Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrolysate Overview and Preparation
2.2. Sensory Evaluation
2.2.1. Sensory Panel
2.2.2. Sample Preparation
2.2.3. Sensory Vocabulary Development and Profiling
2.3. Peptide Characterization
2.3.1. Yield
2.3.2. Spectral Characteristics of Glycated Hydrolysates
2.3.3. Peptide Size Distribution of Native and Glycated Hydrolysates
2.4. Volatile Compound Analysis by GC-MS
2.5. Data Analysis
3. Results and Discussion
3.1. Sensory Characterization
3.2. Peptide Characteristics
3.2.1. Yield
3.2.2. UV-Visible and Fluorescence Spectra of Native and Glycated Hydrolysates
3.2.3. Peptide Size Distribution of Native and Glycated Hydrolysates
3.3. Volatile Profiles Determined by GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alao, O.B.; Falowo, B.A.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Lafarga, T.; Hayes, M. Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.M.; Álvarez, C.; Zeugolis, D.I.; Henchion, M.; O’Neill, E.; Drummond, L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci. 2017, 132, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.; O’Cuinn, G. Enzymatic debittering of food protein hydrolysates. Biotechnol. Adv. 2006, 24, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, J.; Hansen, E.T.; Bredie, W.L.P.; Lametsch, R. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chem. 2018, 257, 163–171. [Google Scholar] [CrossRef]
- Bak, K.H.; Petersen, M.; Lametsch, R.; Hansen, E.; Ruiz-Carrascal, J. Development of Volatile Compounds during Hydrolysis of Porcine Hemoglobin with Papain. Molecules 2018, 23, 357. [Google Scholar] [CrossRef] [Green Version]
- Parke, S.A.; Birch, G.G.; Dijk, R. Some Taste Molecules and their Solution Properties. Chem. Senses 1999, 24, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Hong, P.K.; Ndagijimana, M.; Betti, M. Glucosamine-induced glycation of hydrolysed meat proteins in the presence or absence of transglutaminase: Chemical modifications and taste-enhancing activity. Food Chem. 2016, 197, 1143–1152. [Google Scholar] [CrossRef]
- Liu, P.; Huang, M.; Song, S.; Hayat, K.; Zhang, X.; Xia, S.; Jia, C. Sensory Characteristics and Antioxidant Activities of Maillard Reaction Products from Soy Protein Hydrolysates with Different Molecular Weight Distribution. Food Bioprocess. Technol. 2012, 5, 1775–1789. [Google Scholar] [CrossRef]
- Ogasawara, M.; Katsumata, T.; Egi, M. Taste properties of Maillard-reaction products prepared from 1000 to 5000 Da peptide. Food Chem. 2006, 99, 600–604. [Google Scholar] [CrossRef]
- Eric, K.; Raymond, L.V.; Huang, M.; Cheserek, M.J.; Hayat, K.; Savio, N.D.; Amédée, M.; Zhang, X. Sensory attributes and antioxidant capacity of Maillard reaction products derived from xylose, cysteine and sunflower protein hydrolysate model system. Food Res. Int. 2013, 54, 1437–1447. [Google Scholar] [CrossRef]
- Song, N.; Tan, C.; Huang, M.; Liu, P.; Eric, K.; Zhang, X.; Xia, S.; Jia, C. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates. Food Chem. 2013, 136, 144–151. [Google Scholar] [CrossRef]
- Sanmartín, E.; Arboleya, J.C.; Villamiel, M.; Moreno, F.J. Recent Advances in the Recovery and Improvement of Functional Proteins from Fish Processing By-Products: Use of Protein Glycation as an Alternative Method. Compr. Rev. Food Sci. Food Saf. 2009, 8, 332–344. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Zhang, W.; Wæhrens, S.S.; Tøstesen, M.; Hansen, E.T.; Bredie, W.L.P.; Lametsch, R. Exopeptidase treatment combined with Maillard reaction modification of protein hydrolysates derived from porcine muscle and plasma: Structure–taste relationship. Food Chem. 2020, 306, 125613. [Google Scholar] [CrossRef]
- Fu, Y.; Bak, K.H.; Liu, J.; De Gobba, C.; Tøstesen, M.; Hansen, E.T.; Petersen, M.A.; Ruiz-Carrascal, J.; Bredie, W.L.P.; Lametsch, R. Protein hydrolysates of porcine hemoglobin and blood: Peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Res. Int. 2019, 121, 28–38. [Google Scholar] [CrossRef]
- Horwitz, W. Method 955.04. In Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- ISO. ISO 13299:2003 Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.; Christensen, R. LmerTest: Tests in linear mixed effects models. R Package Version 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, L.G.; Skou, P.B.; Khakimov, B.; Bro, R. Gas chromatography—Mass spectrometry data processing made easy. J. Chromatogr. A 2017, 1503, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ogutu, B.; Kim, Y.J.; Kim, D.W.; Oh, S.C.; Hong, D.L.; Lee, Y.B. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer. Prev. Nutr. Food Sci. 2017, 22, 211–215. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Navarro, M.P. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem. 2010, 122, 145–153. [Google Scholar] [CrossRef]
- Hong, P.K.; Betti, M. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production. Food Chem. 2016, 212, 234–243. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ahmad, S.; Choi, I.; Ahmad, N.; Farhan, M.; Tatyana, G.; Shahab, U. Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches. IUBMB Life 2015, 67, 897–913. [Google Scholar] [CrossRef]
- Matiacevich, S.B.; Santagapita, P.R.; Buera, M.P. Fluorescence from the maillard reaction and its potential applications in food science. Crit. Rev. Food Sci. Nutr. 2005, 45, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Wanikawa, A.; Kono, K.; Shibata, K. Comparison of the Odor-Active Compounds in Unhopped Beer and Beers Hopped with Different Hop Varieties. J. Agric. Food Chem. 2006, 54, 8855–8861. [Google Scholar] [CrossRef]
- Plagemann, I.; Zelena, K.; Krings, U.; Berger, R. Volatile flavours in raw egg yolk of hens fed on different diets. J. Sci. Food Agric. 2011, 91, 2061–2065. [Google Scholar] [CrossRef]
- Cerny, C.; Guntz, R. Evaluation of potent odorants in heated egg yolk by aroma extract dilution analysis. Eur. Food Res. Technol. 2004, 219, 452–454. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Yang, W.; Huang, J.; Liu, Y.; Huang, M.; Sun, B.; Li, C. Characterization of the Potent Aroma Compounds in Preserved Egg Yolk by Gas Chromatography-Olfactometry, Quantitative Measurements, and Odor Activity Value. J. Agric. Food Chem. 2018, 66, 6132–6141. [Google Scholar] [CrossRef] [PubMed]
Sensory Attribute 1 | Scale | Definition with Reference Materials 2 |
---|---|---|
Odor | Odor associated with | |
Animal-O | ‘not at all’ → ‘very much’ | Animal note reminiscent of Parma ham/Prosciutto di Parma |
Raw meat-O | ‘not at all’ → ‘very much’ | Odor characteristic reminiscent of fresh minced beef (4–7% fat) |
Taste | ||
Umami-T | ‘not at all’ → ‘very much’ | Taste sensation of monosodium glutamate (0.7 g/L water) |
Sweet-T | ‘not at all’ → ‘very much’ | Taste sensation of sucrose (12 g/L water) |
Salt-T | ‘not at all’ → ‘very much’ | Taste sensation of sodium chloride (2.0 g/L water) |
Bitter-T | ‘not at all’ → ‘very much’ | Taste sensation of caffeine (0.58 g/L water) |
Flavor | Aromatic taste sensation associated with | |
Metallic-F | ‘not at all’ → ‘very much’ | Metallic sensation reminiscent of ferrous sulfate (0.016 g/L water) |
Liver-F | ‘not at all’ → ‘very much’ | Flavor sensation reminiscent of liver pâté |
Yolk-F | ‘not at all’ → ‘very much’ | Flavor sensation reminiscent of pasteurized egg yolk |
Fish sauce-F | ‘not at all’ → ‘very much’ | Flavor sensation reminiscent of Asian fish sauce |
Sulfur-F | ‘not at all’ → ‘very much’ | Sulfury flavor note reminiscent of boiled egg yolk |
Toasted Burnt-F | ‘not at all’ → ‘very much’ | Toast |
Aftertaste (AT) | Aftertaste associated with | |
Overall Intensity-AT | ‘not at all’ → ‘very much’ | Overall intensity |
Umami-AT | ‘not at all’ → ‘very much’ | Taste sensation of monosodium glutamate (0.7 g/L water) |
Bitter-AT | ‘not at all’ → ‘very much’ | Taste sensation of caffeine (0.58 g/L water) |
Metallic-AT | ‘not at all’ → ‘very much’ | Metallic taste sensation reminiscent of ferrous sulfate (0.016 g/L water) |
Liver-AT | ‘not at all’ → ‘very much’ | Flavor sensation reminiscent of liver pâté |
Sensory Attributes 1 | Meat | Meat + G | Heart | Heart + G | Hemo | Hemo + G | Plasma | Plasma + G | p-Value 2 |
---|---|---|---|---|---|---|---|---|---|
Odor (O) | |||||||||
Animal-O | 6.9 b | 7.4 b | 8.4 b | 8.0 b | 1.8 a | 3.8 a | 11.4 c | 12.2 c | <0.001 |
Raw meat-O | 9.2 bc | 9.7 c | 9.8 c | 9.4 bc | 2.4 a | 5.2 ab | 5.4 ab | 5.3 ab | <0.001 |
Taste (T) | |||||||||
Umami-T | 10.1 ab | 11.0 ab | 11.6 b | 12.1 b | 7.7 a | 8.9 ab | 7.9 a | 8.9 ab | <0.001 |
Sweet-T | 4.6 b | 4.9 b | 4.5 b | 5.1 b | 2.1 a | 3.5 ab | 3.8 ab | 4.8 b | <0.001 |
Salt-T | 3.1 ab | 4.0 ac | 3.8 ac | 3.8 ac | 2.5 a | 3.2 ab | 6.1 bc | 6.6 c | 0.001 |
Bitter-T | 5.1 a | 5.9 a | 5.8 a | 4.5 a | 3.3 a | 4.3 a | 6.1 a | 6.1 a | 0.031 |
Flavor (F) | |||||||||
Metallic-F | 7.8 ac | 8.6 bc | 9.3 c | 8.1 ac | 5.9 a | 6.4 ab | 8.7 bc | 9.8 c | <0.001 |
Liver-F | 4.4 a | 4.7 a | 6.1 ab | 4.9 a | 4.1 a | 4.3 a | 10.4 bc | 11.2 c | <0.001 |
Yolk-F | 8.9 bc | 9.7 bc | 10.2 c | 10.3 c | 4.4 a | 7.6 ac | 5.9 ab | 6.2 ab | <0.001 |
Fish sauce-F | 2.6 ab | 4.1 b | 3.7 ab | 3.4 ab | 1.7 a | 2.5 ab | 3.8 ab | 4.1 b | 0.011 |
Sulfur-F | 4.9 ab | 5.0 b | 5.4 b | 5.3 b | 2.3 a | 3.9 ab | 4.1 ab | 4.2 ab | 0.014 |
Toasted Burnt-F | 1.2 a | 1.5 ab | 1.2 a | 1.4 ab | 0.8 a | 1.3 ab | 3.9 bc | 4.1 cb | <0.001 |
After taste (AT) | |||||||||
Overall Intensity-AT | 8.5 bc | 9.1 cd | 9.6 ce | 9.3 ce | 5.7 a | 6.4 ab | 11.0 de | 11.4 e | <0.001 |
Umami-AT | 8.8 ac | 9.4 bc | 10.2 c | 10.0 bc | 5.7 a | 7.1 ac | 6.7 ab | 6.7 ab | <0.001 |
Bitter-AT | 5.3 ab | 6.6 b | 6.3 ab | 5.5 ab | 3.7 a | 3.7 a | 6.3 ab | 6.2 ab | 0.002 |
Metallic-AT | 5.8 ac | 6.8 bcd | 7.2 cd | 6.5 bcd | 4.1 a | 5.1 ab | 7.6 cd | 8.3 d | <0.001 |
Liver-AT | 3.0 a | 3.6 a | 4.4 a | 3.4 a | 2.3 a | 2.4 a | 9.8 b | 10.7 b | <0.001 |
Volatile | Odor 1 | Meat + G | Heart + G | Hemo + G | Plasma + G | Retention Index 3 | ||
---|---|---|---|---|---|---|---|---|
Exp. | Auth. std. | Literature | ||||||
2-Ethyl-1-hexanol | Rose, green | 1.8 | 1500 | 1503 | ||||
2-Methylbutanal | Cocoa, almond | 0.5 | 911 | 880–963 | ||||
3-Methylbutanal | Malt | 0.6 | 915 | 917 | ||||
(E)-2-Butenal | Flower | 1.9 | 1030 | 1002–1084 | ||||
(E)-2-Methyl-2-butenal | Green, fruit | 4.5 | 1088 | 1012–1113 | ||||
3-Methyl-2-butenal | Almond, roasted 2 | 6.4 | 4.6 | 1197 | 1189–1236 | |||
5-Ethylcyclopent-1-enecarboxaldehyde | --- | 0.7 | 1423 | 1399–1428 | ||||
4-Ethylbenzaldehyde | Sweet | 1.9 | 1722 | 1711–1753 | ||||
Estragole | Licorice, anise | 2.3 | 1681 | 1624–1701 | ||||
Myrcene | Balsamic, must, spice | 4.4 | 1172 | 1170 | ||||
D-Limonene | Citrus | 6.3 | 1194 | 1197 | ||||
1-Methyl-4-(1-methylethylidene)-cyclohexene | Pine, plastic | 10.8 | 1291 | 1233–1323 | ||||
Benzonitrile | Rancid | 2.3 | 1614 | 1570–1637 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bak, K.H.; Waehrens, S.S.; Fu, Y.; Chow, C.Y.; Petersen, M.A.; Ruiz-Carrascal, J.; Bredie, W.L.P.; Lametsch, R. Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation. Foods 2021, 10, 3008. https://doi.org/10.3390/foods10123008
Bak KH, Waehrens SS, Fu Y, Chow CY, Petersen MA, Ruiz-Carrascal J, Bredie WLP, Lametsch R. Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation. Foods. 2021; 10(12):3008. https://doi.org/10.3390/foods10123008
Chicago/Turabian StyleBak, Kathrine H., Sandra S. Waehrens, Yu Fu, Ching Yue Chow, Mikael A. Petersen, Jorge Ruiz-Carrascal, Wender L. P. Bredie, and René Lametsch. 2021. "Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation" Foods 10, no. 12: 3008. https://doi.org/10.3390/foods10123008
APA StyleBak, K. H., Waehrens, S. S., Fu, Y., Chow, C. Y., Petersen, M. A., Ruiz-Carrascal, J., Bredie, W. L. P., & Lametsch, R. (2021). Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation. Foods, 10(12), 3008. https://doi.org/10.3390/foods10123008