Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Sample Preparation and Cooking Protocol
2.4. Sensory Analysis
2.5. Volatile Analysis
2.6. Extraction of Non-Volatile Metabolites
2.7. Identification of Metabolites Using Liquid Chromatography—Mass Spectrometry LC-MS
2.8. Identification of Metabolites Using Compound Discoverer Software
2.9. Statistical Analysis
3. Results
3.1. General Description of Main Sensory Attributes of Products
3.2. Volatile Analysis
3.3. Non-Volatile Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Reay, D.S.; Higgins, P. Potential of Meat Substitutes for Climate Change Mitigation and Improved Human Health in High-Income Markets. Front. Sustain. Food Syst. 2018, 2, 16. [Google Scholar] [CrossRef]
- Faucitano, L.; Martelli, G.; Nannoni, E.; Widowski, T. Chapter 21–Fundamentals of Animal Welfare in Meat Animals and Consumer Attitudes to Animal Welfare A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 537–568. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and Flavor Chemistry Characteristics of Australian Beef: Influence of Intramuscular Fat, Feed, and Breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef] [PubMed]
- Schlichtherle-Cerny, H.; Grosch, W. Evaluation of taste compounds of stewed beef juice. Z. Fur Lebensm. Unters. Und Forsch. A-Food Res. Technol. 1998, 207, 369–376. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Quantification of character-impact odor compounds of roasted beef. Z. Fur Lebensm. Unters. Und Forsch. 1993, 196, 417–422. [Google Scholar] [CrossRef]
- Aliani, M.; Farmer, L.J. Precursors of Chicken Flavor. II. Identification of Key Flavor Precursors Using Sensory Methods. J. Agric. Food Chem. 2005, 53, 6455–6462. [Google Scholar] [CrossRef]
- Aliani, M.; Farmer, L.J. Precursors of Chicken Flavor. I. Determination of Some Flavor Precursors in Chicken Muscle. J. Agric. Food Chem. 2005, 53, 6067–6072. [Google Scholar] [CrossRef] [PubMed]
- Farmer, L.J.; Hagan, T.D.J.; Paraskevas, O. Role of Selected Precursors in Meat Flavor Formation. In Quality Attributes of Muscle Foods; Xiong, Y.L., Chi-Tang, H., Shahidi, F., Eds.; Springer: Boston, MA, USA, 1999; pp. 159–172. [Google Scholar] [CrossRef]
- Farmer, L.J.; Mottram, D.S.; Whitfield, F.B. Volatile compounds produced in Maillard reactions involving cysteine, ribose and phospholipid. J. Sci. Food Agric. 1989, 49, 347–368. [Google Scholar] [CrossRef]
- Rodbotten, M.; Kubberod, E.; Lea, P.; Ueland, O. A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci. 2004, 68, 137–144. [Google Scholar] [CrossRef]
- Pereira, P.C.; Vicente, F. Chapter 18–Meat Nutritive Value and Human Health A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 465–477. [Google Scholar] [CrossRef]
- Frank, D.; Oytam, Y.; Hughes, J. Chapter 27–Sensory Perceptions and New Consumer Attitudes to Meat A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 667–698. [Google Scholar] [CrossRef]
- Zamora, R.; Navarro, J.L.; Aguilar, I.; Hidalgo, F.J. Lipid-derived aldehyde degradation under thermal conditions. Food Chem. 2015, 174, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Hartley, I.E.; Liem, D.G.; Keast, R. Umami as an ‘Alimentary’ Taste. A New Perspective on Taste Classification. Nutrients 2019, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. Biomed. Res. Int. 2015, 189402. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, M.; Miyamura, N. Mechanism of the perception of “kokumi” substances and the sensory characteristics of the “kokumi” peptide, γ-Glu-Val-Gly. Flavour 2015, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Dunkel, A.; Köster, J.; Hofmann, T. Molecular and Sensory Characterization of γ-Glutamyl Peptides as Key Contributors to the Kokumi Taste of Edible Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 6712–6719. [Google Scholar] [CrossRef]
- Frank, D.; Joo, S.-T.; Warner, R. Consumer Acceptability of Intramuscular Fat. Korean J. Food Sci. Anim. Resour. 2016, 36, 699–708. [Google Scholar] [CrossRef]
- Frank, D.; Kaczmarska, K.; Paterson, J.; Piyasiri, U.; Warner, R. Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef. Meat Sci. 2017, 133, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A.; et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef]
- Douglas, S.M.; Lasley, T.R.; Leidy, H.J. Consuming Beef vs. Soy Protein Has Little Effect on Appetite, Satiety, and Food Intake in Healthy Adults. J. Nutr. 2015, 145, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delimaris, I. Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutr. 2013, 2013, 126929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polanowska, K.; Grygier, A.; Kuligowski, M.; Rudzinska, M.; Nowak, J. Effect of tempe fermentation by three different strains of Rhizopus oligosporus on nutritional characteristics of faba beans. LWT Food Sci Technol. 2020, 122, 109024. [Google Scholar] [CrossRef]
- Wolkers-Rooijackers, J.C.M.; Endika, M.F.; Smid, E.J. Enhancing vitamin B-12 in lupin tempeh by in situ fortification. LWT Food Sci. Technol. 2018, 96, 513–518. [Google Scholar] [CrossRef]
- Xiao, C.W. 22–Functional soy products. In Functional Foods, 2nd ed.; Saarela, M., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 534–556. [Google Scholar] [CrossRef]
- Charve, J.; Manganiello, S.; Glabasnia, A. Analysis of Umami Taste Compounds in a Fermented Corn Sauce by Means of Sensory-Guided Fractionation. J. Agric. Food Chem. 2018, 66, 1863–1871. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Sieniawski, K.; Starowicz, P. BIOPEP database of sensory peptides and amino acids. Food Res. Int. 2016, 85, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Kiers, J.L. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, H.; Song, H.-L.J.F.A.M. Comparison of Four Extraction Methods, SPME, DHS, SAFE, Versus SDE, for the Analysis of Flavor Compounds in Natto. Food Anal. Methods 2018, 11, 343–354. [Google Scholar] [CrossRef]
- Yoshie-Stark, Y.; Wäsche, A. Characteristics of crude lipoxygenase from commercially de-oiled lupin flakes for different types of lupins (Lupinus albus, Lupinus angustifolius). Food Chem. 2004, 88, 287–292. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TRAC Trends Anal. Chem. 2020, 127, 115876. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, L. A new style of fermented tofu by Lactobacillus casei combined with salt coagulant. 3 Biotech 2020, 10, 81. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT Food Sci. Technol. 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Zabaras, D.; Frank, D.; Arcot, J. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. J. Agric. Food Chem. 2017, 65, 10064–10073. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kim, B.-R.; Han, Y.-B.; Park, C.-H. Changes of free amino acids during the Natto fermentation used by Bacillus subtilis S.N.U 816. J. Korean Chem. Soc. 1987, 30, 192–197. [Google Scholar]
- Mei Feng, X.; Ostenfeld Larsen, T.; Schnürer, J. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation. Int. J. Food Microbiol. 2007, 113, 133–141. [Google Scholar] [CrossRef]
- Schindler, S.; Krings, U.; Berger, R.G.; Orlien, V. Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated. Meat Sci. 2010, 86, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Vasanthan, T.; Temelli, F.; Swallow, K. Volatile flavour composition of cooked by-product blends of chicken, beef and pork: A quantitative GC–MS investigation. Food Res. Int. 2001, 34, 149–158. [Google Scholar] [CrossRef]
- Frank, D.; Hughes, J.; Piyasiri, U.; Zhang, Y.; Kaur, M.; Li, Y.; Mellor, G.; Stark, J. Volatile and non-volatile metabolite changes in 140-day stored vacuum packaged chilled beef and potential shelf life markers. Meat Sci. 2020, 161, 108016. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of Volatiles in Meat from Iberian Pigs and Lean Pigs after Refrigeration and Cooking by Using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Torres-Penaranda, A.V.; Reitmeier, C.A.; Wilson, L.A.; Fehr, W.R.; Narvel, J.M. Sensory Characteristics of Soymilk and Tofu Made from Lipoxygenase-Free and Normal Soybeans. J. Food Sci. 1998, 63, 1084–1087. [Google Scholar] [CrossRef]
- Yang, A.; Smyth, H.; Chaliha, M.; James, A. Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases. Food Sci. Nutr. 2016, 4, 207–215. [Google Scholar] [CrossRef]
- Kustyawati, M.E.; Nawanish, O.; Nurdjanah, S. Profile of aroma compounds and acceptability of modified tempeh. Int. Food Res. J. 2017, 24, 734–740. [Google Scholar]
- Eriksson, C.E.; Lundgren, B.; Vallentin, K. Odor dectectability of aldehydes and alcohols orginating from lipid oxidation. Chem. Senses 1976, 2, 3–15. [Google Scholar] [CrossRef]
- Leejeerajumnean, A.; Duckham, S.C.; Owens, J.D.; Ames, J.M. Volatile compounds in Bacillus–fermented soybeans. J. Sci. Food Agric. 2001, 81, 525–529. [Google Scholar] [CrossRef]
- Besson, I.; Creuly, C.; Gros, J.B.; Larroche, C. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Appl. Microbiol. Biotechnol. 1997, 47, 489–495. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Precursors of ethyldimethylpyrazine isomers and 2,3-diethyl-5-methylpyrazine formed in roasted beef. Z. Lebensm. Unters. Forsch. 1994, 198, 210–214. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Evaluation of potent odorants in roasted beef by aroma extract dilution analysis. Z. Lebensm. Unters. Forsch. 1992, 194, 322–325. [Google Scholar] [CrossRef]
- Frank, D.; Raeside, M.; Behrendt, R.; Krishnamurthy, R.; Piyasiri, U.; Rose, G.; Watkins, P.; Warner, R. An integrated sensory, consumer and olfactometry study evaluating the effects of rearing system and diet on flavour characteristics of Australian lamb. Anim. Prod. Sci. 2017, 57, 347–362. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuno, J.; Stark, J.; Warner, R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, T.J.; Leela, N.K. 11–Volatiles from herbs and spices. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Sawston, UK, 2006; pp. 177–218. [Google Scholar] [CrossRef]
- Shahidi, F.; Pegg, R.B. Hexanal as an indicator of meat flavor deterioration. J. Food Lipids 1994, 1, 177–186. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian Australas J. Anim. Sci. 2013, 26, 732–742. [Google Scholar] [CrossRef]
- Arihara, K. Strategies for designing novel functional meat products. Meat Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef] [Green Version]
- Fuke, S. Taste-active components of seafoods with special reference to umami substances. In Seafoods: Chemistry, Processing Technology and Quality; Shahidi, F., Botta, J.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 115–139. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Da Costa, K.-A.; Franklin, P.D.; Alexander, E.A.; Lamont, J.T.; Sheard, N.F.; Beiser, A. Choline, an essential nutrient for humans. FASEB J. 1991, 5, 2093–2098. [Google Scholar] [CrossRef]
- Ichimura, S.; Nakamura, Y.; Yoshida, Y.; Hattori, A. Hypoxanthine enhances the cured meat taste. Anim. Sci. J. 2017, 88, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-C.; Chi, M.-C.; Lin, M.-G.; Chen, Y.-Y.; Lin, L.-L.; Wang, T.-F. Biocatalytic Synthesis of γ-glutamyl-L-leucine, a Kokumi-Imparting Dipeptide, by Bacillus licheniformis γ-Glutamyltranspeptidase. Food Biotechnol. 2018, 32, 130–147. [Google Scholar] [CrossRef]
- Beaumont, M. Flavouring composition prepared by fermentation with Bacillus spp. Int. J. Food Microbiol. 2002, 75, 189–196. [Google Scholar] [CrossRef]
- Utami, R.; Wijaya, C.H.; Lioe, H.N. Taste of Water-Soluble Extracts Obtained from Over-Fermented Tempe. Int. J. Food Prop. 2016, 19, 2063–2073. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Methven, L. 4–Natural food and beverage flavour enhancer. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 76–99. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamam, B.; Syah, D.; Suhartono, M.T.; Kusuma, W.A.; Tachibana, S.; Lioe, H.N. Proteomic study of bioactive peptides from tempe. J. Biosci. Bioeng. 2019, 128, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Žugčić, T.; Abdelkebir, R.; Barba, F.J.; Rezek-Jambrak, A.; Gálvez, F.; Zamuz, S.; Granato, D.; Lorenzo, J.M. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 2018, 55, 4544–4553. [Google Scholar] [CrossRef] [PubMed]
Product | Main Protein Source | Protein [g/100 g] | Fat [g/100 g] | Carbohydrate [g/100 g] | Sodium [mg/100 g] | Iron [µg/100 g] | Zinc [µg/100 g] | Vit B12 [µg/100 g] | |
---|---|---|---|---|---|---|---|---|---|
Meat substitutes | |||||||||
MS1 | Beef Burger | black beans | 6.7 | 4.9 | 16.2 | 400 | n/a | n/a | n/a |
MS2 | Beef Burger | vegetables | 5.6 | 7.6 | 31.5 | 320 | n/a | n/a | n/a |
MS3 | Beef Burger | brown rice | 12.9 | 6.3 | 19.2 | 598 | n/a | n/a | n/a |
MS4 | Beef Burger | soy protein | 15.6 | 0.9 | 18.6 | 473 | n/a | n/a | n/a |
MS5 | Beef Burger | pea protein | 17.7 | 17.7 | 4.4 | 380 | n/a | n/a | n/a |
MS6 | Beef Mince | mycoprotein | 14.9 | 1.9 | 1.6 | 58 | n/a | n/a | n/a |
MS7 | Beef Mince | soy protein | 18 | 10 | 6.2 | 480 | n/a | n/a | n/a |
MS8 | Sausage | wheat, gluten and soy | 19 | 10.4 | 9 | 480 | 3.5 | 4.4 | 2 |
MS9 | Sausage | soy | 8.4 | 7.4 | 13.1 | 630 | n/a | n/a | n/a |
MS10 | Pork roast | wheat, gluten and soy | 16.9 | 5 | 13.3 | 590 | 1.7 | 1.5 | 1.7 |
Plant-based high-protein foods | |||||||||
T1 | Tempeh | soy | 20.2 | 5.9 | 0.5 | 3.1 | 2.4 | n/a | n/a |
T2 | Tempeh | chickpea | 12.8 | 1.9 | 19 | 3.2 | 2.5 | 1.4 | 0.04 |
T3 | Tempeh | fava beans | 14.7 | 0.6 | 15 | 40 | 2.1 | 1.2 | 0.04 |
T4 | Tempeh | split pea | 14.2 | 1.2 | 21 | 3.2 | 2.7 | 1.5 | 0.04 |
TO1 | Tofu | soy | 15.2 | 7.1 | 1.7 | <6 | 5 | n/a | n/a |
TO2 | Tofu | soy | 5.4 | 1.2 | 2.1 | <1.0 | n/a | n/a | n/a |
N1 | Natto | soy | 16.4 | 10 | 12 | 2 | n/a | n/a | n/a |
N2 | Natto | soy | 15.2 | 8 | 12.9 | 454 | n/a | n/a | n/a |
N3 | Natto | soy | 13.2 | 7.8 | 15.1 | 562 | n/a | n/a | n/a |
N4 | Natto | soy | 14.8 | 18 | 26.3 | 152 | n/a | n/a | n/a |
N5 | Natto | soy | 16.5 | 11.1 | 12.5 | 2.5 | n/a | n/a | n/a |
Meat | |||||||||
BM1 | Beef mince 1 | beef | 19.9 | 17 | 0 | 71 | n/a | n/a | n/a |
BM2 | Beef mince 2 | ||||||||
BS | Beef steak | 19 | 19 | 0 | 58 | ||||
CT1 | Chicken thigh 1 | chicken | 27 | 14 | 0 | 82 | n/a | n/a | n/a |
CT2 | Chicken thigh 2 | ||||||||
CB | Chicken breast 1 | ||||||||
PL | Pork loin | pork | 27 | 14 | 0 | 62 | n/a | n/a | n/a |
PS | Pork sirloin | ||||||||
PC | Pork cutlet |
Product | Type | Brand | Main Ingredient | Aroma | Flavor/Taste | Texture | Appearance | Mouthfeel |
---|---|---|---|---|---|---|---|---|
MS1 | burger | cooked | black beans | beany, slight smoky, grainy, fresh vegetables, not much aroma | spicy, pleasant, not like beef, salty, beany, lentils, sweet, grainy, beetroot | firm, chewy, hard particles, stay intact upon cutting, soft, crumbly particles, grainy particles, firm on plate, falls in pieces in mouth | red/purple and black particles, nice browning, visible grains, dark, pink, layered pieces (beans pieces) | not fatty, dry, not juicy |
MS2 | burger | cooked | vegetables | oregano, strong rosemary, herbs, not meat-like, spicy, beany, strong, curry, mustard | salty, sweet, herbs, like stuffing, not unpleasant, starchy, MSG, sweet, taste like mix of vegetables | soft, chewy, cohesive, sticky, stay intact upon cutting, soft, oily, residue in mouth, tooth packing | yellow/orange/brown/grainy, visible green and carrot pieces, veg chunks like in veg burgers | soft, oily |
MS3 | burger | cooked | brown rice | not meat-like, brown rice smell, guaiacol, cooked grains, spicy, smoky, beany, rosemary, cooked vegetables, very grainy, spices (pepper), seeds | salty, rice flavor, very strong grainy taste, acidic, cereal, aftertaste not beefy, very salty, not great flavor, starchy, herbal, peppery, rye | medium firm, chewy, stay intact upon cutting, soft, grainy particles | visible rice grains, grainy, brown color, dark, flaky | crumbly |
MS4 | burger | cooked | soy protein | herbal, mild beefy, spicy, overpowering, mushroom | bland, spicy, starchy, beany aftertaste, parsley, spicy paprika—not really that nice, herbal, spices, a bit salty, grainy, very spicy | compact, cohesive, chewy, soft, sticky, dense, soft, not too dry, no particles—processed, first bite is nice then too much processing needed | red color, looks dry, thick and round edges, nice browning, red beef color, like burger, thick dense raw meat appearance | not fatty, not juicy, sucks saliva |
MS5 | burger | cooked | pea protein | meaty, slight-strong smoky, tomato, onion, beefy, not pleasant, strong off, acidic, artificial, smells like meat | slightly salty, umami, meaty, mushroom, spicy, off, strong aftertaste, smoky, cat food, grainy, aftertaste | soft, meat-like texture, looks good, looks like meat, texture like a burger, tender | homogenous but can see particles, good browning, good brown color, meaty appearance | juicy, oily, not dry |
MS6 | mince | cooked | mycoprotein | strong acidic, grainy, acetic acid, mild mushroom, starchy, cardboard, strong grainy, wet paper | not nice taste, very bland, strong acidic, weird taste, not meaty, cardboard, cereals, some bitterness, not salty, acidic | powdery, sticky, firm bite, moist, resistant to chew, chewy, crumbly, soft, very small particles | looks like mince, good brown color, meat color | dry, crumbly, not too dry |
MS7 | mince | cooked | soy protein | vomit, cooked grain smell, not meat like, off, oily, starchy, revolting aroma, cardboard | salty, spicy, off, vomit, chemical/artificial, very bread-like aftertaste | good texture, springy pieces, holds tongue well, chewy, pasty, bouncy | looks like mince, brown | soft |
MS8 | sausage | cooked | wheat, gluten and soy | herbs, guaiacol, cloves, a bit grainy, starchy, spices, overpowering, peppery | salty, sweet, starchy, spicy, bland, spicy aftertaste | firm first bite, then teeth sinking, soft inside, grainy, dissolving, chewy particles before swallow, soft, rubbery, very compact, missing crispiness on the outside | like sausage, highly processed, pasty, meaty appearance, sticky, looks like a plastic sausage | oily but not juicy, dry, pasty, mouthcoating, not fatty |
MS9 | sausage | cooked | soy | strong aniseed, herbs, fennel, oily, spices, very aromatic | strong flavor, artificial clove flavor (disgusting), very herby taste, overpowering, herbs, spices, starchy, too herby, acidic, too strong, salty, fennel flavor | oily and firm, homogenous first bite, first bite is like biting into a real sausage, juicy and soft | looks like sausage, chargrilled outside, color contrast inside, looks meaty, good burning on surface | soft, moist not juicy mouthcoating, juicy |
MS10 | roast (pork) | cooked | wheat, gluten and soy | meaty, herbs, pleasant fried smell, starchy, oily, grainy, acidic, artificial | salty, sweet, taste starchy, acidic, very sweet, not natural, not like meat, very acidic, extremely sweet | a bit firm on the first bite then soft, chewy, good meaty texture, pork texture, meaty texture, very fibrous, good meat like texture, no residue | light brown color, fibrous, not meat-like, pale, very pale | soft, rubbery, quite gummy, a bit moist |
T1 | tempeh | cooked | chickpea | fermented, very strong cider notes, grilled, baked, acidic, slightly beany | sour, umami, very acidic | crumbly paste, fine particles, soft | golden light | starchy, small particles |
T2 | tempeh | cooked | fava beans | grilled meat, tortilla, slightly beany, flour, yeasty, fermented | acidic, nutty, umami, mild meaty, beany | dry powder, soft | golden light | slightly crumbly, starchy, small particles |
T3 | tempeh | cooked | organic split pea and brown rice | slight grilled, meaty, fermented | sauerkraut, slightly bitter, meat-like, umami | fine particles, soft | golden, light | small particles |
T4 | tempeh | cooked | soy | cereal like, mild baked notes, mild grilled, mild fermented, mild aroma | slightly acidic, nutty, starchy, beany | crumbly, soft | light golden | paste, small particles, slightly chewy, dry |
TO1 | tofu | cooked | soy | beany, baked notes, mild fried fat | bitter, beany, soy taste, bland, eggy | firm, springy | golden, fried | springy, firm |
TO2 | tofu silken | cooked | soy | beany, cooked bread, mild aroma, slightly nutty | soy like, bland, mild beany, green, slightly nutty | soft | pale brown, golden, fried | soft, silky, moist |
N1 | natto | raw | soy | fruity, caramel, banana, green, cheesy, esters | bitter, beany, salty | soft, slimy, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N2 | natto | raw | soy | ammonia, caramel, coffee | bitter, beany, vomit, acidic, coffee | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N3 | natto | raw | soy | savory, caramel, coffee, BBQ sauce | beany, coffee, bitter, mouth irritating, plain, | soft, slimy, sticky | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N4 | natto | raw | soy | chocolate, caramel, acidic, mild off | chocolate, coffee, beany, very bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N5 | natto | raw | soy | strong caramel, coffee, cheesy, fermented | very bitter, beany, cassoulet taste (meaty dish) | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N1 | natto | cooked | soy | coffee, caramel | coffee, bitter, sweet, nutty | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N2 | natto | cooked | soy | savory, coffee, oily | sweet, chocolate, slightly bitter, chocolate, savory | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N3 | natto | cooked | soy | meaty, mushroom, smoked ham, tempeh smell | savory, moderate bitter, bacon, mild coffee, meaty, nutty | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N4 | natto | cooked | soy | meaty, caramel, fermented | savory, soy sauce, moderate bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N5 | natto | cooked | soy | coffee | strong coffee taste, sweet, bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarska, K.; Taylor, M.; Piyasiri, U.; Frank, D. Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods 2021, 10, 801. https://doi.org/10.3390/foods10040801
Kaczmarska K, Taylor M, Piyasiri U, Frank D. Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods. 2021; 10(4):801. https://doi.org/10.3390/foods10040801
Chicago/Turabian StyleKaczmarska, Kornelia, Matthew Taylor, Udayasika Piyasiri, and Damian Frank. 2021. "Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia" Foods 10, no. 4: 801. https://doi.org/10.3390/foods10040801
APA StyleKaczmarska, K., Taylor, M., Piyasiri, U., & Frank, D. (2021). Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods, 10(4), 801. https://doi.org/10.3390/foods10040801