Double-Network Hydrogels of Corn Fiber Gum and Soy Protein Isolate: Effect of Biopolymer Constituents and pH Values on Textural Properties and Microstructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of CFG
2.3. Preparation of CFG-SPI DN Hydrogels
2.4. Confocal Laser Scanning Microscope (CLSM) Observation
2.5. Textural Measurements
2.6. Water-Holding Capacity (WHC)
2.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of CFG/SPI Constituents on Properties of CFG-SPI DN Hydrogels
3.1.1. Microscopic Phase Distribution Variation
3.1.2. Textural Properties
3.1.3. Water-Holding Capacity
3.2. Effect of pH Values on Properties of CFG-SPI DN Hydrogels
3.2.1. Microstructure
3.2.2. Textural Properties
3.2.3. Water-Holding Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carvajal-Millan, E.; Guilbert, S.; Morel, M.; Micard, V. Impact of the structure of arabinoxylan gels on their rheological and protein transport properties. Carbohydr. Polym. 2005, 60, 431–438. [Google Scholar] [CrossRef]
- Kopeček, J. Hydrogel biomaterials: A smart future? Biomaterials 2007, 28, 5185–5192. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.-J.; Guo, J.; Wang, J.-M.; He, X.-T.; Yuan, Y.; Yin, S.-W.; Yang, X.-Q. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure. Food Hydrocoll. 2015, 50, 94–101. [Google Scholar] [CrossRef]
- Chen, H.; Gan, J.; Ji, A.; Song, S.; Yin, L. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Y.-C.; Yang, X.-Q.; Jin, Y.-C.; Yu, S.-J.; Wang, J.-M.; Hou, J.-J.; Yin, S.-W. Fabrication of edible gellan gum/soy protein ionic-covalent entanglement gels with diverse mechanical and oral processing properties. Food Res. Int. 2014, 62, 917–925. [Google Scholar] [CrossRef]
- Bi, C.-H.; Li, D.; Wang, L.-J.; Adhikari, B. Effect of LBG on the gel properties of acid-induced SPI gels. LWT Food Sci. Technol. 2017, 75, 1–8. [Google Scholar] [CrossRef]
- Wee, M.S.M.; Yusoff, R.; Lin, L.; Xu, Y.Y. Effect of polysaccharide concentration and charge density on acid-induced soy protein isolate-polysaccharide gels using HCl. Food Struct. 2017, 13, 45–55. [Google Scholar] [CrossRef]
- Hua, Y.; Cui, S.W.; Wang, Q. Gelling property of soy protein–gum mixtures. Food Hydrocoll. 2003, 17, 889–894. [Google Scholar] [CrossRef]
- Picout, D.R.; Ross-Murphy, S.B. Rheology of Biopolymer Solutions and Gels. Sci. World J. 2003, 3, 105–121. [Google Scholar] [CrossRef]
- Çakır, E.; Foegeding, E.A. Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll. 2011, 25, 1538–1546. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Li, J.; Yadav, M.P.; Yin, L. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment. Food Hydrocoll. 2018, 76, 113–122. [Google Scholar] [CrossRef]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Feng, L.P.; Jia, X.; Zhu, Q.M.; Liu, Y.; Li, J.L.; Yin, L.J. Investigation of the mechanical, rheological and microstructural properties of sugar beet pectin/soy protein isolate-based emulsion-filled gels. Food Hydrocoll. 2019, 89, 813–820. [Google Scholar] [CrossRef]
- van den Berg, L.; van Vliet, T.; van der Linden, E.; van Boekel, M.A.J.S.; van de Velde, F. Breakdown properties and sensory perception of whey proteins/polysaccharide mixed gels as a function of microstructure. Food Hydrocoll. 2007, 21, 961–976. [Google Scholar] [CrossRef]
- Cavallieri, Â.L.F.; Garcez, M.M.; Takeuchi, K.P.; Cunha, R.L.d. Heat-induced gels of soy protein and κ-carrageenan at different pH values. Int. J. Food Sci. Technol. 2010, 45, 1130–1137. [Google Scholar] [CrossRef]
- de Jong, S.; van de Velde, F. Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocoll. 2007, 21, 1172–1187. [Google Scholar] [CrossRef]
- Picone, C.S.F.; da Cunha, R.L. Interactions between milk proteins and gellan gum in acidified gels. Food Hydrocoll. 2010, 24, 502–511. [Google Scholar] [CrossRef]
- de Jong, S.; Klok, H.J.; van de Velde, F. The mechanism behind microstructure formation in mixed whey protein–polysaccharide cold-set gels. Food Hydrocoll. 2009, 23, 755–764. [Google Scholar] [CrossRef]
- Zhou, J.H. Gelling mechanism of soy protein-k-carrageenan blends. Food Sci. Technol. 2005, 9, 48–51. [Google Scholar]
- Kim, J.H.J.; Varankovich, N.V.; Nickerson, M.T. The effect of pH on the gelling behaviour of canola and soy protein isolates. Food Res. Int. 2016, 81, 31–38. [Google Scholar] [CrossRef]
- Wang, S.; Tang, H.; Guo, J.; Wang, K. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum. Carbohydr. Polym. 2016, 147, 455–463. [Google Scholar] [CrossRef]
- Qiu, S.; Yadav, M.P.; Chen, H.; Liu, Y.; Tatsumi, E.; Yin, L. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch. Carbohydr. Polym. 2015, 115, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiu, S.; Li, J.; Chen, H.; Tatsumi, E.; Yadav, M.; Yin, L. Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties. Carbohydr. Polym. 2015, 118, 70–78. [Google Scholar] [CrossRef]
- Kale, M.S.; Hamaker, B.R.; Campanella, O.H. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocoll. 2013, 31, 121–126. [Google Scholar] [CrossRef]
- Yadav, M.P.; Parris, N.; Johnston, D.B.; Hicks, K.B. Fractionation, Characterization, and Study of the Emulsifying Properties of Corn Fiber Gum. J. Agric. Food Chem. 2008, 56, 4181–4187. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Huan, S.; Li, Z.; McClements, D.J. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocoll. 2017, 66, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.S.; Luo, S.Z.; Cai, J.; Zhong, X.Y.; Jiang, S.T.; Zhao, Y.Y.; Zheng, Z. Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment. Ultrason. Sonochem. 2016, 31, 590–597. [Google Scholar] [CrossRef]
- Munialo, C.D.; van der Linden, E.; Ako, K.; Nieuwland, M.; Van As, H.; de Jongh, H.H.J. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocoll. 2016, 52, 707–720. [Google Scholar] [CrossRef]
- Pires Vilela, J.A.; Cavallieri, Â.L.F.; Lopes da Cunha, R. The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum. Food Hydrocoll. 2011, 25, 1710–1718. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, B.; Wu, F.; Yan, W.; Lv, P.; Yadav, M.; Jia, X.; Yin, L. Diverse mechanical properties and microstructures of sorghum bran arabinoxylans/soy protein isolate mixed gels by duo-induction of peroxidase and calcium ions. Food Hydrocoll. 2020, 107, 105946. [Google Scholar] [CrossRef]
- Yaropolov, A.I.; Skorobogat’ko, O.V.; Vartanov, S.S.; Varfolomeyev, S.D. Laccase. Appl. Biochem. Biotechnol. 1994, 49, 257–280. [Google Scholar] [CrossRef]
- Sittikijyothin, W.; Sampaio, P.; Gonçalves, M.P. Heat-induced gelation of β-lactoglobulin at varying pH: Effect of tara gum on the rheological and structural properties of the gels. Food Hydrocoll. 2007, 21, 1046–1055. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocoll. 2016, 61, 740–746. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Kilara, A. Gelation of pH-Aggregated Whey Protein Isolate Solution Induced by Heat, Protease, Calcium Salt, and Acidulant. J. Agric. Food Chem. 1998, 46, 1830–1835. [Google Scholar] [CrossRef]
- Renkema, J.M.S.; Lakemond, C.M.M.; de Jongh, H.H.J.; Gruppen, H.; van Vliet, T. The effect of pH on heat denaturation and gel forming properties of soy proteins. J. Biotechnol. 2000, 79, 223–230. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, J.; Pan, Y.; Huang, J.; Pang, J. Effect of pH on gel characteristics and color of konjac gum complex system. Chin. J. Bioprocess Eng. 2014, 12, 58–91. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Jia, X.; Yan, W.; Yin, L. Double-Network Hydrogels of Corn Fiber Gum and Soy Protein Isolate: Effect of Biopolymer Constituents and pH Values on Textural Properties and Microstructures. Foods 2021, 10, 356. https://doi.org/10.3390/foods10020356
Yan J, Jia X, Yan W, Yin L. Double-Network Hydrogels of Corn Fiber Gum and Soy Protein Isolate: Effect of Biopolymer Constituents and pH Values on Textural Properties and Microstructures. Foods. 2021; 10(2):356. https://doi.org/10.3390/foods10020356
Chicago/Turabian StyleYan, Jinxin, Xin Jia, Wenjia Yan, and Lijun Yin. 2021. "Double-Network Hydrogels of Corn Fiber Gum and Soy Protein Isolate: Effect of Biopolymer Constituents and pH Values on Textural Properties and Microstructures" Foods 10, no. 2: 356. https://doi.org/10.3390/foods10020356
APA StyleYan, J., Jia, X., Yan, W., & Yin, L. (2021). Double-Network Hydrogels of Corn Fiber Gum and Soy Protein Isolate: Effect of Biopolymer Constituents and pH Values on Textural Properties and Microstructures. Foods, 10(2), 356. https://doi.org/10.3390/foods10020356