An In Vitro Protocol to Study the Modulatory Effects of a Food or Biocompound on Human Gut Microbiome and Metabolome
Abstract
:1. Introduction
2. Material and Methods
2.1. In Vitro Digestion Models
2.2. Description of the Dynamic Gastrointestinal and Colonic Fermentation Model
2.3. Faecal Inoculum
2.4. Process Description and Duration
2.5. Description and Volume of the Product to Be Tested
2.6. Short Fatty Acid Analyses
2.7. DNA Extraction
2.8. Metagenomic Data: Library Preparation
2.9. Data Analysis
2.10. Metagenomic Data: Analysis and Processing
2.11. Richness and Evenness
2.12. Untargeted Metabolomics
- -
- Volcano Plot: p-value < 0.001 and Fold change >10.0 (100.0 for negative polarity).
- -
- PLSDA: Value of Variable Importance in Projection (VIP) >3.0
3. Results and Discussion
4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef]
- Anhê, F.F.; Varin, T.V.; Le Barz, M.; Desjardins, Y.; Levy, E.; Roy, D.; Marette, A. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr. Obes. Rep. 2015, 4, 389–400. [Google Scholar] [CrossRef] [PubMed]
- do Carmo Gouveia Peluzio, M.; Martinez, J.A.; Milagro, F.I. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci. Technol. 2021, 108, 11–26. [Google Scholar] [CrossRef]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, S.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H.B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015, 16, 7493–7519. [Google Scholar] [CrossRef] [PubMed]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Ferrua, M.J.; Singh, R.P. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 2010, 75, R151–R162. [Google Scholar] [CrossRef] [Green Version]
- Guerra, A.; Etienne-Mesmin, L.; Livrelli, V.; Denis, S.; Blanquet-Diot, S.; Alric, M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012, 30, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ye, A.; Han, F. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 2019, 263, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Viadel, B.; Rivera, J.D.; Navarro, M.T.; Tenllado, I.; Carreres, J.E.; García, J.; Blasco, M.; Subirats, S. Equipo modular de digestión in vitro. Patent No ES2361983B1, 3 May 2012. [Google Scholar]
- van de Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H.; Verstraete, W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 2007, 102, 452–460. [Google Scholar] [CrossRef]
- Marzorati, M.; Verhelst, A.; Luta, G.; Sinnott, R.; Verstraete, W.; de Wiele, T.V.; Possemiers, S. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int. J. Food Microbiol. 2010, 139, 168–176. [Google Scholar] [CrossRef]
- CCummings, J.; Macfarlange, T.; Drasarb, D. The gut microflora and its significance. In Gastrointestinal Pathology; Churchill-Livingstone: Edinburgh, UK, 1989; p. 201. [Google Scholar]
- Kontula, P.; Jaskari, J.; Nollet, L.; de Smet, I.; von Wright, A.; Poutanen, K.; Mattila-Sandholm, T. The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: Effects on the gastrointestinal microbiota. Appl. Microbiol. Biotechnol. 1998, 50, 246–252. [Google Scholar] [CrossRef]
- De Boever, P.; Deplancke, B.; Verstraete, W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J. Nutr. 2000, 130, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Mainville, I.; Arcand, Y.; Farnworth, E.R. A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 2005, 99, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, M.; Calani, L.; Tedeschi, M.; Jechiu, L.; Brighenti, F.; del Rio, D. Identification of microbial metabolites derived from invitro fecal fermentation of different polyphenolic food sources. Nutrition 2012, 28, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Alander, M.; Satokari, R.; Korpela, R.; Saxelin, M.; Vilpponen-Salmela, T.; Mattila-Sandholm, T.; von Wright, A. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 1999, 65, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Van Den Abbeele, P.; Grootaert, C.; Marzorati, M.; Possemiers, S.; Verstraete, W.; Gérard, P.; Rabot, S.; Bruneau, A.; El Aidy, S.; Derrien, M.; et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 2010, 76, 5237–5246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molly, K.; Woestyne, M.V.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Molly, K.; Woestyne, M.V.; de Smet, I.; Verstraete, W. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 1994, 7, 191–200. [Google Scholar]
- Rosés, C.; Cuevas-Sierra, A.; Quintana, S.; Riezu-Boj, J.I.; Martínez, J.A.; Milagro, F.I.; Barceló, A. Gut Microbiota bacterial species associated with mediterranean diet-related food groups in a northern spanish population. Nutrients 2021, 13, 636. [Google Scholar] [CrossRef]
- Hildebrand, F.; Tito, R.Y.; Voigt, A.; Bork, P.; Raes, J. Correction: LotuS: An efficient and user-friendly OTU processing pipeline. Microbiome 2014, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Menu, E.; Mary, C.; Toga, I.; Raoult, D.; Ranque, S.; Bittar, F. Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Res. Notes 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illumina. 16S Metagenomic Sequencing Library Preparation Guide. 2013. Available online: https://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 25 April 2019).
- McKnight, P.E.; Najab, J. Mann-Whitney U Test. In The Corsini Encyclopedia of Psychology; Wiley: Hoboken, NJ, USA, 2010; Volume 1. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UCHIME2: Improved chimera prediction for amplicon sequencing. BioRxiv 2016, 074252. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Ritari, J.; Salojärvi, J.; Lahti, L.; de Vos, W.M. Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database. BMC Genom. 2015, 16, 1056. [Google Scholar] [CrossRef] [Green Version]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [Green Version]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [Google Scholar] [CrossRef] [Green Version]
- Lawson, P.A.; Song, Y.; Liu, C.; Molitoris, D.R.; Vaisanen, M.L.; Collins, M.D.; Finegold, S.M. Anaerotruncus colihominis gen. nov., sp. nov., from human faeces. Int. J. Syst. Evol. Microbiol. 2004, 54, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Looft, T.; Levine, U.Y.; Stanton, T.B. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int. J. Syst. Evol. Microbiol. 2013, 63, 1960–1966. [Google Scholar] [CrossRef] [PubMed]
- Nagai, F.; Morotomi, M.; Sakon, H.; Tanaka, R. Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1793–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rands, C.M.; Starikova, E.V.; Brüssow, H.; Kriventseva, E.V.; Govorun, V.M.; Zdobnov, E.M. ACI-1 beta-lactamase is widespread across human gut microbiomes in Negativicutes due to transposons harboured by tailed prophages. Environ. Microbiol. 2018, 20, 2288–2300. [Google Scholar] [CrossRef]
- Van de Wiele, T.; Abbeele, P.V.D.; Ossieur, W.; Possemiers, S.; Marzorati, M. The simulator of the human intestinal microbial ecosystem (SHIME®). Impact Food Bioact. Health 2015, 305–317. [Google Scholar] [CrossRef] [Green Version]
Days | Bifidobacterium | Lactobacillus | Enterobacteria | Clostridium | Total Anaerobic | |
---|---|---|---|---|---|---|
R3T12 | 5 | 7.48 ± 0.05 | 6.19 ± 0.04 | 5.4 ± 0.01 | 1.00 ± 0.02 | 7.53 ± 0.11 |
8 | 5.59 ± 0.03 | 5.5 ± 0.57 | 5.48 ± 0.01 | 1.00 ± 0.02 | 8.2 ± 0.07 | |
12 | 6.16 ± 0.01 | 4.31 ± 0.01 | 7.49 ± 0.12 | 1.00 ± 0.01 | 8.05 ± 0.09 | |
R3T14 | 2 | 4.00 ± 0.02 | 3.2 ± 0.02 | 5.43 ± 0.07 | 1.00 ± 0.01 | 5.88 ± 0.11 |
7 | 4.59 ± 0.11 | 6.55 ± 0.01 | 5.42 ± 0.04 | 1.00 ± 0.02 | 6.66 ± 0.19 | |
10 | 4.25 ± 0.02 | 6.66 ± 0.08 | 4.98 ± 0.04 | 1.00 ± 0.01 | 6.62 ± 0.23 | |
14 | 5.45 ± 0.01 | 6.68 ± 0.21 | 6.48 ± 0.01 | 1.00 ± 0.01 | 7.97 ± 0.06 | |
R4T12 | 5 | 7.97 ± 0.08 | 7.79 ± 0.07 | 6.04 ± 0.02 | 4.37 ± 0.07 | 8.34 ± 0.12 |
8 | 6.60 ± 0.06 | 6.37 ± 0.78 | 6.42 ± 0.08 | 3.25 ± 0.08 | 8.4 ± 0.09 | |
12 | 5.93 ± 0.05 | 4.87 ± 0.24 | 6.74 ± 0.19 | 2.25 ± 0.05 | 7.37 ± 0.08 | |
R4T14 | 2 | 4.30 ± 0.02 | 3.89 ± 0.05 | 5.16 ± 0.12 | 1.93 ± 0.09 | 7.65 ± 0.09 |
7 | 4.60 ± 0.13 | 5.85 ± 0.07 | 4.34 ± 0.26 | 1.00 ± 0.02 | 7.9 ± 0.07 | |
10 | 5.20 ± 0.02 | 6.02 ± 0.04 | 5.16 ± 0.05 | 1.00 ± 0.01 | 7.73 ± 0.05 | |
14 | 5.91 ± 0.03 | 5.48 ± 0.02 | 4.35 ± 0.07 | 1.00 ± 0.01 | 8.20 ± 0.05 | |
R5T12 | 5 | 7.95 ± 0.02 | 7.48 ± 0.02 | 6.85 ± 0.02 | 6.46 ± 0.01 | 8.28 ± 0.04 |
8 | 7.06 ± 0.02 | 7.14 ± 0.25 | 6.34 ± 0.01 | 5.33 ± 0.04 | 7.97 ± 0.02 | |
12 | 5.66 ± 0.07 | 5.19 ± 0.07 | 6.16 ± 0.02 | 3.88 ± 0.05 | 7.63 ± 0.07 | |
R514 | 2 | 4.00 ± 0.03 | 4.61 ± 0.20 | 5.09 ± 0.03 | 3.46 ± 0.03 | 7.66 ± 0.09 |
7 | 4.72 ± 0.09 | 6.22 ± 0.01 | 4.27 ± 0.05 | 2.41 ± 0.01 | 7.8 ± 0.07 | |
10 | 4.62 ± 0.07 | 5.99 ± 0.04 | 5.30 ± 0.66 | 3.06 ± 0.02 | 7.91 ± 0.03 | |
14 | 5.46 ± 0.02 | 6.16 ± 0.02 | 4.93 ± 0.16 | 2.46 ± 0.08 | 8.11 ± 0.05 |
Acetic Acid | Butyric Acid | Propionic Acid | |
---|---|---|---|
R3T12 | 999 ± 98 | 441 ± 37 | 258 ± 17 |
R3T14 | 1281 ± 127 | 597 ± 54 | 1543 ± 116 |
R4T12 | 2157 ± 226 | 561 ± 52 | 509 ± 40 |
R4T14 | 2267 ± 222 | 766 ± 69 | 2531 ± 117 |
R5T12 | 2155 ± 209 | 646 ± 59 | 509 ± 42 |
R5T14 | 2645 ± 238 | 835 ± 76 | 2684 ± 196 |
R3 | R3T12 | R3T14 | R5 | R5T12 | R5T14 |
---|---|---|---|---|---|
Acidaminococcus intestini | 4.45 | 6.96 | Acidaminococcus intestini | 2.79 | 3.88 |
Bacteroides faecis | 3.63 | 5.56 | Acinetobacter septicus | 0.00 | 0.94 |
Megamonas funiformis | 4.68 | 11.17 | Alistipes putredinis | 5.32 | 6.29 |
OTU20|Bacteroides xylanisolvens|D = 96.4 | 9.38 | 10.14 | Anaerotruncus colihominis | 3.36 | 4.74 |
R4 | R4T12 | R4T14 | Bacteroides dorei | 13.09 | 14.85 |
Achromobacter denitrificans | 0.00 | 1.87 | Desulfovibrio piger | 4.85 | 10.99 |
Bacteroides dorei | 12.98 | 14.78 | Megamonas funiformis | 3.86 | 6.03 |
Desulfovibrio piger | 3.56 | 11.21 | OTU1096|Alistipes indistinctus|D = 96 | 2.60 | 3.06 |
Dorea longicatena | 7.32 | 7.60 | OTU1235|Parabacteroides distasonis|D = 96.7 | 0.88 | 2.70 |
Megamonas funiformis | 4.15 | 6.83 | OTU1328|Melainabacter A1|D = 90.6 | 0.00 | 4.27 |
OTU1328|Melainabacter A1|D = 90.6 | 0.00 | 4.78 | OTU1572|Parabacteroides distasonis|D = 95.3 | 0.88 | 3.47 |
OTU221|Enterococcus hirae|D = 96.3 | 0.00 | 2.65 | OTU577|Megasphaera elsdenii|D = 96 | 0.00 | 1.91 |
Parabacteroides merdae | 9.95 | 10.03 | OTU80|Eubacterium desmolans|D = 94.1 | 5.76 | 6.82 |
Phascolarctobacterium faecium | 0.00 | 0.91 | OTU82|Clostridium lactatifermentans|D = 93.1 | 0.00 | 4.47 |
Ruminococcus callidus | 0.00 | 0.91 | Phascolarctobacterium faecium | 2.39 | 7.08 |
Phascolarctobacterium succinatutens | 4.29 | 5.85 |
Tax | Inoculation | R3T12 | R3T14 | R4T12 | R4T14 | R5T12 | R5T14 |
---|---|---|---|---|---|---|---|
Acidaminococcus | 0.00 | 4.45 | 6.96 ^ | 3.03 | 2.65 * | 3.24 | 3.88 ^ |
Acinetobacter | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.94 ^ |
Anaerotruncus | 2.22 | 0.00 | 0.00 | 3.03 | 0.00 * | 3.36 | 4.74 ^ |
Bacteroides | 12.83 | 15.16 | 10.62 * | 14.90 | 14.98 ^ | 14.79 | 14.94 ^ |
Chryseobacterium | 0.00 | 0.00 | 6.77 ^ | 0.00 | 0.00 | 0.00 | 0.00 |
Cloacibacillus | 0.00 | 0.00 | 0.00 | 0.00 | 0.91 ^ | 0.00 | 3.47 ^ |
Desulfovibrio | 9.04 | 0.00 | 0.00 | 3.56 | 11.21 ^ | 4.85 | 10.99 ^ |
Dorea | 8.05 | 0.00 | 0.00 | 7.32 | 7.60 ^ | 8.63 | 6.64 * |
Enterobacter | 0.00 | 7.07 | 10.03 ^ | 4.64 | 4.95 ^ | 4.41 | 5.30 ^ |
Enterococcus | 0.00 | 3.10 | 0.00 * | 0.00 | 3.16 ^ | 0.00 | 0.94 ^ |
Lachnoclostridium | 11.62 | 1.54 | 0.00 * | 10.65 | 10.72 ^ | 11.07 | 11.69 ^ |
Lachnospira | 10.64 | 0.00 | 4.99 ^ | 7.65 | 0.91 * | 8.38 | 3.59 * |
Lysinibacillus | 0.00 | 11.20 | 11.20 ^ | 6.63 | 5.78 * | 2.79 | 7.06 ^ |
Megamonas | 0.00 | 4.68 | 11.23 ^ | 4.15 | 6.85 ^ | 3.86 | 6.07 ^ |
Megasphaera | 0.00 | 5.86 | 8.20 ^ | 4.05 | 3.74 * | 3.48 | 4.52 ^ |
[Melainabacter] | 7.09 | 0.00 | 0.00 | 1.14 | 10.04 ^ | 0.00 | 9.24 ^ |
Olsenella | 2.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.91 ^ |
Parabacteroides | 9.59 | 0.00 | 0.00 | 9.95 | 10.03 ^ | 10.42 | 8.67 * |
Parasutterella | 4.99 | 0.00 | 0.00 | 1.14 | 3.74 ^ | 2.60 | 4.40 ^ |
Phascolarctobacterium | 8.22 | 0.00 | 0.00 | 0.00 | 0.91 ^ | 4.57 | 7.59 ^ |
Propionibacterium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.50 ^ |
Tyzzerella | 6.89 | 0.00 | 0.00 | 5.84 | 0.00 * | 5.19 | 6.32 ^ |
SW Div | Inoculation | R3 | R4 | R5 |
---|---|---|---|---|
T = 12 | 3.87 | 2.03 | 3.51 | 3.55 |
T = 14 | 2.10 | 2.61 | 3.02 |
m/z | Tr: (min) | Reactor (Polarity) | Intensity T = 12 (Days) | Intensity T = 14 (Days) | Putative Metabolites |
---|---|---|---|---|---|
415.1389 | 5.64 | R3 (neg) | 4.19 | 6.14 | Heptamethoxyflavanone/Eleganin |
367.1145 | 5.75 | R3 (neg) | 4.19 | 5.93 | Barpisoflavone/Glisoflavone |
401.3422 | 5.81 | R4 (neg) | 3.27 | 5.68 | Hydroxy-dihydrovitamin D3 |
517.4152 | 7.22 | R5 (neg) | 3.54 | 5.62 | Carotene/Lycopene |
104.1036 | 2.82 | R4 (pos) | 5.60 | 7.13 | Choline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosés, C.; Nieto, J.A.; Viadel, B.; Gallego, E.; Romo-Hualde, A.; Streitenberger, S.; Milagro, F.I.; Barceló, A. An In Vitro Protocol to Study the Modulatory Effects of a Food or Biocompound on Human Gut Microbiome and Metabolome. Foods 2021, 10, 3020. https://doi.org/10.3390/foods10123020
Rosés C, Nieto JA, Viadel B, Gallego E, Romo-Hualde A, Streitenberger S, Milagro FI, Barceló A. An In Vitro Protocol to Study the Modulatory Effects of a Food or Biocompound on Human Gut Microbiome and Metabolome. Foods. 2021; 10(12):3020. https://doi.org/10.3390/foods10123020
Chicago/Turabian StyleRosés, Carles, Juan Antonio Nieto, Blanca Viadel, Elisa Gallego, Ana Romo-Hualde, Sergio Streitenberger, Fermín I. Milagro, and Anna Barceló. 2021. "An In Vitro Protocol to Study the Modulatory Effects of a Food or Biocompound on Human Gut Microbiome and Metabolome" Foods 10, no. 12: 3020. https://doi.org/10.3390/foods10123020
APA StyleRosés, C., Nieto, J. A., Viadel, B., Gallego, E., Romo-Hualde, A., Streitenberger, S., Milagro, F. I., & Barceló, A. (2021). An In Vitro Protocol to Study the Modulatory Effects of a Food or Biocompound on Human Gut Microbiome and Metabolome. Foods, 10(12), 3020. https://doi.org/10.3390/foods10123020