Sarcocornia perennis: A Salt Substitute in Savory Snacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Halophyte Plant Origin
2.2. Other Ingredients
2.3. Cracker Preparation
2.4. Cracker Analyses
2.4.1. Color Evaluation
2.4.2. Dimensions
2.4.3. Texture Analysis
2.4.4. Sensory Analysis
2.4.5. Total Water Content and Water Activity (aw)
2.4.6. Proximate Biochemical Composition
2.4.7. Total Phenolics Compounds and Antioxidant Capacity
- Antioxidant capacity in the extracts was determined with two methods. The first one is 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay used by Brand-Williams et al. [36]. The odd electron of nitrogen atom in DPPH is reduced by receiving a hydrogen atom from antioxidants to the corresponding hydrazine. This reaction causes a corresponding change from violet color to pale yellow in the solution [37]. The DPPH assay was performed by mixing 100 μL of sample extract and 3.9 mL of DPPH radical solution. The reaction mixtures were incubated in darkness at room temperature for 40 min and the absorbance was measured at 515 nm. Two blank assays, one without samples and another without reagents, were also performed. Standard calibration curves were made using Trolox standard solutions that were submitted to the same DPPH protocol (0 to 1000 µmol L−1).
- The antioxidant capacity was also accessed by the Ferric Reducing Antioxidant Power (FRAP) method [38]. This method measures the reducing potential of an antioxidant reacting with a ferric tripyridyltriazine (Fe3+-TPTZ) complex and producing a colored ferrous tripyridyltriazine (Fe2+-TPTZ). Compounds with reducing properties act their action by breaking the chain of free radicals by donating a hydrogen atom [37]. The FRAP assay was performed by mixing 90 µL of sample extract with 2.7 mL of FRAP reagent (TPTZ solution, ferric chloride solution, acetate buffer) and 270 µL of distilled water. The reaction mixtures were incubated at 37 °C for 30 min and the absorbance was measured at 595 nm. Two blank assays, one without samples and another without reagents, were also performed. Standard calibration curves were made using Trolox standard solutions that were submitted to the same FRAP protocol (0 to 700 µmol L−1).
- The antioxidant capacity of the samples obtained from the two methods was expressed in terms of mg of Trolox Equivalent Antioxidant Capacity (TEAC) per gram of dry extract sample. Analyses were repeated in triplicate and performed on powdered cracker samples.
2.4.8. Pigment Composition Determination
2.4.9. Mineral Composition Determination
2.5. Statistical Analysis
3. Results
3.1. Cracker Color
3.2. Cracker Dimensions
3.3. Cracker Texture
3.4. Sensory Analysis
3.5. Cracker Proximate Biochemical Composition
3.6. Cracker Phenolic Content and Antioxidant Capacity
3.7. Pigment Composition
3.8. Cracker Mineral Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.; Ozturk, M.; Gul, B.; Ahmed, M. Halophytes for Food Security in Dry Lands; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-801854-5. [Google Scholar]
- Antunes, M.; Gago, C.; Guerreiro, A.; Sousa, A.; Julião, M.; Miguel, M.; Faleiro, M.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroca, M.J.; Guiné, R.P.F.; Amado, A.M.; Ressurreição, S.; da Silva, A.M.; Marques, M.P.M.; de Carvalho, L.A.E.B. The drying process of Sarcocornia perennis: Impact on nutritional and physico-chemical properties. J. Food Sci. Technol. 2020, 57, 4443–4458. [Google Scholar] [CrossRef] [PubMed]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Contreras, R.; Sepúlveda, B.; Aguayo, F.; Porcile, V. Rapid diagnostic PCR method for identification of the genera Sarcocornia and Salicornia. Idesia 2018, 36, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Steffen, S.; Ball, P.; Mucina, L.; Kadereit, G. Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae). Ann. Bot. 2015, 115, 353–368. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, V.; Oggerin, M.; Rufo, L.; Rodriguez, N.; Ortunez, E.; Sanchez-Mata, D.; Amils, R. A micromorphological and phylogenetic study of Sarcocornia, A.J. Scott (Chenopodiaceae) on the Iberian Peninsula. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 147, 158–173. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Gómez, S.; Castillo, J.M.; Luque, C.; Luque, T.; Figueroa, M.; Davy, A.J. Fundamental niche differentiation in subspecies of Sarcocornia perennis on a salt marsh elevational gradient. Mar. Ecol. Prog. Ser. 2007, 347, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Rufo, L.; De La Fuente, V.; Sánchez-Mata, D. Sarcocornia plant communities of the Iberian Peninsula and the Balearic Islands. Phytocoenologia 2016, 46, 383–396. [Google Scholar] [CrossRef]
- Rufo, L.; Iglesias-López, M.T.; de la Fuente, V. The endemic halophyte Sarcocornia carinata Fuente, Rufo & Sánchez-Mata (Chenopodiaceae) in relation to environmental variables: Elemental composition and biominerals. Plant Soil 2021, 460, 189–209. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Bertin, R.L.; Maltez, H.F.; de Gois, J.S.; Borges, D.L.; Borges, G.D.S.C.; Gonzaga, L.V.; Fett, R. Mineral composition and bioaccessibility in Sarcocornia ambigua using ICP-MS. J. Food Compos. Anal. 2016, 47, 45–51. [Google Scholar] [CrossRef]
- De La Fuente, V.; Rufo, L.; Sánchez-Gavilán, I.; Ramírez, E.; Rodríguez, N.; Amils, R. Plant Tissues and Embryos Biominerals in Sarcocornia pruinosa, a Halophyte from the Río Tinto Salt Marshes. Minerals 2018, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Essaidi, I.; Brahmi, Z.; Snoussi, A.; Koubaier, H.B.H.; Casabianca, H.; Abe, N.; El Omri, A.; Chaabouni, M.M.; Bouzouita, N. Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Kim, Y.A.; Kong, C.-S.; Lee, J.I.; Kim, H.; Park, H.Y.; Lee, H.-S.; Lee, C.; Seo, Y. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea. Bioorganic Med. Chem. Lett. 2012, 22, 4318–4322. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.; Azevedo, M.S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.S.B.; Chaves, F.; Rombaldi, C.; Souza, C. Bioactive compounds and antioxidant activity of three biotypes of the sea asparagus Sarcocornia ambigua (Michx.) M.A.Alonso & M.B.Crespo: A halophytic crop for cultivation with shrimp farm effluent. South. Afr. J. Bot. 2018, 117, 95–100. [Google Scholar] [CrossRef]
- Gargouri, M.; Magné, C.; Dauvergne, X.; Ksouri, R.; El Feki, A.; Metges, M.-A.G.; Talarmin, H. Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead-induced toxicity in renal cells. Ecotoxicol. Environ. Saf. 2013, 95, 44–51. [Google Scholar] [CrossRef]
- Oliveira, C.; Pinto, J.; Coelho, E.; Silva, H.; Coimbra, M.A.; Pereira, M.D.L. Sarcocornia perennis pectic polysaccharides orally administered to mice: Holistic histological evaluation of xenobiotic protection. Int. J. Biol. Macromol. 2020, 154, 150–158. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A. Development of novel functional snacks containing nano-encapsulated resveratrol with anti-diabetic, anti-obesity and antioxidant properties. Food Chem. 2021, 352, 129323. [Google Scholar] [CrossRef]
- Technavio Global Crackers Market 2017–2021. Available online: https://www.technavio.com/report/global-crackers-market (accessed on 28 April 2021).
- World Health Organization Salt Reduction. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 28 April 2021).
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- File: Sarcocornia Perennis Sl17.Jpg—Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Sarcocornia_perennis_sl17.jpg (accessed on 1 October 2021).
- Mota, J.; Lima, A.; Ferreira, R.B.; Raymundo, A. Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies. Foods 2021, 10, 1929. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, M. Sensory Methods of Texture and Viscosity Measurement; Elsevier: Amsterdam, The Netherlands, 2002; pp. 259–266. ISBN 978-0-12-119062-0. [Google Scholar]
- Association of the Official Analytical Chemists (AOAC). Method 950.36, Protein in Bread. Official Method of Analysis, 18th ed.; AOAC: Rockville, MD, USA, 2006. [Google Scholar]
- NP 4168. Cereais e Derivados—Determinação do Teor de matéria Gorda Total; Instituto Português da Qualidade: Lisboa, Portugal, 1991.
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union L 2011, 304, 18–61. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 1 November 2021).
- Barreira, J.C.; Dias, M.I.; Živković, J.; Stojković, D.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C. Phenolic profiling of Veronica spp. grown in mountain, urban and sandy soil environments. Food Chem. 2014, 163, 275–283. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Mohankumar, J.B.; Uthira, L.; Su, M. Total phenolic content of organic and conventional green leafy vegetables. J. Nutr. Hum. Heal. 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Irshad, M.; Zafaryab, M.; Singh, M.; Rizvi, M. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. Int. J. Med. Chem. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Afonso, C.; Guarda, I.; Mourato, M.; Martins, L.; Fonseca, I.; Gomes, R.; Matos, J.; Gomes, A.; Bandarra, N.; Cardoso, C. Treptacantha abies-marina (S.G. Gmelin) Kützing: Characterization and Application as a Whole Food Ingredient. J. Aquat. Food Prod. Technol. 2020, 29, 964–980. [Google Scholar] [CrossRef]
- Heaton, J.W.; Marangoni, A.G. Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci. Technol. 1996, 7, 8–15. [Google Scholar] [CrossRef]
- Hodge, J.E. Dehydrated Foods, Chemistry of Browning Reactions in Model Systems. J. Agric. Food Chem. 1953, 1, 928–943. [Google Scholar] [CrossRef]
- Manohar, R.S.; Rao, P.H. Interrelationship between rheological characteristics of dough and quality of biscuits; use of elastic recovery of dough to predict biscuit quality. Food Res. Int. 2002, 35, 807–813. [Google Scholar] [CrossRef]
- Wong, R.; Kim, S.; Chung, S.-J.; Cho, M.-S. Texture Preferences of Chinese, Korean and US Consumers: A Case Study with Apple and Pear Dried Fruits. Foods 2020, 9, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arimi, J.; Duggan, E.; O’Sullivan, M.; Lyng, J.; O’Riordan, E. Effect of water activity on the crispiness of a biscuit (Crackerbread): Mechanical and acoustic evaluation. Food Res. Int. 2010, 43, 1650–1655. [Google Scholar] [CrossRef]
- Katz, E.E.; Labuza, T.P. Effect of Water Activity on the Sensory Crispness and Mechanical Deformation of Snack Food Products. J. Food Sci. 1981, 46, 403–409. [Google Scholar] [CrossRef]
- Encina-Zelada, C.R.; Cadavez, V.; Monteiro, F.; Teixeira, J.A.; Gonzales-Barron, U. Combined effect of xanthan gum and water content on physicochemical and textural properties of gluten-free batter and bread. Food Res. Int. 2018, 111, 544–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-S.; Park, S.-H. Isolation and Identification of Antioxidant Flavonoids from Salicornia herbacea L. Appl. Biol. Chem. 2004, 47, 120–123. [Google Scholar]
- Oh, J.-H.; Kim, E.-O.; Lee, S.-K.; Woo, M.-H.; Choi, S.-W. Antioxidant Activities of the Ethanol Extract of Hamcho (Salicornia herbacea L.) Cake Prepared by Enzymatic Treatment. Food Sci. Biotechnol. 2007, 16, 90–98. [Google Scholar]
- De Souza, M.M.; Mendes, C.R.; Doncato, K.B.; Badiale-Furlong, E.; Costa, C.S.B. Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions. Agriculture 2018, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Silva, M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Bernal, J.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal. 2011, 55, 758–774. [Google Scholar] [CrossRef] [Green Version]
Fresh S. perennis Plant g/100 g | |
---|---|
Crude protein | 15.60 ± 0.03 |
Total lipids | 1.37 ± 0.07 |
Crude fiber | 8.63 ± 0.15 |
Ash | 43.62 ± 0.05 |
Carbohydrates | 30.80 ± 0.19 |
Ingredients | F1 (Control) g/100 g | F2 g/100 g | F3 g/100 g | F4 g/100 g | F5 g/100 g | F6 g/100 g |
---|---|---|---|---|---|---|
Wheat flour | 62 | 62 | 61 | 60 | 58 | 57 |
Sunflower oil | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 |
Water | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 |
Salt (NaCl) | 1 | 0 | 0 | 0 | 0 | 0 |
S. perennis | 0 | 1 | 2 | 3 | 5 | 10 |
Width (W) (mm) | Thickness (T) (mm) | Spread Ratio (W/T) | Weight (g) | Density (g/cm3) | |
---|---|---|---|---|---|
Cracker Control | 37.4 ± 0.5 ab | 4.0 ± 0.8 bc | 9.7 ± 1.8 a | 2.2 ± 0.1 a | 0.41 ± 0.09 a |
Cracker with 1% S. perennis | 37.8 ± 0.8 ab | 3.2 ± 0.5 ab | 12.2 ± 1.7 b | 1.9 ± 0.1 bd | 0.43 ± 0.09 a |
Cracker with 2% S. perennis | 38.0 ± 0.6 a | 4.5 ± 1.1 c | 8.9 ± 2.1 a | 2.1 ± 0.1 ac | 0.35 ± 0.10 a |
Cracker with 3% S. perennis | 37.9 ± 0.6 a | 3.4 ± 0.3 ab | 11.3 ± 1.0 ab | 2.0 ± 0.1 bc | 0.42 ± 0.05 a |
Cracker with 5% S. perennis | 37.1 ± 0.3 b | 4.0 ± 0.7 bc | 9.6 ± 1.8 a | 1.9 ± 0.1 b | 0.36 ± 0.07 a |
Cracker with 10% S. perennis | 37.4 ± 0.7 ab | 2.9 ± 0.5 a | 13.3 ± 2.4 b | 1.7 ± 0.1 d | 0.44 ± 0.07 a |
Water Activity (aw) | Water Content (g/100 g) | Total Ash (g/100 g) | Total Fat (g/100 g) | Crude Protein (g/100 g) | Carbohydrates (g/100 g) | Energy Value (Kcal/100 g) | |
---|---|---|---|---|---|---|---|
S. perennis pure | 0.421 ± 0.003 | 7.6 ± 0.1 | 33.9 ± 0.1 | 2.3 ± 0.8 | 16.7 ± 0.1 | 39.5 | 245.5 |
Cracker control | 0.162 ± 0.008 a | 3.0 ± 0.1 a | 1.9 ± 0.0 a | 12.7 ± 5.9 a | 9.7 ± 0.0 a | 72.7 | 443.9 |
Cracker with S. perennis 5% | 0.159 ± 0.017 a | 3.0 ± 1.3 a | 2.7 ± 0.6 a | 8.7 ± 3.0 a | 10.2 ± 0.1 b | 75.4 | 420.7 |
Chlorophyl a (mg/gDE) | Chlorophyl b (mg/gDE) | Carotenoids (mg/gDE) | |
---|---|---|---|
S. perennis pure | 0.0365 ± 0.0001 | 0.0265 ± 0.0007 | 0.0168 ± 0.0005 |
Cracker S. perennis 5% | 0.0021 ± 0.0001 | 0.0021 ± 0.0002 | 0.0069 ± 0.0001 |
Mineral (mg/100 g) | 15% of the Recommended Daily Values | S. perennis Pure | Cracker Control | Cracker S. perennis 1% | Cracker S. perennis 5% |
---|---|---|---|---|---|
Na | 750 | 7119.35 ± 195.12 | 639.93 ± 5.35 a | 188.37 ± 3.38 b | 908.11 ± 10.60 c |
K | 300 | 1830.54 ± 49.15 | 203.14 ± 2.10 a | 204.47 ± 2.39 a | 335.18 ± 4.25 b |
Ca | 120 | 490.87 ± 10.02 | 20.89 ± 0.24 a | 31.73 ± 2.35 b | 58.74 ± 1.32 c |
Mg | 56.2 | 786.39 ± 20.94 | 20.89 ± 0.24 a | 37.65 ± 0.55 b | 86.38 ± 1.12 c |
P | 105 | 230.56 ± 2.32 | 96.23 ± 0.72 a | 96.26 ± 1.7 a | 108.65 ± 0.83 b |
Fe | 2.2 | 8.64 ± 0.18 | 2.62 ± 1.69 a | 2.78 ± 0.98 a | 2.88 ± 0.34 a |
Cu | 0.2 | 0.68 ± 0.01 | 0.24 ± 0.04 a | 0.24 ± 0.02 a | 0.25 ± 0.00 a |
Zn | 1.6 | 2.45 ± 0.03 | 0.83 ± 0.02 a | 0.78 ± 0.02 b | 0.96 ± 0.02 c |
Mn | 0.4 | 3.49 ± 0.04 | 0.78 ± 0.01 a | 0.80 ± 0.03 a | 0.88 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clavel-Coibrié, E.; Sales, J.R.; da Silva, A.M.; Barroca, M.J.; Sousa, I.; Raymundo, A. Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods 2021, 10, 3110. https://doi.org/10.3390/foods10123110
Clavel-Coibrié E, Sales JR, da Silva AM, Barroca MJ, Sousa I, Raymundo A. Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods. 2021; 10(12):3110. https://doi.org/10.3390/foods10123110
Chicago/Turabian StyleClavel-Coibrié, Elsa, Joana Ride Sales, Aida Moreira da Silva, Maria João Barroca, Isabel Sousa, and Anabela Raymundo. 2021. "Sarcocornia perennis: A Salt Substitute in Savory Snacks" Foods 10, no. 12: 3110. https://doi.org/10.3390/foods10123110
APA StyleClavel-Coibrié, E., Sales, J. R., da Silva, A. M., Barroca, M. J., Sousa, I., & Raymundo, A. (2021). Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods, 10(12), 3110. https://doi.org/10.3390/foods10123110