Real-Time PCR Method Combined with a Matrix Lysis Procedure for the Quantification of Listeria monocytogenes in Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantitative PCR Optimization
2.1.1. Bacterial Culture Conditions and DNA Extraction
2.1.2. Quantitative PCR Assay
DNA Calibration Curve
Cellular Calibration Curve
2.2. Quantification of L. monocytogenes in Meat Products
2.2.1. Samples Artificial Contamination
2.2.2. Methods for the Quantification of L. monocytogenes in Meat Products
Method A
Method B
Reference Method ISO 11290-2/A1:2018
2.3. Quantification of L. monocytogenes in Commercial Meat Products
3. Results and Discussion
3.1. Optimization and Development of qPCR Method
3.2. qPCR Calibration Curves
3.3. Comparison of Methods A and B versus Reference Method
3.4. L. monocytogenes Quantification Meat Commercial Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lomonaco, S.; Nucera, D.; Filipello, V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect. Genet. Evol. 2015, 35, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Fagerlund, A.; Møretrø, T.; Heir, E.; Briandet, R.; Langsrud, S. Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA) on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar] [CrossRef]
- Gomez, D.; Iguácel, L.; García, C.; Carramiñana, J.; Ariño, A.; Yangüela, J. Occurrence of Listeria monocytogenes in Ready-to-Eat Meat Products and Meat Processing Plants in Spain. Foods 2015, 4, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Henriques, A.R.; Gama, L.T.; Fraqueza, M.J. Tracking Listeria monocytogenes contamination and virulence-associated characteristics in the ready-to-eat meat-based food products industry according to the hygiene level. Int. J. Food Microbiol. 2017, 242, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Rota, C.; Labrador, M.; Escolar, C.; Bayarri, S.; Conchello, P.; Ariño, A.; Yangüela, J.A. Control de Listeria monocytogenes en la industria cárnica Red de Excelencia Consolider Procarse. In Productos Cárnicos Seguros, Nutritivos y Saludables; Capítulo XI; Núñez, M.F., Jiménez-Colmenero, J.J., Eds.; Córdoba Universidad de Extremadur: Cordoba, Spain, 2017; ISBN 978-84-697-6357-5. [Google Scholar]
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). Multi-Country Outbreak of Listeria monocytogenes Serogroup IVb, Multi-Locus Sequence Type 6, Infections Linked to Frozen Corn and Possibly to Other Frozen Vegetables—First Update; EFSA Supporting Publication: Parma, Italy, 2018; Volume 15. [Google Scholar] [CrossRef]
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Directrices Para el Muestreo Oficial de Líneas de Producción de Alimentos Listos Para el Consumo Que Pueden Plantear Riesgo de Listeria Monocytogenes y Actuaciones Consiguientes; Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN): Madrid, Spain, 2013; pp. 1–12. [Google Scholar]
- Auvolat, A.; Besse, N.G. The challenge of enumerating Listeria monocytogenes in food. Food Microbiol. 2016, 53, 135–149. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; Ribeiro, A.E.G.; Bergamini, M.A.M.; De Martinis, P.E.C. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR. Food Microbiol. 2010, 27, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Fuchizawa, I.; Shimizu, S.; Ootsubo, M.; Kawai, Y.; Yamazaki, K. Specific and Rapid Quantification of Viable Listeria monocytogenes Using Fluorescence in situ Hybridization in Combination with Filter Cultivation. Microbes Environ. 2009, 24, 273–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, J.; Ruttledge, M.; Sedano-Balbás, S.; Smith, T.J.; Barry, T.; Maher, M. Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiol. 2009, 26, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Rantsiou, K.; Alessandria, V.; Urso, R.; Dolci, P.; Cocolin, L. Detection, quantification and vitality of Listeria monocytogenes in food as determined by quantitative PCR. Int. J. Food Microbiol. 2008, 121, 99–105. [Google Scholar] [CrossRef]
- Witte, A.K.; Fister, S.; Mester, P.; Schoder, D.; Rossmanith, P. Evaluation of the performance of quantitative detection of the Listeria monocytogenes prfA locus with droplet digital PCR. Anal. Bioanal. Chem. 2016, 408, 7583–7593. [Google Scholar] [CrossRef] [Green Version]
- D’Urso, O.F.; Poltronieri, P.; Marsigliante, S.; Storelli, C.; Hernández, M.; Rodríguez-Lázaro, D. A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiol. 2009, 26, 311–316. [Google Scholar] [CrossRef]
- Mester, P.; Schoder, D.; Wagner, M.; Rossmanith, P. Rapid Sample Preparation for Molecular Biological Food Analysis Based on Magnesium Chloride. Food Anal. Methods 2014, 7. [Google Scholar] [CrossRef]
- Rossmanith, P.; Mester, P.; Wagner, M.; Schoder, D. Demonstration of the effective performance of a combined enrichment/real-time PCR method targeting the prfA gene of Listeria monocytogenes by testing fresh naturally contaminated acid curd cheese. Lett. Appl. Microbiol. 2010, 51, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Nogva, H.K.; Rudi, K.; Naterstad, K.; Holck, A.; Lillehaug, D. Application of 5’-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Environ. Microbiol. 2000, 66, 4266–4271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Quero, G.; Santovito, E.; Visconti, A.; Fusco, V. Quantitative detection of Listeria monocytogenes in raw milk and soft cheeses: Culture-independent versus liquid- and solid-based culture-dependent real time PCR approaches. Leb. Technol. 2014, 58, 11–20. [Google Scholar] [CrossRef]
- Broeders, S.; Huber, I.; Grohmann, L.; Berben, G.; Taverniers, I.; Mazzara, M.; Roosens, N.; Morisset, D. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol. 2014, 37, 115–126. [Google Scholar] [CrossRef]
- Paul, M.; Baranzoni, G.M.; Albonetti, S.; Brewster, J.D. Direct, quantitative detection of Listeria monocytogenes in fresh raw whole milk by qPCR. Int. Dairy J. 2015, 41, 46–49. [Google Scholar] [CrossRef]
- Rodríguez-Lázaro, D.; Pla, M.; Scortti, M.; Monzó, H.J.; Vázquez-Boland, J.A. A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Appl. Environ. Microbiol. 2005, 71, 9008–9012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Lazaro, D.; Gonzalez-García, P.; Gattuso, A.; Gianfranceschi, M.V.; Hernandez, M. Reducing time in the analysis of Listeria monocytogenes in meat, dairy and vegetable products. Int. J. Food Microbiol. 2014, 184, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hough, A.J.; Harbison, S.-A.; Savill, M.G.; Melton, L.D.; Fletcher, G. Rapid enumeration of Listeria monocytogenes in artificially contaminated cabbage using real-time polymerase chain reaction. J. Food Prot. 2002, 65, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Berrada, H.; Soriano, J.M.; Picó, Y.; Mañes, J. Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int. J. Food Microbiol. 2006, 107, 202–206. [Google Scholar] [CrossRef]
- Thévenot, D.; Delignette-Muller, M.L.; Christieans, S.; Vernozy-Rozand, C. Prevalence of Listeria monocytogenes in 13 dried sausage processing plants and their products. Int. J. Food Microbiol. 2005, 102, 85–94. [Google Scholar] [CrossRef]
- Jadhav, S.; Bhave, M.; Palombo, E.A. Methods used for the detection and subtyping of Listeria monocytogenes. J. Microbiol. Methods 2012, 88, 327–341. [Google Scholar] [CrossRef] [PubMed]
Primers/Probe | Sequence (5′–3′) | Amplicon (bp) |
---|---|---|
Forward | 5′-TGCAAGTCCTAAGACGCCA-3′ | 113 |
Reverse | 5′-CACTGCATCTCCGTGGTATACTAA-3′ | |
Taqman probe | FAM-5′CGATTTCATCCGCGTGTTTCTTTTCG-BkFQ |
Annealing (°C) | 350/250 1 (nM) | 350/125 1 (nM) | 250/250 1 (nM) | 250/125 1 (nM) | ||||
---|---|---|---|---|---|---|---|---|
Cq 2 | End-Point 3 | Cq 2 | End-Point 3 | Cq 2 | End-Point 3 | Cq 2 | End-Point 3 | |
65 | 31.18 ± 0.05 | 0.21 ± 0.02 | 32.91 ± 0.28 | 0.07 ± 0.01 | 32.50 ± 0.13 | 0.15 ± 0.00 | 32.48 ± 0.55 | 0.12 ± 0.03 |
64.7 | 30.77 ± 0.02 | 0.27 ± 0.01 | 32.17 ± 0.24 | 0.10 ± 0.01 | 31.88 ± 0.40 | 0.20 ± 0.02 | 31.87 ± 0.10 | 0.15 ± 0.01 |
64 | 30.31 ± 0.03 | 0.34 ± 0.09 | 31.59 ± 0.05 | 0.13 ± 0.01 | 30.81 ± 0.52 | 0.27 ± 0.08 | 31.07 ± 0.29 | 0.19 ± 0.03 |
63.1 | 31.56 ± 0.42 | 0.16 ± 0.04 | 31.97 ± 0.05 | 0.10 ± 0.00 | 31.99 ± 0.69 | 0.13 ± 0.08 | 31.27 ± 0.03 | 0.17 ± 0.00 |
62 | 30.59 ± 0.45 | 0.33 ± 0.10 | 32.04 ± 0.29 | 0.11 ± 0.01 | 30.75 ± 0.57 | 0.26 ± 0.09 | 31.09 ± 0.01 | 0.20 ± 0.01 |
61.1 | 30.89 ± 0.20 | 0.31 ± 0.00 | 31.88 ± 0.06 | 0.13 ± 0.00 | 31.06 ± 0.12 | 0.25 ± 0.02 | 31.19 ± 0.01 | 0.19 ± 0.01 |
60.4 | 31.05 ± 0.00 | 0.30 ± 0.02 | 32.16 ± 0.04 | 0.12 ± 0.00 | 31.18 ± 0.13 | 0.23 ± 0.02 | 31.43 ± 0.07 | 0.18 ± 0.01 |
60 | 31.87 ± 0.24 | 0.18 ± 0.03 | 32.77 ± 0.88 | 0.09 ± 0.04 | 32.08 ± 0.47 | 0.14 ± 0.02 | 31.90 ± 0.79 | 0.15 ± 0.07 |
Level 1 | Ref Method 2 | qPCR Method | |||||||
---|---|---|---|---|---|---|---|---|---|
log CFU/g | Cq 3 | Ratio 4 | Intra-Assay CV 5 | Inter-Assay CV 6 | Variability 7 | Max Variability 8 | |||
1 | 6.82 ± 0.11 | 20.85 ± 0.39 | 9/9 | 0.43 | 0.42 | 2.81 | 1.91 | 0.12 | 1.57 |
2 | 5.85 ± 0.03 | 25.49 ± 0.39 | 9/9 | 0.90 | 0.25 | 2.28 | 1.54 | 0.16 | 1.22 |
3 | 4.86 ± 0.05 | 27.12 ± 0.22 | 9/9 | 0.89 | 1.03 | 0.61 | 0.84 | 0.07 | 1.09 |
4 | 3.87 ± 0.06 | 30.98 ± 0.58 | 9/9 | 0.06 | 1.79 | 0.46 | 1.88 | 0.18 | 0.80 |
5 | 2.80 ± 0.03 | 35.56 ± 0.39 | 9/9 | 0.82 | 0.97 | 1.08 | 1.12 | 0.12 | 0.46 |
6 | 1.48 ± 0.10 | 38.35 ± 0.56 | 9/9 | 0.94 | 2.49 | 0.98 | 1.48 | 0.17 | 0.24 |
Ref Method | Method A | Method B | |||
---|---|---|---|---|---|
Level | Plate Counting (log CFU/g) | qPCR (log CFU/g) | Relative Accuracy (%) | Plate Counting (log CFU/g) | Relative Accuracy (%) |
1 | 6.41 ± 0.38 | 6.38 ± 0.42 | 99.49 ± 0.92 | 6.54 ± 0.49 | 102.03 ± 2.26 |
2 | 5.38 ± 0.25 | 5.51 ± 0.19 | 102.47 ± 1.74 | 5.45 ± 0.42 | 101.30 ± 4.39 |
3 | 4.36 ± 0.45 | 4.31 ± 0.29 | 99.22 ± 5.08 | 4.70 ± 0.15 | 92.70 ± 6.98 |
4 | 3.15 ± 0.17 | 3.02 ± 0.19 | 95.83 ± 1.22 | 3.21 ± 0.18 | 101.90 ± 0.30 |
5 | 2.15 ± 0.09 | 2.13 ± 0.07 | 99.11 ± 1.26 | 2.23 ± 0.13 | 103.72 ± 2.41 |
6 | 1.80 ± 0.11 | 1.89 ± 0.09 | 105.02 ± 2.02 | 1.93 ± 0.11 | 97.80 ± 0.62 |
Detection IQ-Check | Quantification | |||
---|---|---|---|---|
n | qPCR Detected/25 g | qPCR (CFU/g) | ISO 11290-2 (CFU/g) | |
Cured | ||||
- Ham | 14 | 4 | <30.1 ± 6.2 (n = 4) | <5 |
- Sausage | 8 | 2 | <30.1 ± 6.2 (n = 2) | <5 |
- Others | 16 | 4 | <30.1 ± 6.2 (n = 3) 69.1 ± 13.9 (n = 1) | <5 |
Deli meat | 5 | nd | na | na |
Total | 43 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labrador, M.; Giménez-Rota, C.; Rota, C. Real-Time PCR Method Combined with a Matrix Lysis Procedure for the Quantification of Listeria monocytogenes in Meat Products. Foods 2021, 10, 735. https://doi.org/10.3390/foods10040735
Labrador M, Giménez-Rota C, Rota C. Real-Time PCR Method Combined with a Matrix Lysis Procedure for the Quantification of Listeria monocytogenes in Meat Products. Foods. 2021; 10(4):735. https://doi.org/10.3390/foods10040735
Chicago/Turabian StyleLabrador, Mirian, Carlota Giménez-Rota, and Carmen Rota. 2021. "Real-Time PCR Method Combined with a Matrix Lysis Procedure for the Quantification of Listeria monocytogenes in Meat Products" Foods 10, no. 4: 735. https://doi.org/10.3390/foods10040735
APA StyleLabrador, M., Giménez-Rota, C., & Rota, C. (2021). Real-Time PCR Method Combined with a Matrix Lysis Procedure for the Quantification of Listeria monocytogenes in Meat Products. Foods, 10(4), 735. https://doi.org/10.3390/foods10040735