Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Cereal-Sourced Lactic Acid Bacteria
2.2. Selection of Cereal and Pseudocereal Grains with High Biological/Nutritional Value and/or Healthy Traits
2.3. Preparation of the ad hoc Formulated Fermentation Substrates
2.4. Selection of the Multiple-Strain Starters
2.5. Production of Laboratory Scale Prototypes of Fermented Beverages
2.6. Determination of pH and Total Titratable Acidity (TTA)
2.7. Determination of Phytate/Total Phosphorus
2.8. Determination of Proximate Composition
2.9. Microbiological Analyses
2.10. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Grains and Formulation of the Fermentation Substrates
3.2. Formulation of the Multiple Strain Starters
3.3. Manufacture of Prototypes of Fermented Beverages
3.3.1. Chemical and Microbiological Analyses
3.3.2. Determination of Phytic Acid/Total Phosphorus
3.3.3. Proximate Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coda, R.; Montemurro, M.; Rizzello, C.G. Yogurt-like beverages made with cereals. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 183–201. [Google Scholar]
- Katina, K.; Laitila, A.; Jovonen, R.; Liukkonen, K.H.; Kariluoto, S.; Piironen, V.; Landgerg, R.; Åman, P.; Poutanen, K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef]
- Basinskienne, L.; Cizeikiene, D. Cereal-Based Nonalcoholic Beverages. In Trends in Nonalcoholic Beverages; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 63–99. [Google Scholar]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Tsafrakidou, P.; Michaelidou, A.-M.G.; Biliaderis, C. Fermented Cereal-based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020, 9, 734. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Trani, A.; Gobbetti, M. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiol. 2011, 28, 526–536. [Google Scholar] [CrossRef]
- Nionelli, L.; Coda, R.; José, A.C.; Poutanen, K.; Gobbetti, M.; Rizzello, C.G. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar]
- Osimani, A.; Garofalo, C.; Aquilanti, L.; Milanović, V.; Clementi, F. Unpasteurised commercial boza as a source of microbial diversity. Int. J. Food Microbiol. 2015, 194, 62–70. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.P.; Fustier, P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotech. 2007, 18, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Clementi, F. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Boscaino, F.; di Renzo, T.; Corvaglia, M.R.; Cocolin, L.; Milanović, V.; Cardinali, F.; Garofalo, C.; et al. Portuguese cacholeira blood sausage: A first taste of its microbiota and volatile organic compounds. Food Res. Int. 2020, 136, 109567. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Mikušová, L.; Osimani, M.; Kohajdová, Z.; Karovičová, J. Chapter 17: Nonwheat Cereal-Fermented-Derived Products. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 417–432. [Google Scholar]
- Barnhoorn, R. Ancient Grains for Modern Times; Patrick Mannion: Singapore, 2015; Available online: https://www.taalmuziek.nl/pdf/ancient%20grains%20for%20modern%20times.pdf (accessed on 14 February 2021).
- Niu, Y.; Gao, B.; Slavin, M.; Zhang, X.; Yang, F.; Bao, J.; Shi, H.; Xie, Z.; Yu, L. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT 2013, 54, 521–527. [Google Scholar] [CrossRef]
- Gunaratne, A.; Wu, K.; Li, D.; Bentota, A.; Corke, H.; Cai, Y.Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013, 138, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Marchesan, E.; Massoni, P.F.S.; da Silva, P.L.; Sartori, G.M.S.; Ferreira, R.B. Antioxidant properties of rice grains with light brown, red and black pericarp colors and the effect of processing. Food Res. Int. 2013, 50, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Belobrajdic, D.P.; Jobling, S.A.; Morell, M.K.; Taketa, S.; Bird, A.R. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet. Nutr. Res. 2015, 35, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Lachman, J.; Hejtmánková, A.; Orsák, M.; Popov, M.; Martinek, P. Tocotrienols and tocopherols in colored-grain whea Ames t, tritordeum and barley. Food Chem. 2018, 240, 725–735. [Google Scholar] [CrossRef]
- Martínez, M.; Motilva, M.J.; de las Hazas, M.C.L.; Romero, M.P.; Vaculova, K.; Ludwig, I.A. Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chem. 2018, 245, 61–70. [Google Scholar] [CrossRef]
- Harris, K.A.; Kris-Etherton, P.M. Effects of whole grains on coronary heart disease risk. Curr. Atheroscler. Rep. 2010, 12, 368–376. [Google Scholar] [CrossRef]
- Cloetens, L.; Ulmius, M.; Johansson-Persson, A.; Åkesson, B.; Önning, G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr. Rev. 2012, 70, 444–458. [Google Scholar] [CrossRef]
- Ames, N.P.; Rhymer, C.R. Issues surrounding health claims for barley. J. Nutr. 2008, 138, 1237S–1243S. [Google Scholar] [CrossRef] [Green Version]
- De Paula, R.; Abdel-Aal, E.M.; Messia, M.C.; Rabalski, I.; Marconi, E. Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta. J. Cereal Sci. 2017, 75, 124–131. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat starch: Structures, properties, and applications. Trends Food Sci. Technol. 2016, 49, 121–135. [Google Scholar] [CrossRef]
- Glavač, N.K.; Stojilkovski, K.; Kreft, S.; Park, C.H.; Kreft, I. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. LWT Food Sci. Technol. 2017, 79, 423–427. [Google Scholar] [CrossRef]
- Rollán, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, P.; Pilon, G.; Dumais, V.; Dion, C.; Dubois, M.J.; Dubé, P.; Desjardin, Y.; Marette, A. Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. J. Funct. Foods 2014, 11, 460–471. [Google Scholar] [CrossRef]
- Singh, A.S.; Jones, A.M.P.; Saxena, P.K. Variation and correlation of properties in different grades of maple syrup. Plant. Foods Hum. Nutr. 2014, 69, 50–56. [Google Scholar] [CrossRef]
- Nahar, P.P.; Driscoll, M.V.; Li, L.; Slitt, A.L.; Seeram, N.P. Phenolic mediated anti-inflammatory properties of a maple syrup extract in raw 264.7 murine macrophages. J. Funct. Foods 2014, 6, 126–136. [Google Scholar] [CrossRef]
- Filteau, M.; Lagacé, L.; LaPointe, G.; Roy, D. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup. Int. J. Food Microbiol. 2012, 154, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a new oat-based probiotic drink. Int. J. Food Microbiol. 2006, 112, 75–80. [Google Scholar] [CrossRef]
- Mårtensson, O.; Öste, R.; Holst, O. The effect of yogurt culture on the survival of probiotic bacteria in oat-based, non-dairy products. Food Res. Int. 2002, 35, 775–784. [Google Scholar] [CrossRef]
- Trachoo, N.; Boudreaux, C.; Moongngarm, A. Effect of germinated rough rice media on growth of selected probiotic bacteria. Pak. J. Biol. Sci. 2006, 9, 2657–2661. [Google Scholar] [CrossRef] [Green Version]
- Kedia, G.; Wang, R.; Patel, H.; Pandiella, S.S. Used of mixed cultures for the fermentation of cereal-based substrates with potential probiotic properties. Process. Biochem. 2007, 42, 65–70. [Google Scholar] [CrossRef]
- Pelikanova, J.; Liptakova, D.; Valík, L.; Stančeková, K. Evaluation of the growth of selected lactobacilli in pseudocereal substrate. Potravinarstvo 2011, 4, 53–57. [Google Scholar] [CrossRef]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Guyot, J.P. Cereal-based fermented foods in developing countries: Ancient foods for modern research. Int. J. Food Sci. Technol. 2012, 47, 1109–1114. [Google Scholar] [CrossRef]
- Rather, I.A.; Seo, B.; Kumar, V.R.; Choi, U.-H.; Lim, J.; Park, Y.-H. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett. Appl. Microbiol. 2013, 57, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei Group: History and Health Related Applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef]
- Passerini, D.; Coddeville, M.; Le Bourgeois, P.; Loubière, P.; Ritzenthaler, P.; Fontagné- Faucher, C.; Daveran-Mingot, M.L.; Cocaign-Bousquet, M. The carbohydrate metabolism signature of Lactococcus lactis strain A12 reveals its sourdough ecosystem origin. Appl. Environ. Microbiol. 2013, 79, 5844–5852. [Google Scholar] [CrossRef] [Green Version]
- Puerari, C.; Magalhães-Guedes, K.T.; Schwan, R.F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 2015, 46, 210–217. [Google Scholar] [CrossRef]
- Ray, M.; Ghosh, K.; Singh, S.; Chandra Mondal, K. Folk to functional: An explorative overview of rice based fermented foods and beverages in India. J. Ethn. Foods 2016, 3, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Tamine, A.Y.; Saarela, M.; Korslund Sondergaard, A.; Mistry, V.V.; Shah, N.P. Production and Maintenance of Viability of Probiotic Microorganisms in Dairy Products. In Probiotic Dairy Products; Tamine, A.Y., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 39–72. [Google Scholar]
- Shah, N.P. Functional Cultures and Health Benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Williams, M.; Hekmat, S. Lactobacillus rhamnosus GR-1 in Fermented Rice Pudding Supplemented with Short Chain Inulin, Long Chain Inulin, and Oat as a Novel Functional Food. Fermentation 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Todorov, S.D. Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control. 2010, 21, 1011–1021. [Google Scholar] [CrossRef]
- Yeğin, S.; Üren, A. Biogenic amine content of boza: A traditional cereal-based, fermented Turkish beverage. Food Chem. 2008, 111, 983–987. [Google Scholar] [CrossRef]
- Altay, F.; Karbancioglu-Güler, F.; Daskaya-Dikmen, C.; Heperkan, D. A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 2013, 167, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; di Cagno, R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 2012, 155, 120–127. [Google Scholar] [CrossRef]
- Rathore, S.; Salmerón, I.; Pandiella, S.S. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures. Food Microbiol. 2012, 30, 239–244. [Google Scholar] [CrossRef]
- Jagtap, U.; Bapat, V.A. Wines from fruits other than grapes: Current status and future prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Matejčeková, Z.; Liptáková, D.; Lubomír, V. Functional probiotic products based on fermented buckwheat with Lactobacillus rhamnosus. LWT Food Sci. Technol. 2017, 81, 35–41. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frolich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Cheryan, M. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr. 1980, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, H.J.; Chun, H.K.; Cho, S.Y.; Cho, S.M.; Lillehoj, H.S. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutr. Res. 2006, 26, 474–479. [Google Scholar] [CrossRef]
- Perera, I.; Fukushima, A.; Arai, M.; Yamada, K.; Nagasaka, S.; Seneweera, S.; Hirotsu, N. Identification of low phytic acid and high Zn bioavailable rice (Oryza sativa L.) from 69 accessions of the world rice core collection. J. Cereal Sci. 2019, 85, 206–213. [Google Scholar] [CrossRef]
- Dai, F.; Wang, J.; Zhang, S.; Xu, Z.; Zhang, G. Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem. 2007, 105, 606–611. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. J. Sci. Food Agric. 2001, 81, 1094–1100. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Garofalo, C.; Belleggia, L.; Maoloni, A.; Cardinali, F.; Mozzon, M.; Foligni, R.; Aquilanti, L.; Clementi, F. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLoS ONE 2020, 15, e0236190. [Google Scholar] [CrossRef]
Strain | Species | Isolation Source | Reference |
---|---|---|---|
BZ2 | Limosilactobacillus fermentum (basonym Lactobacillus fermentum) | Bulgarian boza | [8] |
BZ5 | Limosilactobacillus fermentum (basonym Lactobacillus fermentum) | Bulgarian boza | [8] |
BZ10 | Lacticaseibacillus paracasei (basonym Lactobacillus paracasei) | Bulgarian boza | [8] |
BZ21 | Lacticaseibacillus casei (basonym Lactobacillus casei) | Bulgarian boza | [8] |
BZ22 | Lacticaseibacillus paracasei (basonym Lactobacillus paracasei) | Bulgarian boza | [8] |
BZ26 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ28 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ30 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ31 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ32 | Lentilactobacillus buchneri (basonym Lactobacillus buchneri) | Bulgarian boza | [8] |
BZ33 | Lacticaseibacillus casei (basonym Lactobacillus casei) | Bulgarian boza | [8] |
BZ34 | Lacticaseibacillus casei/paracasei (basonym Lactobacillus casei/paracasei) | Bulgarian boza | [8] |
BZ35 | Lacticaseibacillus casei (basonym Lactobacillus casei) | Bulgarian boza | [8] |
BZ36 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ37 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ38 | Lentilactobacillus parabuchneri (basonym Lactobacillus parabuchneri) | Bulgarian boza | [8] |
BZ39 | Pediococcus parvulus | Bulgarian boza | [8] |
BZ43 | Loigolactobacillus coryniformis (basonym Lactobacillus coryniformis) | Bulgarian boza | [8] |
BZ44 | Loigolactobacillus coryniformis (basonym Lactobacillus coryniformis) | Bulgarian boza | [8] |
BZ47 | Lacticaseibacillus casei/paracasei (basonym Lactobacillus casei/paracasei) | Bulgarian boza | [8] |
DSM 20021 | Lacticaseibacillus rhamnosusT (basonym Lactobacillus rhamnosus) | Unknown source | |
DSM 20617 | Streptococcus thermophilesT | Pasteurized milk | [9] |
DSM 25784 | Weissella oryzaeT | Fermented rice grains | [10] |
Nutrient (g/100 g) | Red Rice (RR) | Barley (B) | Buckwheat (Bw) | Maple Syrup |
---|---|---|---|---|
Carbohydrates | 68.0 | 74.0 | 75.9 | 90.0 (80.0 sugars) |
Proteins | 8.7 | 13.0 | 9.3 | 0 |
Lipids | 3.1 | 2.3 | 1.7 | 0 |
Fibers | 7.4 | 17.0 | 4.0 | 0 |
Salt | 0.02 | 0.03 | 0.005 | 0.042 |
Caloric Value (Kcal/100 g) | 350 | 403 | 362 | 360 |
Substrate | Multiple-Strain Starter | Strain | Species | pH (8 h) | pH (24 h) |
---|---|---|---|---|---|
RR | 1 | BZ22 | Lacticaseibacillus paracasei | 5.65 ± 0.29 | 4.55 ± 0.13 |
BZ33 | Lacticaseibacillus casei | 5.30 ± 0.14 | 3.97 ± 0.15 | ||
BZ44 | Loigolactobacillus coryniformis | 5.69 ± 0.47 | 4.40 ± 0.27 | ||
DSM 20021 | Lacticaseibacillus rhamnosusT | 5.70 ± 0.27 | 3.88 ± 0.10 | ||
B | 2 | BZ33 | Lacticaseibacillus casei | 5.23 ± 0.75 | 3.82 ± 0.23 |
BZ34 | Lacticaseibacillus casei/paracasei | 5.23 ± 0.75 | 3.82 ± 0.23 | ||
BZ47 | Lacticaseibacillus casei/paracasei | 5.11 ± 0.06 | 3.83 ± 0.12 | ||
DSM 20021 | Lacticaseibacillus rhamnosusT | 6.13 ± 0.13 | 3.92 ± 0.07 | ||
Bw | 3 | BZ21 | Lacticaseibacillus casei | 5.42 ± 0.38 | 3.77 ± 0.05 |
BZ22 | Lacticaseibacillus paracasei | 5.35 ± 0.37 | 4.08 ± 0.08 | ||
BZ35 | Lacticaseibacillus casei | 5.85 ± 0.47 | 4.13 ± 0.24 |
t | Red rice (RR) | Barley (B) | Buckwheat (Bw) | |||
---|---|---|---|---|---|---|
LAB | pH | LAB | pH | LAB | pH | |
0 | 7.14 ± 0.09 b | 7.23 ± 0.15 a | 6.74 ± 0.03 d | 6.95 ± 0.12 a | 6.82 ± 0.16 b | 7.42 ± 0.00 a |
24 h | 8.72 ± 0.01 a | 4.25 ± 0.05 b | 9.30 ± 0.04 ab | 3.95 ± 0.00 b | 8.65 ± 0.04 a | 3.91 ± 0.01 b |
2 d | 8.72 ± 0.06 a | 4.22 ± 0.01 bc | 9.32 ± 0.12 a | 3.94 ± 0.00 bc | 8.82 ± 0.00 a | 3.81 ± 0.01 b |
4 d | 8.59 ± 0.09 a | 4.05 ± 0.06 bcd | 8.88 ± 0.01 c | 3.59 ± 0.03 efg | 8.80 ± 0.00 a | 3.60 ± 0.01 c |
6 d | 8.74 ± 0.06 a | 4.23 ± 0.06 bc | 8.90 ± 0.01 c | 3.78 ±0.03 cd | 8.73 ± 0.22 a | 3.51 ± 0.08 cd |
8 d | 8.69 ± 0.04 a | 4.15 ± 0.08 bcd | 8.93 ± 0.01 c | 3.59 ± 0.00 efg | 8.77 ± 0.10 a | 3.47 ± 0.06 cd |
10 d | 8.67 ± 0.04 a | 4.12 ± 0.04 bcd | 8.89 ± 0.13 c | 3.61 ± 0.01ef | 8.71 ± 0.45 a | 3.45 ± 0.06 cd |
12 d | 8.70 ± 0.04 a | 4.11 ± 0.02 bcd | 9.02 ± 0.05 abc | 3.68 ± 0.07 de | 8.85 ± 0.05 a | 3.50 ± 0.03 cd |
14 d | 8.73 ± 0.01 a | 4.11 ± 0.02 bcd | 8.96 ± 0.20 c | 3.68 ± 0.04 de | 8.88 ± 0.07 a | 3.50 ± 0.01 cd |
16 d | 8.66 ± 0.12 a | 4.12 ± 0.02 bcd | 8.99 ± 0.03 bc | 3.59 ± 0.01 efg | 8.85 ± 0.03 a | 3.39 ± 0.06 d |
18 d | 8.69 ± 0.07 a | 4.13 ± 0.01 bcd | 9.03 ± 0.00 abc | 3.59 ± 0.07 efg | 8.89 ± 0.08 a | 3.38 ± 0.03 d |
20 d | 8.59 ± 0.13 a | 4.14 ± 0.04 bcd | 8.83 ± 0.12 c | 3.60 ± 0.03 efg | 9.13 ± 0.50 a | 3.46 ± 0.11 cd |
22 d | 8.64 ± 0.12 a | 4.08 ± 0.04 cd | 8.91 ± 0.06 c | 3.60 ± 0.04 efg | 8.91 ± 0.07 a | 3.15 ± 0.03 e |
24 d | 8.65 ± 0.14 a | 3.99 ± 0.06 bcd | 8.94 ± 0.03 c | 3.55 ± 0.01 efg | 8.97 ± 0.03 a | 3.39 ± 0.01 d |
26 d | 8.64 ± 0.11 a | 4.07 ± 0.04 bcd | 8.92 ± 0.05 c | 3.44 ± 0.01 gh | 8.99 ± 0.24 a | 3.43 ± 0.04 cd |
28 d | 8.52 ± 0.21 a | 4.03 ± 0.03 bcd | 9.01 ± 0.10 abc | 3.38 ± 0.01 h | 8.89 ± 0.01 a | 3.41 ± 0.04 d |
30 d | 8.60 ± 0.01 a | 4.01 ± 0.03 d | 9.11 ± 0.04 abc | 3.51 ± 0.02 fgh | 9.04 ± 0.01 a | 3.41 ± 0.00 d |
Sample | Phytic Acid (g 100 g−1) | Total Phosphorus (g 100 g−1) | |
---|---|---|---|
RR | Coarse flours | 0.314 ± 0.099 a | 0.089 ± 0.028 a |
Prototypes beverage | 0.084 ± 0.091 a | 0.024 ± 0.026 a | |
Control beverages | 0.026 ± 0.034 a | 0.007 ± 0.010 a | |
B | Coarse flours | 0.407 ± 0.031 a | 0.115 ± 0.009 a |
Prototypes beverage | 0.196 ± 0.147 a | 0.067 ± 0.000 a | |
Control beverages | 0.238 ± 0.000 a | 0.055 ± 0.041 a | |
Bw | Coarse flours | 0.428 ± 0.308 a | 0.121 ± 0.087 a |
Prototypes beverage | 0.147 ± 0.010 a | 0.042 ± 0.003 a | |
Control beverages | 0.115 ± 0.025 a | 0.033 ± 0.007 a |
Sample | Moisture (%) | Dry Matter (%) | Protein (g 100 g−1) | Lipid (g 100 g−1) | CHO (g 100 g−1) | Fiber (g 100 g−1) | Ash (g 100 g−1) | |
---|---|---|---|---|---|---|---|---|
RR | Experimental beverage | 89.40 ± 0.08 d | 10.73 ± 0.01 a | 0.28 ± 0.01 a | 0.00 ± 0.00 a | 10.31 ± 0.01 a | 1.15 ± 0.17 a | 0.12 ± 0.00 b |
Control beverage | 89.27 ± 0.01 d | 10.61 ± 0.08 a | 0.22 ± 0.00 b | 0.00 ± 0.00 a | 10.22 ± 0.05 a | 1.01 ± 0.46 a | 0.16 ± 0.01 a | |
B | Experimental beverage | 90.19 ± 0.01 c | 9.81 ± 0.01 b | 0.23 ± 0.02 b | 0.00 ± 0.00 a | 9.28 ± 0.23 b | 1.11 ± 0.18 a | 0.11 ± 0.00 b |
Control beverage | 90.40 ± 0.01 bc | 9.60 ± 0.01 bc | 0.19 ± 0.03 c | 0.00 ± 0.00 a | 9.29 ± 0.01 b | 1.19 ± 0.11 a | 0.11 ± 0.00 b | |
Bw | Experimental beverage | 90.95 ± 0.07 a | 9.05 ± 0.07 d | 0.28 ± 0.00 a | 0.00 ± 0.00 a | 8.61 ± 0.08 c | 0.94 ± 0.32 a | 0.12 ± 0.01 b |
Control beverage | 90.74 ± 0.18 ab | 9.26 ± 0.18 cd | 0.24 ± 0.00 b | 0.00 ± 0.00 a | 8.87 ± 0.17 bc | 0.93 ± 0.35 a | 0.11 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinali, F.; Osimani, A.; Milanović, V.; Garofalo, C.; Aquilanti, L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods 2021, 10, 613. https://doi.org/10.3390/foods10030613
Cardinali F, Osimani A, Milanović V, Garofalo C, Aquilanti L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods. 2021; 10(3):613. https://doi.org/10.3390/foods10030613
Chicago/Turabian StyleCardinali, Federica, Andrea Osimani, Vesna Milanović, Cristiana Garofalo, and Lucia Aquilanti. 2021. "Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat" Foods 10, no. 3: 613. https://doi.org/10.3390/foods10030613
APA StyleCardinali, F., Osimani, A., Milanović, V., Garofalo, C., & Aquilanti, L. (2021). Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods, 10(3), 613. https://doi.org/10.3390/foods10030613