, Aspergillus niger | dielectric barrier discharge closed system (80 kV, 50 Hz, air) | [54] | ||
fungi—natural contamination—Alternaria alternata, Alternaria botrytis, Aspergillus brasiliensis, Epicoccum nigrum, Fusarium culmorum, Fusarium poae, Gibberella zeae, Mucor hiemalis, Penicillium sp., Rhizopus stolonifer, Trichoderma sp. | reactor with a packed bed (8 kV, 100 Hz–83 kHz, air) | [55] | ||
insecta—Tribolium confusum, Ephestia kuehniella | dielectric barrier discharge device (10 kV, 13 kHz, air) | [56] | ||
insecta—Tribolium castaneum | dielectric barrier discharge (1–10 kV, 50 Hz) | [57] | ||
insecta—Tribolium castaneum Herbst and Tribolium confusum Jacquelin du Val. | stationary pressure plasma jet based on a dielectric barrier discharge (13.56 MHz, 90–130 W, argon, oxygen/argon, nitrogen/argon mixtures) | [58] | ||
insecta—Tribolium Castaneum | cold plasma (argon, 800 V) | [59] | ||
cv. Eva | fungi—artificial—Fusarium nivale, Fusarium culmorum, Trichothecium roseum, Aspergillus flavus and Aspergillus clavatus, natural microflora | diffuse coplanar surface barrier discharge (14 kHz, 20 kV, 400 W, air) | [60] | |
Rice | Oryza sativa L. | inoculation with fungi—Fusarium fujikuroi isolate Ka52 (MAFF244851) and spores of Fusarium fujikuroi (collected by suspending the mycelial mat), bacteria—Burkholderia plantarii | atmospheric plasma apparatus—inductively coupled plasma (20 kV, c. 10 kHz, air) | [61] |
fungi—Aspergillus oryzae and Penicillium digitatum varieties (mold spores), bacteria—Escherichia coli | active oxygen species produced by the combination of atmospheric plasma (7–10 kV, 10 kHz) and UV light in ambient air | [62] | ||
natural mesophilic aerobic bacteria and yeast and molds of rice germ | large-scale plasma jet-pulsed light-ultraviolet (UV)-C system (2 kW, 1 kV, 30 Hz, air) | [63] | ||
var. Hopyeong | fungi—Fusarium fujikuroi | ozone and arc discharge plasma (10–15 kV, 3 Hz, water) | [64] | |
used term: brown rice | native microflora—aerobic bacteria, yeasts and molds | corona discharge plasma jet under atmospheric pressure conditions (20 kV DC, 1.5 A, air) | [65] | |
var. Indica cv. KDML105 | seed-borne fungi | dielectric barrier discharge (~ 14 kVpp, ~700 Hz, air + Ar) | [66] | |
Maize | Zea mays ssp. mays | fungi—artificial inoculation with Aspergillus parasiticus 798, Penicillum MS1982 | low pressure cold plasma prototype unit (1 kHz, 20 kV, 500 mTorr, 300 W, air or SF6) | [49] |
fungi—Fusarium culmorum and the natural contamination | planar geometry capacitively coupled plasma reactor (5.28 MHz, 200 Pa, 0.025 W cm−3, air) | [51] | ||
fungi—Aspergillus flavus and Aspergillus parasiticus spores + native microflora | atmospheric pressure plasma jet (5–10 kV, 18–25 kHz, max. 855 W, air and nitrogen) | [63] | ||
fungi—Fusarium graminearum and Fusarium verticillioides conidial spore | afterglow of a surface-wave microwave discharge (25 W, 2–8 mbar, Ar-O2, N2-O2) | [67] | ||
cv. Ronaldinio | fungi—Aspergillus flavus, Alternaria alternata and Fusarium culmorum and native mikrobiota | diffuse coplanar surface barrier discharge (14 kHz, 20 kV, 80 W cm−3, air) | [68] | |
var. Everta | seed-borne fungi | glow discharge plasma (15 Pa, 200 W, air) | [69] | |
Barley | Hordeum vulgare L. | fungi—artificial inoculation with Aspergillus parasiticus 798, Penicillum MS1982 | low pressure cold plasma prototype unit (1 kHz, 20 kV, 500 mTorr, 300 W, air or SF6) | [49] |
fungi—Fusarium culmorum—artificial | diffuse coplanar surface barrier discharge (14 kHz, 20 kV, 400 W, air) | [50] | ||
native microflora, artificial—bacteria—Escherichia coli, Bacillus atrophaeus var. niger, fungi—Penicillium verrucosum | dielectric barrier discharge closed system (80 kV, 50 Hz, air) | [53] | ||
fungi—Fusarium graminearum and Fusarium verticillioides conidial spore | afterglow of a surface-wave microwave discharge (25 W, 2–8 mbar, Ar-O2, N2-O2) | [67] | ||
seed-borne fungi | glow discharge plasma (15 Pa, 100 W, air) | [69] | ||
fungi—Aspergillus niger and Penicillium verrucosum | diffuse coplanar surface barrier discharge (15 kHz, 20 kV, 350 W, air, CO2, CO2 + O2) | [70] | ||
bacteria—Bacillus atrophaeus (DSM 675) spores | plasma-processed air generated by microwave discharge (2.45 GHz, 4 kW, air) | [71] | ||
Rye | Secale cereale L. | fungi—artificial inoculation with Aspergillus parasiticus 798, Penicillum MS1982 | low pressure cold plasma prototype unit (1 kHz, 20 kV, 500 mTorr, 300 W, air or SF6) | [49] |
Oat | Avena sativa L. | fungi—artificial inoculation with Aspergillus parasiticus 798, Penicillum MS1982 | low pressure cold plasma prototype unit (1 kHz, 20 kV, 500 mTorr, 300 W, air or SF6) | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholtz, V.; Jirešová, J.; Šerá, B.; Julák, J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021, 10, 2927. https://doi.org/10.3390/foods10122927
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods. 2021; 10(12):2927. https://doi.org/10.3390/foods10122927
Chicago/Turabian StyleScholtz, Vladimír, Jana Jirešová, Božena Šerá, and Jaroslav Julák. 2021. "A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma" Foods 10, no. 12: 2927. https://doi.org/10.3390/foods10122927
APA StyleScholtz, V., Jirešová, J., Šerá, B., & Julák, J. (2021). A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods, 10(12), 2927. https://doi.org/10.3390/foods10122927