Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Preliminary Screening on Synthetic Grape Juice (SGJ)
2.3. Natural Grape Juice (NGJ) Fermentation Trials
2.4. Analytical Procedures
2.5. Statistical Analysis
3. Results
3.1. Preliminary Screening on Synthetic Grape Juice
3.2. Bench-Top Fermentation Trials
3.2.1. Biomass Evolution and Sugar Consumption in Natural Grape Juice (NGJ)
3.2.2. Main Fermentation Parameters in Natural Grape Juice (NGJ)
3.2.3. The Main Volatile Compounds in Natural Grape Juice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Varela, C.; Dry, P.R.; Kutyna, D.R.; Francis, I.L.; Henschke, P.A.; Curtin, C.D.; Chambers, P.J. Strategies for reducing alcohol concentration in wine. Aust. J. Grape Wine Res. 2015, 21, 670–679. [Google Scholar] [CrossRef]
- Cretin, B.N.; Dubourdieu, D.; Marchal, A. Influence of ethanol content on sweetness and bitterness perception in dry wines. LWT 2018, 87, 61–66. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Production of low-alcohol beverages: Current status and perspectives. In Food Processing for Increased Quality and Consumption; Academic Press: Cambridge, MA, USA, 2018; pp. 347–382. [Google Scholar]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet sauvignon 1. Grape and wine chemistry. Food Chem. 2013, 138, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Alston, J.M.; Fuller, K.B.; Lapsley, J.T.; Soleas, G. Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes. J. Wine Econ. 2011, 6, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Godden, P.; Wilkes, E.; Johnson, D. Trends in the composition of Australian wine 1984–2014. Aust. J. Grape Wine Res. 2015, 21, 741–753. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy. 2014, 3, 81–89. [Google Scholar]
- Goold, H.D.; Kroukamp, H.; Williams, T.C.; Paulsen, I.T.; Varela, C.; Pretorius, I.S. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb. Biotechnol. 2017, 10, 264–278. [Google Scholar] [CrossRef]
- Maturano, Y.P.; Mestre, M.V.; Kuchen, B.; Toro, M.E.; Mercado, L.A.; Vazquez, F.; Combin, M. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Int. J. Food Microbiol. 2019, 289, 40–48. [Google Scholar] [CrossRef]
- Grønbæk, M. The positive and negative health effects of alcohol- and the public health implications. J. Intern. Med. 2009, 265, 407–420. [Google Scholar] [CrossRef]
- Sharma, A.; Vandenberg, B.; Hollingsworth, B. Minimum Pricing of Alcohol versus Volumetric Taxation: Which Policy Will Reduce Heavy Consumption without Adversely Affecting Light and Moderate Consumers? PLoS ONE 2014, 9, e80936. [Google Scholar] [CrossRef]
- Annunziata, A.; Pomarici, E.; Vecchio, R.; Mariani, A. Do consumers want more nutritional and health information on wine labels? Insights from the EU and USA. Nutrients 2016, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.S. (Ed.) Wine Science, 4th ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–19. [Google Scholar]
- King, E.S.; Dunn, R.L.; Heymann, H. The influence of alcohol on the sensory perception of red wines. Food Qual. Pref. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.; Jiranek, V. Wine of reduced alcohol content: Consumer and society demand vs industry willingness and ability to deliver. In Proceedings of the 1st International Symposium on Alcohol Level Reduction in Wine Oenoviti International Network, Bordeaux, France, 6 September 2013. [Google Scholar]
- Tilloy, V.; Ortiz-Julien, A.; Dequin, S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl. Environ. Microbiol. 2014, 80, 2623–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, S.C.; Harbertson, J.F.; Heymann, H. A full factorial study on the effect of tannins, acidity, and ethanol on the temporal perception of taste and mouthfeel in red wine. Food Qual. Prefer. 2017, 62, 1–7. [Google Scholar] [CrossRef]
- Kutyna, D.R.; Varela, C.; Stanley, G.A.; Borneman, A.R.; Henschke, P.A.; Chambers, P.J. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl. Environ. Microbiol. 2012, 93, 1175–1184. [Google Scholar] [CrossRef]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol. 2019, 84, 103–247. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chem. 2018, 261, 21–29. [Google Scholar] [CrossRef]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines. Front. Microbiol. 2016, 7, 642. [Google Scholar] [CrossRef] [Green Version]
- Varela, J.; Varela, C. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Food Biotechnol. 2019, 56, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Comitini, F. Use of non-Saccharomyces yeasts in red winemaking. In Red Wine Technology; Antonio, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 51–68. [Google Scholar]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef] [Green Version]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.A.; Curtina, A.; Varela, C. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J. Sci. Food Agric. 2017, 97, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Comitini, F.; Ciani, M. Metschnikowia pulcherrima selected strain for ethanol reduction in wine: Influence of cell immobilization and aeration condition. Foods 2019, 8, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canonico, L.; Comitini, F.; Oro, L.; Ciani, M. Sequential fermentation with selected immobilized Non-Saccharomyces yeast for reduction of ethanol content in wine. Front. Microbiol. 2016, 7, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controller multi starter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Domizio, P.; Romani, C.; Lencioni, L.; Comitini, F.; Gobbi, M.; Mannazzu, I.; Ciani, M. Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int. J. Food Microbiol. 2011, 147, 170–180. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeasts: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spanoa, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl. Microbiol. Biotechnol. 2016, 100, 5515–5526. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Ferraro, L. Combined used of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J. Appl. Microbiol. 1998, 85, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y. Detection of wild yeasts in the brewery efficiency of differential media. J. Inst. Brew. 1975, 81, 410–417. [Google Scholar] [CrossRef]
- Community Reference Methods for the Analysis of Spirits Drinks. Available online: https://op.europa.eu/en/publication-detail/-/publication/792feac2-0f81-47db-8097-32c229a38650/language-en (accessed on 19 December 2000).
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef]
- Canonico, L.; Ciani, E.; Galli, E.; Comitini, F.; Ciani, M. Evolution of aromatic profile of Torulaspora delbrueckii mixed fermentation at microbrewery plant. Fermentation 2020, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Pollona, M.; Fracassetti, D.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Food Chem. 2018, 257, 350–360. [Google Scholar] [CrossRef]
- Furlani Mestre, M.V.; Maturano, Y.P.; Combina, M.; Mercado, L.A.; Toro, M.E.; Vazquez, F. Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: A strategy to obtain wine with reduced etanol content. FEMS Yeast Res. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Rolle, L.; Englezos, V.; Torchio, F.; Cravero, F.; Segade, S.R.; Rantsiou, K.; Giacosa, S.; Gambuti, A.; Gerbi, V.; Cocolin, L. Alcohol reduction in red wines by technological and microbiological approaches: A comparative study. Aust. J. Grape Wine Res. 2018, 24, 62–74. [Google Scholar] [CrossRef]
- Alonso-del-Real, J.; Lairón-Peris, M.; Barrio, E.; Querol, A. Effect of temperature on the prevalence of Non Saccharomyces cerevisiae species against a S. cerevisiae wine strain in wine fermentation: Competition, physiological fitness, and influence in final wine composition. Front. Microbiol. 2017, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Quiros, M.; Rojas, V.; Gonzalez, R.; Morales, P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 2014, 181, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Rocker, J.; Strub, S.; Ebert, K.; Grossmann, M. Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur. Food Res. Technol. 2016, 242, 2051–2070. [Google Scholar] [CrossRef]
- Blateyron, L.; Sablayrolles, J. Stuck and slow fermentations in enology: Statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J. Biosci. Bioeng. 2001, 91, 184–189. [Google Scholar] [CrossRef]
- Fornairon-Bonnefond, C.; Aguera, E.; Deytieux, C.; Sablayrolles, J.M.; Salmon, J.M. Impact of oxygen addition during enological fermentation on sterol contents in yeast lees and their reactivity towards oxygen. J. Biosci. Bioeng. 2003, 95, 496–503. [Google Scholar] [CrossRef]
- Aceituno, F.F.; Orellana, M.; Torres, J.; Mendoza, S.; Slater, A.W.; Melo, F.; Agosin, E. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl. Microbiol. Biotechnol. 2012, 78, 8340–8352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekhawat, K.; Porter, T.J.; Bauer, F.F.; Setati, M.E. Employing oxygen pulses to modulate Lachancea thermotolerans-Saccharomyces cerevisiae Chardonnay fermentations. Ann. Microbiol. 2018, 68, 93–102. [Google Scholar] [CrossRef]
- Tronchoni, J.; Curiela, J.A.; Sáenz-Navajas, M.P.; Morales, P.; de-la-Fuente-Blanco, A.; Fernández-Zurbanoa, P.; Ferreira, V.; Gonzalez, R. Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale. Food Microbiol. 2018, 70, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Jeffries, T. Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzym. Microb. Technol. 1990, 12, 2–19. [Google Scholar] [CrossRef]
- De Deken, R.H. The crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 1966, 44, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Rojas, V.; Quirós, M.; Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 2015, 99, 3993–4003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivit, N.N.; Longo, R.; Kemp, B. The effect of non-Saccharomyces and Saccharomyces non-cerevisiae yeasts on ethanol and glycerol levels in wine. Fermentation 2020, 6, 77. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Alcohols and other volatile compounds. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments; Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D., Eds.; John Wiley & Sons: Chichester, UK, 2006; pp. 51–64. [Google Scholar]
- Valero, E.; Moyano, L.; Millan, M.C.; Medina, M.; Ortega, J.M. Higher alcohols and esters production by Saccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chem. 2002, 78, 57. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Benito, S. The influence of non-Saccharomyces species on wine fermentation quality parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Binati, R.L.; Wilson, J.F.L.J.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef] [PubMed]
Fermentation Trials | Sugar Consumed (g/L) | Ethanol (% v/v) | Ethanol Yield (g/g) % | Glycerol (g/L) | Volatile Acidity (as Acetic Acid g/L) | Succinic Acid (g/L) |
---|---|---|---|---|---|---|
S. cerevisiae pure culture | 218 ± 0.00 a | 12.12 ± 0.11 a | 44.03 ± 0.46 a | 3.08 ± 0.27 c | 0.35 ± 0.01 a | 0.25 ± 0.21 b |
S. bombicola/S. cerevisiae static condition | 216.44 ± 0.47 a,b | 11.91 ± 0.11 b | 43.45 ± 1.13 a | 7.30 ± 0.12 b | 0.29 ± 0.02 b | 0.61 ± 0.14 b |
S. bombicola/S. cerevisiae 20 mL/L/min oxygen | 215.03 ± 0.99 b | 10.66 ± 0.08 c | 38.99 ± 0.73 b | 10.50 ± 0.12 a | 0.29 ± 0.00 b | 2.69 ± 0.10 a |
mg/L | Fermentation Trials | ||
---|---|---|---|
ESTERS | S. cerevisiae Pure Culture | S. bombicola/S. cerevisiae 20 mL/L/min | S. bombicola/S. cerevisiae semi anaerobic condition |
Ethyl butyrate | 0.41 ± 0.02 a,b | 1.08 ± 0.35 a | 0.40 ± 0.39 b |
Ethyl acetate | 30.58 ± 1.27 a | 26.17 ± 2.51 b | 21.58 ± 1.04 c |
Ethyl hexanoate | 0.06 ± 0.004 a | 0.04 ± 0.011 a | 0.03 ± 0.019 a |
Isoamyl acetate | 2.017 ± 0.05 a,b | 0.91 ± 0.34 b | 2.71 ± 1.18 a |
ALCOHOLS | |||
n-propanol | 34.00 ± 2.04 b | 69.63 ± 0.06 a | 33.74 ± 0.31 b |
Isobutanol | 14.33 ± 0.16 c | 35.34 ± 1.21 a | 19.43 ± 2.04 b |
Amyl alcohol | 4.89 ± 1.77 a | 3.82 ± 0.28 a | 1.30 ± 0.24 b |
Isoamyl alcohol | 64.50 ± 2.63 a | 45.47 ± 1.36 b | 29.31 ± 0.42 c |
β-Phenyl ethanol | 30.1 ± 0.018 a,b | 24.8 ± 0.28 b | 35.8 ± 0.07 a |
CARBONYL COMPOUNDS | |||
Acetaldehyde | 10.59 ± 0.19 b | 30.12 ± 2.22 a | 9.26 ± 0.53 b |
MONOTERPENS | |||
Linalool | 0.08 ± 0.01 a | 0.05 ± 0.001 a | 0.12 ± 0.05 a |
Geraniol | 0.09 ± 0.018 a,b | 0.007 ± 0.0004 b | 0.10 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canonico, L.; Galli, E.; Agarbati, A.; Comitini, F.; Ciani, M. Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile. Foods 2021, 10, 1047. https://doi.org/10.3390/foods10051047
Canonico L, Galli E, Agarbati A, Comitini F, Ciani M. Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile. Foods. 2021; 10(5):1047. https://doi.org/10.3390/foods10051047
Chicago/Turabian StyleCanonico, Laura, Edoardo Galli, Alice Agarbati, Francesca Comitini, and Maurizio Ciani. 2021. "Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile" Foods 10, no. 5: 1047. https://doi.org/10.3390/foods10051047
APA StyleCanonico, L., Galli, E., Agarbati, A., Comitini, F., & Ciani, M. (2021). Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile. Foods, 10(5), 1047. https://doi.org/10.3390/foods10051047