Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review
Abstract
:1. Introduction
2. Food Extrusion Process and Variables
2.1. Specific Mechanical Energy (SME)
2.2. Mechanism of Specific Mechanical Energy
3. Changes on Food Composition Due to Extrusion Process
3.1. The Influence of Extrusion Process on Pulse Proteins
3.2. Carbohydrates Content in Extruded Pulse Product
3.2.1. Dietary Fibre and Their Modification under Extrusion Process
3.2.2. α-Galactosides and the Impact of Extrusion Process on Oligosaccharides
3.3. Vitamins Content in Extruded Pulses Products
3.4. Phenolic Compounds in Extruded Pulse Products
3.5. Antinutritional Compounds in Extruded Pulse Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berk, Z. Extrusion. In Food Process Engineering and Technology, 3rd ed.; Berk, Z., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 373–394. [Google Scholar] [CrossRef]
- Rauwendaal, C. Extrusion machinery. In Understanding Extrusion, 3rd ed.; Diaz-Luque, J., Ed.; Hanser Publisher: Munich, Germany, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Morales, P.; Cámara, M.; Sánchez-Mata, M.C. Carbohydrate composition of raw and extruded pulse flours. Food Res. Int. 2010, 43, 531–536. [Google Scholar] [CrossRef]
- Emin, M.A. Extrusion. In Reference Module in Food Science; Smithers, G.W., Ed.; Elsiever: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Rosentrater, K.A.; Evers, A.D. Extrusion processing of pasta and other products. In Kent’s, Technology of Cereals, 5th ed.; Rosentrater, K.A., Evers, A.D., Eds.; Elsiever: Amsterdam, The Netherlands, 2018; pp. 675–689. [Google Scholar] [CrossRef]
- Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B. Validation and use for product optimization of a phenomenological model of starch foods expansion by extrusion. J. Food Eng. 2019, 246, 160–178. [Google Scholar] [CrossRef]
- Fellows, P.J. Extrusion cooking. In Food Processing Technology, 3rd ed.; Fellows, P.J., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 753–780. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Zhang, H.; Fang, H.; Tian, J.; Ye, X. Effect of extrusion processing on the microstructure and in vitro digestibility of broken rice. LWT 2020, 119, 108835. [Google Scholar] [CrossRef]
- Riaz, M.N. Food extruders. In Handbook of Farm, Dairy and Food Machinery Engineering, 2nd ed.; Kutz, M., Ed.; Elsiever: Amsterdam, The Netherlands, 2019; pp. 483–497. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT 2019, 111, 387–393. [Google Scholar] [CrossRef]
- Kantrong, H.; Charunuch, C.; Limsangouan, N.; Pengpinit, W. Influence of process parameters on physical properties and specific mechanical energy of healthy mushroom-rice snacks and optimization of extrusion process parameters using response surface methodology. J. Food Sci. Technol. 2018, 55, 3462–3472. [Google Scholar] [CrossRef]
- Morales, P.; Berrios, J.D.J.; Varela, A.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedroza, M.M. Novel fiber-rich lentil flours as snack-type functional foods: An extrusion cooking effect on bioactive compounds. Food Funct. 2015, 6, 3135–3143. [Google Scholar] [CrossRef] [Green Version]
- Muthukumarappan, K.; Swamy, G.J. Microstructure and its relationship with quality and storage stability of extruded products. In Food Microstructure and Its Relationship with Quality and Stability; Devahastin, S., Ed.; Elsiever: Amsterdam, The Netherlands, 2018; pp. 161–191. [Google Scholar] [CrossRef]
- Van der Sman, R.G.M.; Broeze, J. Structuring of indirectly expanded snacks based on potato ingredients: A review. J. Food. Eng. 2013, 114, 413–425. [Google Scholar] [CrossRef]
- FAO. Pulses and Derived Products. In Definition and Classification of Commodities; FAO: Rome, Italy, 1994; Available online: http://www.fao.org/es/faodef/fdef04e.ht (accessed on 19 November 2019).
- FAO. 2050: A Third More Mouths to Feed. 2009. Available online: http://www.fao.org/news/story/en/item/35571/icode/ (accessed on 30 March 2021).
- Aune, D.; Ursin, G.; Veierød, M.B. Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia 2009, 52, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Babio, N.; Sorlı, M.; Bulló, M.; Basora, J.; Ibarrola-Jurado, N.; Fernández-Ballart, J.; Martínez-González, M.A.; Serra-Majem, L.; González-Pérez, R.; Salas-Salvadó, J. Association between red meat consumption and metabolic syndrome in a Mediterranean population at high cardiovascular risk: Cross-sectional and 1-year follow-up assessment. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 200–207. [Google Scholar] [CrossRef]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. A prospective study of red meat consumption and type 2 diabetes in middle-age and elderly women: The women’s health study. Diabetes Care 2004, 27, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Tzoulaki, I.; Brown, I.J.; Chan, Q.; Van Horn, L.; Ueshima, H.; Zhao, L. Relation of iron and red meat intake to blood pressure: Cross sectional epidemiological study. Br. Med. J. 2008, 15, 37–58. [Google Scholar] [CrossRef] [Green Version]
- FAO. International Year of Pulses Website; FAO: Rome, Italy, 2016; Available online: http://www.fao.org/pulses-2016/en/ (accessed on 10 May 2020).
- EFSA. Food-Based Dietary Guidelines in Europe. 2019. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/food-based-dietary-guidelines (accessed on 18 December 2019).
- AESAN. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) de Revisión y Actualización de Loas Recomendaciones Dietéticas para la Población Española. 2020. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/RECOMENDACIONES_DIETETICAS.pdf (accessed on 18 March 2020).
- USDA-DHHS. Dietary Guidelines for Americans; USDA-DHHS: Washington, DC, USA, 2010. Available online: https://health.gov/sites/default/files/2020-01/DietaryGuidelines2010.pdf (accessed on 18 December 2019).
- NHLBI. DASH Eating Plan. 2013. Available online: https://www.nhlbi.nih.gov/health-topics/dash-eating-plan (accessed on 18 December 2019).
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole Grains and Pulses: A Comparison of the Nutritional and Health Benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M.J. Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. Br. J. Nutr. 2002, 88, 293–306. [Google Scholar] [CrossRef]
- López-martínez, L.X.; Leyva-lópez, N.; Gutiérrez-grijalva, E.P.; Heredia, J.B. Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J. Functl. Foods 2017, 38, 624–634. [Google Scholar] [CrossRef]
- FAO. FAOSTAT, Food and Agriculture Organization of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 December 2019).
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of legumes in extrusion cooking: A review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Giraldo-Gómez, G.I.; Rodríguez-Barona, S.; Sanabria-González, N.R. Preparation of instant green banana flour powders by an extrusion process. Powder Technol. 2019, 353, 437–443. [Google Scholar] [CrossRef]
- Singh, R.P.; Heldman, D.R. Extrusion processes for foods. In Introduction to Food Engineering, 5th ed.; Singh, R.P., Heldman, D.R., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 743–766. [Google Scholar]
- Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends Food Sci. Technol. 2019, 85, 226–240. [Google Scholar] [CrossRef]
- Kristiawan, M.; Chaunier, L.; Sandoval, A.J.; Della Valle, G. Extrusion—Cooking and expansion. In Breakfast Cereals and How They Are Made, 3rd ed.; Perdon, A.A., Schonauer, S.L., Poutanen, K.S., Eds.; AACC International Press: Oxford, UK, 2020; pp. 141–167. [Google Scholar]
- Godavarti, S.; Karwe, M.V. Determination of specific mechanical energy distribution on a twin-screw extruder. J. Agric. Eng. Res. 1997, 67, 277–287. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, Y. Effect of specific mechanical energy on in-vitro digestion and physical properties of extruded rice-based snacks. Food Nutr. Sci. 2014, 5, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
- Haley, T.A.; Mulvaney, S.J. On-line system identification and control design of an extrusion cooking process: Part I. System identification. Food Control 2000, 11, 103–120. [Google Scholar] [CrossRef]
- Kulshreshtha, M.K.; Zaror, C.A.; Jukes, D.J. Automatic control of food extrusion: Problems and perspectives. Food Control 1991, 2, 80–86. [Google Scholar] [CrossRef]
- Moya, E.; Becares, J.; Modelado y Simulación de un Proceso de Extrusión. In XXIX Jornadas de Automática, Universitat Rovira i Virgili—Tarragona, Spain. 2008. Available online: http://jata08-events.urv.cat/ (accessed on 13 May 2021).
- Pardhi, S.D.; Singh, B.; Nayik, G.A.; Dar, B.N. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. J. Saudi Soc. Agric. Sci. 2019, 18, 7–16. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Barros, L.; Fernandes, A.; Berrios, J.D.J.; Cámara, M.; Morales, P.; Fernández-Ruiz, V.; Ferreira, I.C.F.R. Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food Funct. 2018, 9, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods 2019, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.D.; Patras, A.; Rawson, A.; Singh, N.; Campos-Vega, R. Chemistry of Pulses. In Pulse Foods: Processing Quality and Nutraceutical Applications, 1st ed.; Tiwari, B., Gowen, A., McKenna, B., Eds.; Elsevier Ltd.: Ireland, UK, 2011; pp. 9–55. [Google Scholar] [CrossRef]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43, 432–442. [Google Scholar] [CrossRef]
- Hall, C.; Cassandra Hillen, C.; Garden Robinson, J. Composition, nutrition al value, and health benefits of pulses. Rev. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Nwokolo, E.; Smartt, J. The need to increase consumption of pulses in the developing world. In Food and Feed from Legume and Oilseeds, 1st ed.; Nwokolo, E., Smartt, J., Eds.; Chapman & Hall: London, UK, 1996; pp. 4–5. [Google Scholar]
- Kim, C.H.; Maga, J.A. Properties of extruded whey protein concentrate and cereal flour blends. LWT 1987, 20, 311–318. [Google Scholar]
- Onwulata, C.I.; Konstance, R.P.; Cooke, P.H.; Farrell, H.M. Functionality of Extrusion—Texturized Whey Proteins. J. Dairy Sci. 2003, 86, 3775–3782. [Google Scholar] [CrossRef]
- Li, M.; Lee, T. Effect of extrusion temperature on solubility and molecular weight distribution of wheat flour proteins. J. Agric. Food Chem. 1996, 44, 763–768. [Google Scholar] [CrossRef]
- Arêas, J.A.G. Extrusion of food proteins. Food Sci. Nutr. 1992, 32, 365–392. [Google Scholar] [CrossRef]
- Lopes-da-Silva, M.F.; Santos, L.; Choupina, A. A extrusão em tecnologia alimentar: Aplicações, características dos produtos, composição e tendências futuras. Revista De Ciências Agrárias 2016, 39, 4–14. [Google Scholar] [CrossRef]
- Oliver, C.M.; Melton, L.D.; Stanley, R.A. Creating Proteins with Novel Functionality via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2007, 46, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Masatcioglu, M.T.; Gokmen, V.; Ng, K.W.; Koksel, H. Effects of formulation, extrusion cooking conditions, and CO2 injection on the formation of acrylamide in corn extrudates. J. Sci. Food Agric. 2014, 94, 2562–2568. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C. Review of methods for the reduction of dietary content and toxicity of acrylamide. J. Agric. Food Chem. 2008, 56, 6113–6140. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Patel, N.J.; Talati, J.G. Acrylamide-forming potential of cereals, legumes and roots and tubers analyzed by UPLC-UV. Food Chem. Toxicol. 2017, 108, 244–248. [Google Scholar] [CrossRef]
- Tuncel, N.B.; Yilmaz, N.; Sener, E. The effect of pea (Pisum sativum L.) originated asparaginase on acrylamide formation in certain bread types. Int. J. Food Sci. Technol. 2010, 45, 2470–2476. [Google Scholar] [CrossRef]
- El-Hady, E.A.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of Processing on Antinutrient Compounds in Pulses. Cereal Chem. 2017, 94, 2–9. [Google Scholar] [CrossRef]
- Batista, K.A.; Prudencio, S.H.; Fernandes, K.F. Changes in the Functional Properties and Antinutritional Factors of Extruded Hard-to-Cook Common Beans (Phaseolus vulgaris, L.). J. Food Sci. 2010, 75, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Nosworthy, M.G.; Medina, G.; Franczyk, A.J.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J.D. Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia Faba). Nutrients 2018, 10, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosworthy, M.G.; Medina, G.; Franczyk, A.J.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J.D. Effect of processing on the in vitro and in vivo protein quality of red and green lentils (Lens culinaris). Food Chem. 2018, 240, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Rathod, R.P.; Annapure, U.S. Physicochemical properties, protein and starch digestibility of lentil-based noodle prepared by using extrusion processing. LWT 2017, 80, 121–130. [Google Scholar] [CrossRef]
- Guldiken, B.; Yovchev, A.; Nosworthy, M.G.; Stone, A.K.; House, J.D.; Hood-Niefer, S.; Nickerson, M.T. Effect of extrusion conditions on the physical properties of desi chickpea-barley extrudates and quality attributes of their resulting flours. J. Texture Stud. 2019, 1–8. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Z.-Z.; Li, M.-Y.; Yin, F.; Ren, K.-X.; Tao, H. The combined effects of extrusion and heat-moisture treatment on the physicochemical properties and digestibility of corn starch. Int. J. Biol. Macromol. 2019, 134, 1108–1112. [Google Scholar] [CrossRef]
- Khlestkin, V.K.; Peltek, S.E.; Kolchanov, N.A. Review of direct chemical and biochemical transformations of starch. Carbohydr. Polym. 2018, 181, 460–476. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, S.; Zhang, B.; Qiao, D.; Pu, H.; Liu, S.; Li, L. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int. J. Biol. Macromol. 2017, 97, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Shevkani, K.; Singh, N.; Rattan, B.; Singh, J.P.; Kaur, A.; Singh, B. Effect of chickpea and spinach on extrusion behavior of corn grit. J. Food Sci. Technol. 2019, 56, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Maubane, L.; Ray, S.S.; Jalama, K. The effect of starch amylose content on the morphology and properties of melt-processed butyl-etherified starch/poly[(butylene succinate)-co-adipate] blends. Carbohydr. Polym. 2017, 155, 89–100. [Google Scholar] [CrossRef]
- Jebalia, I.; Maigret, J.E.; Reguerre, A.L.; Novales, B.; Guessasma, S.; Lourdin, D.; Della Valle, G.; Kristiawan, M. Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydr. Polym. 2019, 223, 115086. [Google Scholar] [CrossRef]
- Chaudhary, A.L.; Miler, M.; Torley, P.J.; Sopade, P.A.; Halley, P.J. Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydr. Polym. 2008, 74, 907–913. [Google Scholar] [CrossRef]
- Cardoso-Santiago, R.A.; Arêas, J.A.G. Nutritional evaluation of snacks obtained from chickpea and bovine lung blends. Food Chem. 2001, 74, 35–40. [Google Scholar] [CrossRef]
- Alonso, R.; Rubio, L.A.; Muzquiz, M.; Marzo, F. The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals. Anim. Feed Sci. Technol. 2001, 94, 1–13. [Google Scholar] [CrossRef]
- Morales, P.; Cebadera-Miranda, L.; Cámara, R.M.; Reis, F.S.; Barros, L.; Berrios, J.D.J.; Ferreira, I.C.F.R.; Cámara, M. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. J. Funct. Foods 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Amor, B.B.; Lamy, C.; Andre, P.; Allaf, K. Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds. J. Chromatogr. A 2008, 1213, 118–124. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Allaf, K.; Haddad, J.; Gelencsér, E.; Takács, K.; Guillamón, E.; Muzquiz, M. Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chem. 2012, 131, 862–868. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Camára, M.; Torija, M.E.; Alonso, M. Effect of extrusion cooking and sodium bicarbonate addition on the carbohydrate composition of black bean flours. J. Food Process. Preserv. 2002, 26, 113–128. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innov. Food Sci. Emerg. Technol. 2019, 52, 100–107. [Google Scholar] [CrossRef]
- IFST–The Institute of Food Science and Technology. Dietary Fiber; Public Affairs and Technical and Legislative Committees; IFST: London, UK, 2007. [Google Scholar]
- Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Sánchez-mata, M.C. Fiber Compounds and Human Health. Curr. Pharm. Des. 2017, 23, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.; Sánchez-Mata, M.C.; Morales, P.; De Beirros, J. Legume pulses as a source of functional dietary fibre ingredients. In Seed as Functional Foods and Nutraceuticals: New Frontiers in Food Science; Mora-Escobedo, R., Berrios, J.D.J., Gutierrez-Lopez, G.F., Eds.; Nova Science Publisher: Hauppauge, NY, USA, 2014; pp. 71–91. ISBN 978-1-62808-489-4. [Google Scholar]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Cummins, E. Functional and physicochemical properties of legume fibers. In Pulse Foods: Processing, Quality and Nutraceutical Applications, 1st ed.; Tiwari, B.K., Gowen, A., McKenna, B.M., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 121–156. [Google Scholar]
- Martín-Cabrejas, M.A.; Aguilera, Y.; Benítez, V.; Mollá, E.; López-Andréu, F.J.; Esteban, R.M. Effect of Industrial Dehydration on the Soluble Carbohydrates and Dietary Fiber Fractions in Legumes. J. Agric. Food Chem. 2006, 54, 7652–7657. [Google Scholar] [CrossRef]
- Rochfort, S.; Panozzo, J. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 2007, 55, 7981–7994. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Matallana-González, M.C.; Cámara, M.; Fernández-Ruiz, V.; Morales, P. Antioxidant phytochemicals in pulses and their relation to human health: A Review. Curr. Pharm. Des. 2020, 26, 1880–1897. [Google Scholar] [CrossRef]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Theander, O.; Westerlund, E. Studies on chemical modifications in heat-processed starch and wheat flour. Starch Stärke 1987, 39, 88–93. [Google Scholar] [CrossRef]
- Vasanthan, T.; Gaosong, J.; Yeung, J.; Li, J. Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem. 2002, 77, 35–40. [Google Scholar] [CrossRef]
- Delgado-Nieblas, C.I.; Zazueta-Morales, J.J.; Gallegos-Infante, J.A.; Aguilar-Palazuelos, E.; Camacho-Hernández, I.L.; Ordorica-Falomir, C.A.; de Pires Melo, M.; Carrillo-López, A. Elaboration of functional snack foods using raw materials rich in carotenoids and dietary fiber: Effects of extrusion processing. CYTA J. Food 2015, 13, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Quirós Sauceda, A.E.; Palafox, H.; Robles Sánchez, R.M.; González Aguilar, G.A. Interacción De Compuestos Fenólicos Y Fibra Dietaria: Capacidad Antioxidante Y Biodisponibilidad. Biotecnia 2012, 13, 3–11. [Google Scholar] [CrossRef]
- Larrea, M.A.; Chang, Y.K.; Martínez Bustos, F. Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem. 2005, 89, 301–308. [Google Scholar] [CrossRef]
- Unlu, E.; Faller, J.F. Formation of resistant starch by a twin-screw extruder. Cereal Chem. 1998, 75, 346–350. [Google Scholar] [CrossRef]
- Fogliano, V.; Maria Monti, S.; Musella, T.; Randazzo, G.; Ritieni, A. Formation of coloured Maillard reaction products in a gluten-glucose model system. Food Chem. 1999, 66, 293–299. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoǧlu, Ş. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chem. 2010, 121, 156–164. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, X.; Zhang, Z. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103. [Google Scholar] [CrossRef]
- Jing, Y.; Chi, Y.J. Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chem. 2013, 138, 884–889. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J. Food Eng. 2014, 120, 1–8. [Google Scholar] [CrossRef]
- Carvalho, A.V.; de Andrade Mattiett, R.; Bassinello, P.Z.; Koakuzu, S.N.; de Oliveira Rios, A.; de Almeida Maciel, R.; Carvalho, R.N. Processing and characterization of extruded breakfast meal formulated with broken rice and bean flour. Food Sci. Technol. 2012, 32, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Shih, M.C.; Kuo, C.C.; Chiang, W. Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 2009, 117, 114–121. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Rosell, C.M.; Steel, C.J. Effect of the addition of whole-grain wheat flour and of extrusion process parameters on dietary fibre content, starch transformation and mechanical properties of a ready-to-eat breakfast cereal. Int. J. Food Sci. Technol. 2015, 50, 1504–1514. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Rakha, A.; Anjum, F.M.; Ahmed, W.; Sohail, M. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. Int. J. Food Sci. Technol. 2015, 50, 1533–1537. [Google Scholar] [CrossRef]
- Huang, Y.L.; Ma, Y.S. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoǧlu, E.; Ibanoǧlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 2008, 87, 554–563. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Peñuela-Teruel, M.J.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Determination of Mono-, Di-, and Oligosaccharides in Legumes by High-Performance Liquid Chromatography Using an Amino-Bonded Silica Column. J. Agric. Food Chem. 1998, 46, 3648–3652. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Van Loo, J.; Cummings, J.; Delzenne, N.; Englyst, H.; Franck, A.; Hopkins, M.; Kok, N.; Macfarlane, G.; Newton, D.; Quigley, M.; et al. Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 1999, 81, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Frias, J.; Giacomino, S.; Peñas, E.; Pellegrino, N.; Ferreyra, V.; Apro, N.; Olivera, M.C.; Vidal-Valverde, C. Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT Food Sci. Technol. 2011, 44, 1303–1308. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.N.; Asif, M.; Ali, R. Stability of vitamins during extrusion. Crit. Rev. Food Sci. Nutr. 2009, 49, 361–368. [Google Scholar] [CrossRef]
- Zielinski, H.; Kozlowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food Sci. Emerg. Technol. 2001, 2, 159–169. [Google Scholar] [CrossRef]
- Athar, N.; Hardacre, A.; Taylor, G.; Clark, S.; Harding, R.; McLaughlin, J. Vitamin retention in extruded food products. J. Food Compos. Anal. 2006, 19, 379–383. [Google Scholar] [CrossRef]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Gulati, P.; Rose, D.J. Effect of extrusion on folic acid concentration and mineral element dialyzability in Great Northern beans (Phaseolus vulgaris L.). Food Chem. 2018, 269, 118–124. [Google Scholar] [CrossRef]
- Bouchenak, M.; Lamri-senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food 2013, 16, 1–14. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Padhi, E.M.T.; Ramdath, D.D. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. J. Funct. Foods 2017, 38, 635–643. [Google Scholar] [CrossRef]
- Rodrigo, R.; Prat, H.; Passaiacqua, W.; Araya, J.; Bächler, J.P. Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patient with essential hypertension. Clin. Sci. 2008, 114, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Zemestani, M.; Rafraf, M.; Ashgari-Jafarabadi, M. Chamomile tea improves glycemic indices and antioxidant status in patients with type 2 diabetes mellitus. Nutrition 2016, 32, 66–72. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Fernández-Ruiz, V.; Matallana-González, M.C.; Morales, P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. In Advances in Food and Nutrition Research, 1st ed.; Ferreira, I.C.F.R., Barros, L., Eds.; Elsiever: Amsterdam, The Netherlands, 2019; Volume 90, pp. 83–134. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvent. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef]
- Mahungu, S.M.; Diaz-Mercado, S.; Li, J.; Schwenk, M.; Singletary, K.; Faller, J. Stability of isoflavones during extraction processing of soy/corn mixture. J. Agric. Food Chem. 1999, 47, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Yağci, S.; Gögüş, F. Effect of incorporation of various food by-products on some nutritional properties of rice-based extruded foods. Food Sci. Technol. Int. 2009, 15, 571–581. [Google Scholar] [CrossRef]
- Altan, A.; Mccarthy, K.L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and b-glucan content of extrudates developed from barley-fruit and vegetable by-products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271. [Google Scholar] [CrossRef]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Awika, J.M.; Dykes, L.; Gu, L.W.; Rooney, L.W.; Prior, R.L. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 2003, 51, 5516–5521. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Sensoy, I.; Rosen, R.T.; Ho, C.; Karwe, M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006, 99, 388–393. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Czechowska, K. Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technol. Biotech. 2007, 45, 139–146. [Google Scholar]
- Champ, M.M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002, 88, S307–S319. [Google Scholar] [CrossRef] [PubMed]
- Duranti, M.; Gius, C. Legume seeds: Protein content and nutritional value. J. Field Crop. Res. 1997, 53, 31–45. [Google Scholar] [CrossRef]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive compounds in legumes: Pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- Udahogora, M. Health benefits and bioactive compounds in field peas, faba beans, and chickpeas. In Cereals and Pulses: Nutraceutical Properties and Health Benefits, 1st ed.; Yu, L., Tsao, R., Shahidi, F., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 199–215. [Google Scholar]
- Wang, H.X.; Ng, T.B. An antifungical peptide from red lentil seeds. Peptides 2007, 28, 547–552. [Google Scholar] [CrossRef]
- Ye, X.Y.; Ng, T.B. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungical and anti-HIV-1 reverse transcriptase activities. J. Life Sci. 2002, 70, 1129–1138. [Google Scholar] [CrossRef]
- Reddy, B.S. Possible Mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth. J. Nutr. 1999, 129, 1478–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, G.S.; Oakenfull, D.G. A mechanism for the hypocholesterolaemic activity of saponins. Br. J. Nutr. 1986, 55, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.U. Potential health benefits and problems associated with antinutrients in foods. Food Res. Int. 1993, 26, 131–149. [Google Scholar] [CrossRef]
- Martínez, C.; Ros, G.; Periago, M.J.; López, G.; Ortuño, J.; Rincón, F. Phytic acid in human nutrition. Food Sci. Technol. Int. 1996, 2, 201–209. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Sparvoli, F.; Laureati, M.; Pilu, R.; Pagliarini, E.; Toschi, I.; Giuberti, G.; Fortunati, P.; Daminati, M.G.; Cominelli, E.; Bollini, R. Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food Matrix | Extrusion Conditions | Effect: In the Amount | Effect: Protein In Vitro Digestibility | Reference |
---|---|---|---|---|
Faba bean (Vicia faba L.) | Single; ss: 250 rpm; bt: 140 °C; m: 18%; ft: 100 °C sc: 4:1 | Insignificant decrease | Increase in vitro | [61] |
Single; ss: 250 rpm; bt: 180 °C; m: 18%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 140 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 180 °C; m: 22%; ft: 100 °C; sc: 4:1 | Significative decrease | Increase in vitro | ||
Twin; ss: 400–600 rpm; bt: 30–50 °C, 70–90 °C and 100–120 °C; m: 0.7–1.2 kg/h liquid feed rate | Small increase | High improvement | [64] | |
Pea seeds (Pisum sativum L.) | Single; ss: 250 rpm; bt: 140 °C; m: 18%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | [61] |
Single; ss: 250 rpm; bt: 180 °C; m: 18%; ft: 100 °C; sc: 4:1 | Significant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 140 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 180 °C m: 22%; ft: 100 °C; sc: 4:1 | Significant decrease | Increase in vitro | ||
Chickpeas (Cicer arietinum L.) | Single; ss: 250 rpm; bt: 140 °C; m: 18%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | |
Single; ss: 250 rpm; bt: 180 °C; m: 18%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 140 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 180 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Chickpea +40% barley bland | Twin; ss: 320 rpm; bt: 150, 160 °C; m: 18% | The higher the temperature, the higher was the increase in the amount of protein digestibility | [67] | |
Kidney beans (Phaseolus vulgaris L.) | Single; ss: 250 rpm; bt: 140 °C; m: 18%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | [61] |
Single; ss: 250 rpm; bt: 180 °C; m: 18%; ft: 100 °C; sc: 4:1 | Significant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 140 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Single; ss: 250 rpm; bt: 180 °C; m: 22%; ft: 100 °C; sc: 4:1 | Insignificant decrease | Increase in vitro | ||
Kidney bean carioca (pontal) | Single ss: 150 rpm; bt: 150 °C; m: 20%; cr: 3:1 | Insignificant increase | Increase in vitro (72.3%) | [63] |
Kidney bean black (grafite) | Single; ss: 150 rpm; bt: 150 °C; m: 20%; cr: 3:1 | Insignificant increase | Increase in vitro (84.5%) | |
Kidney bean black | Twin; ss: 400–600 rpm; bt: 30–50 °C, 70–90 °C and 100/120 °C; 0.7–1.2 kg/h liquid feed rate | Insignificant increase | Increase in the true and in vitro | [64] |
Kidney bean navy | Twin; ss: 400–600 rpm; bt: 30–50 °C, 70–90 °C and 100/120 °C; 0.7–1.2 kg/h liquid feed rate | Insignificant increase | Increase in the true and in vitro | |
Kidney bean pinto | Twin; ss: 400–600 rpm; bt: 30–50 °C, 70–90 °C and 100/120 °C; 0.7–1.2 kg/h liquid feed rate | Insignificant increase | Improvement in the true and in vitro | |
Red kidney bean | Twin; ss: 400–600 rpm; bt: 30–50 °C, 70–90 °C and 100/120 °C; 0.7–1.2 kg/h liquid feed rate | Insignificant increase | Improvement in the true and in vitro | |
Rice (80–60%) kidney bean (Phaseolus vulgaris L.) (20–40%) | Twin; ss: 900–950 rpm; bt: 125 °C; m: 2.5–3.2 kg/h | Small increase | Great improvement | [10] |
Red lentil (Lens culinaris L.) | Twin; ss: 650 rpm; bt: 30–50 °C, 70–90 °C and 100–120 °C; m: 0.8 kg/h | Small increase | Improvement in the true and in vitro | [65] |
Green lentil (Lens culinaris L.) | Twin; ss: 650 rpm; bt: 30–50 °C, 70–90 °C and 100–120 °C; m: 0.8 kg/h | Small increase | Improvement in the true and in vitro |
Matrix | Extrusion Conditions | Sugars | Reference | ||||
---|---|---|---|---|---|---|---|
Sucrose | Maltose | Fructose | Galactose | Ribose | |||
Bean (Phaseolus vulgaris L.) | Non-Extruded | 20.8 ± 0.05 | 3.5 ± 0.28 * | - | 0.1 ± 0.01 | - | [81] |
Twin, ss: 200 rpm; bt: 160 °C; m: 20% | 20.1 ± 0.02 | 4.2 ± 0.24 | - | 0.5 ± 0.01 | - | ||
Bean (Phaseolus vulgaris L.) + 0.4% NaHCO3 | Non-Extruded | 19.2 ± 0.10 | 4.0 ± 0.02 | - | 0.6 ± 0.01 | - | |
Twin, ss: 200 rpm; bt: 160 °C; m: 20% | 16.3 ± 0.10 | 3.5 ± 0.11 | - | 1.0 ± 0.01 | - | ||
Dry pea (Pisum sativum L.) | Non-Extruded | 6.47 | 1.91 | 1.24 | 7.22 | 5.21 | [3] |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 12.99 | n.d. | n.d. | n.d. | n.d. | ||
Chickpea (Cicer arietinum L.) | Non-Extruded | 7.94 | 01.68 | 1.56 | 1.84 | 0.58 | |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 10.03 | 01.77 | 1.45 | 0.66 | 0.62 | ||
Lentil (Lens culinaris L.) | Non-Extruded | 6.97 | 00.39 | 0.85 | n.d. | 3.05 | |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 6.01 | 01.33 | 1.03 | n.d. | 1.36 | ||
Lentil (Lens culinaris L. Medik) | Non-Extruded | 10.22 ± 0.54 | 3.09 ± 0.18 | - | - | - | [12] |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 12.82 ± 0.63 | 5.51 ± 0.46 | - | - | - | ||
Rice (80%) + Pea (Pisum sativum L.) (20%) | Non-Extruded | 4.76 | - | - | - | - | [82] |
Twin; ss: 900 rpm; bt: 125 °C; m: 2.50 kg/h | 9.44 | - | - | - | - | ||
Rice (60%) + Pea (Pisum sativum L.) (40%) | Non-Extruded | 7.97 | - | - | - | - | |
Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 14.46 | - | - | - | - | ||
Rice (80%) + Bean (Phaseolus vulgaris L.) (20%) | Non-Extruded | 8.65 ± 0.15 | - | - | - | - | [43] |
Twin; ss: 900 rpm; bt: 125 °C; m: 2.50 kg/h | 10.27 ± 0.08 | - | - | - | - | ||
Rice (60%) + Bean (Phaseolus vulgaris L.) (40%) | Non-Extruded | 12.44 ± 0.15 | - | - | - | - | |
Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 17.84 ± 0.16 | - | - | - | - |
Food Matrix | Extrusion Conditions | Extrusion Effect (%) | Reference | ||
---|---|---|---|---|---|
SDF | IDF | TDF | |||
50% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑16.76–112.6 | [99] | ||
20% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya, 30% apple | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑2.08–34.9 | |||
20% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya, 30% cranberry | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑7.3–33.2 | |||
20% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya, 30% carrot | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑10.02–28.32 | |||
20% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya, 30% beetroot | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑2.93–23.27 | |||
20% rice, 12.5% milk powered, 12.5% potato starch, 12.5% corn starch, 12.5 soya, 30% teff | Twin; ss: 275–350 rpm; bt: 80–150 °C; m: 12%; ft: 17–23 kg/h | ↑139.2–190.8 | |||
Oat bran | Twin; ss: 150 rpm; bt: 100–160 °C; m: 10–30%; ft: 18 kg/h | ↑11.24–59.55 | [100] | ||
Soy waste | Twin; ss: 180 rpm; bt: 115 °C; m: 31% | ↑10.45 | ↓10.43 | ↑0.03 | [101] |
Soy wasted | Twin; ss: 150 rpm; bt: 170 °C; ft: 30 kg/h | ↑27.4 | ↓25.7 | [102] | |
Black bean (Phaseolus vulgaris L.)3 | Twin, ss: 200 rpm; bt: 160 °C; m: 20% | ↑0.89 | ↓1.12 | [81] | |
Black bean (Phaseolus vulgaris L.) + 0.2%NaHCO3 | Twin, ss: 200 rpm; bt: 160 °C; m: 20% | ↑2.91 | ↓3.54 | ||
Lentil (Lens culinaris L.) | Twin; ss: 500 rpm; bt:160 °C; m: 17% | ↑0.44 | ↓4.66 | ↓4.22 | [78] |
Lentil (Lens culinaris L.) + wheat bran + apple fibre | Twin; ss: 500 rpm; bt:160 °C; m: 17% | ↑0.63 | ↓0.56 | ↑0.07 | |
Lentil (Lens culinaris L.) + wheat bran + NUTRIOSE® | Twin; ss: 500 rpm; bt:160 °C; m: 17% | ↑0.04 | ↓4.03 | ↓3.9 | |
Lentil (Lens culinaris L.) + apple fibre + NUTRIOSE® | Twin; ss: 500 rpm; bt:160 °C; m: 17% | ↑0.02 | ↓1.2 | ↓2.38 | |
Lentil (Lens culinaris L.) + apple fibre + corn fibre | Twin; ss: 500 rpm; bt:160 °C; m: 17% | ↑0.11 | ↓0,84 | ↑0.08 | |
Lentil (Lens culinaris L.) | Twin; ss: 500 rpm; bt: 140 °C; m: 17% | ↑1.59 | ↑4.92 | ↑6.5 | [42] |
Lentil (Lens culinaris L.) | Twin; ss: 500 rpm; bt: 160 °C; m: 17% | ↑0.35 | ↑3.23 | ↑3.57 | |
Broken rice + bean grains (“Carioca” type) | Twin; ss: 277 rpm; bt: 80 °C; m: 14% | ↓14.4 | [103] | ||
80% rice + 20% bean (Phaseolus vulgaris L.) | Twin; ss: 900–950 rpm; bt: 125 °C; m: 10–12% | ↑2.39 | ↓5.53 | ↓3.16 | [43] |
60% rice + 40% bean (Phaseolus vulgaris L.) | Twin; ss: 900–950 rpm; bt: 125 °C; m: 10–12% | ↓3.34 | ↓5.89 | ↑2.56 |
Food Matrix | Extrusion Conditions | Oligosaccharides (mg/g) | Reference | |||||
---|---|---|---|---|---|---|---|---|
Galactinol | Ciceritol | Galactopinitol | Verbascose | Raffinose | Stachyose | |||
Pea (Pisum sativum L.) | Non-Extruded | 14.0 | 9.2 | 23.0 | [77] | |||
Twin; ss: 100 rpm; bt: 150 °C; m: 25% | 18.7 | 9.7 | 18.5 | |||||
Kidney bean (Phaseolus vulgaris L.) | Non-Extruded | 2.4 | 6.4 | 41.4 | ||||
Twin; ss: 100 rpm; bt: 150 °C; m: 25% | 1.9 | 2.2 | 33.6 | |||||
Dry pea (Pisum sativum L.) | Non-Extruded | - | n.d. | - | - | 15.64 | 20.19 | [3] |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | - | n.d. | - | - | 8.16 | 15.29 | ||
Chickpea (Cicer arietinum L.) | Non-Extruded | - | 2.686 | - | - | 6.05 | 14.14 | |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | - | 2.880 | - | - | 7.54 | 18.85 | ||
Lentil (Lens culinaris L.) | Non-Extruded | - | 2.249 | - | - | 12.08 | n.e. | |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | - | 2.372 | - | - | 2.22 | 11.80 | ||
Pea (Pisum sativum var. laguna seeds) | Non-Extruded | - | - | - | 6.0 ± 0.03 | 11.4 ± 0.04 | 23.6 ± 0.07 | [112] |
Single; ss: 60 rpm; bt: 129 °C; m: 40 L/h | - | - | - | 5.3 ± 0.02 | 10.2 ± 0.05 | 20.4 ± 0.05 | ||
Single; ss: 60 rpm; bt: 135 °C; m: 35 L/h | - | - | - | 4.8 ± 0.03 | 7.4 ± 0.04 | 17.5 ± 0.06 | ||
Single; ss: 60 rpm; bt: 142 °C; m: 25 L/h | - | - | - | 4.7 ± 0.02 | 7.6 ± 0.04 | 17.3 ± 0.03 | ||
Lentil (Lens culinaris L. Medik) | Non-Extruded | 0.32 ± 0.01 | 23.05 ± 0.59 | 1.82 ± 0.05 | 16.54 ± 0.41 | 2.72 ± 0.20 | 22.42 ± 1.74 | [12] |
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 1.36 ± 0.16 | 26.65 ± 0.77 | 2.84 ± 0.18 | 13.64 ± 0.46 | 4.22 ± 0.26 | 24.67 ± 0.76 | ||
Rice (80%) + Pea (Pisum sativum L.) (20%) | Non-Extruded | 0.27 | n.d. | - | 7.44 | 3.06 | 4.85 | [82] |
Twin; ss: 900 rpm; bt: 125 °C; m: 2.50 kg/h | 17.87 | 0.34 | - | 10.97 | 6.36 | 7.47 | ||
Rice (60%) + Pea (Pisum sativum L.) (40%) | Non-Extruded | 0.37 | 0.59 | - | 14.0 | 3.99 | 8.83 | |
Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 8.84 | 1.05 | - | 22.01 | 8.51 | 11.89 | ||
Rice (80%) + Bean (Phaseolus vulgaris L.) (20%) | Non-Extruded | 2.53 ± 0.10 | 0.78 ± 0.04 | - | 2.84 ± 0.13 | 8.55 ± 0.40 | [43] | |
Twin; ss: 900 rpm; bt: 125 °C; m: 2.50 kg/h | 2.84 ± 0.11 | 5.44 ± 0.07 | - | 9.46 ± 0.35 | 10.30 ± 0.43 | |||
Rice (60%) + Bean (Phaseolus vulgaris L.) (40%) | Non-Extruded | 3.58 ± 0.03 | 1.14 ± 0.05 | - | 3.87 ± 0.04 | 11.82 ± 0.23 | ||
Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 3.81 ± 0.10 | 8.92 ± 0.07 | - | 12.21 ± 0.24 | 20.91 ± 0.13 |
Vitamin | Food Matrix | Extrusion Conditions | Effect (mg/100 g) | Reference | |
---|---|---|---|---|---|
No-Extruded | Extruded | ||||
Tocopherols | (Wheat cv. Almari) | Twin, ss: 500 rpm, bt: 120 °C, m: 20% | 2.78 | 0.862 | [114] |
Twin, ss: 500 rpm, bt: 160 °C, m: 20% | 0.623 | ||||
Twin, ss: 500 rpm, bt: 200 °C, m: 20% | 0.933 | ||||
(Barley cv. Gregor) | Twin, ss: 500 rpm, bt: 120 °C, m: 20% | 1.873 | 0.354 | ||
Twin, ss: 500 rpm, bt: 160 °C, m: 20% | 0.382 | ||||
Twin, ss: 500 rpm, bt: 200 °C, m: 20% | 0.31 | ||||
Rye (cv. Dankowskie Złote) | Twin, ss: 500 rpm, bt: 120 °C, m: 20% | 2.778 | 0.608 | ||
Twin, ss: 500 rpm, bt: 160 °C, m: 20% | 0.885 | ||||
Twin, ss: 500 rpm, bt: 200 °C, m: 20% | 0.872 | ||||
Oat (cv. Sławko) | Twin, ss: 500 rpm, bt: 120 °C, m: 20% | 1.159 | 0.732 | ||
Twin, ss: 500 rpm, bt: 200 °C, m: 20% | 0.099 | ||||
Lentil (Lens culinaris L.) | Twin, ss: 500 rpm, bt: 160 °C, m: 17% | 6.17 ± 0.25 | 1.02 ± 0.17 | [78] | |
Twin; ss: 500 rpm; bt: 140 °C; m: 17% | 2.55 ± 0.01 | 0.30 ± 0.01 | [42] | ||
Twin; ss: 500 rpm; bt: 160 °C; m: 17% | n.d. | ||||
Thiamine | Oats | Single; ss: 0.012 kWhkg−1, bt: 152 °C, m: 7% | 0.11 | 23 * | [115] |
Maize | Single; ss: 0.095 kWhkg−1, bt: 130 °C, m: 7% | 0.09 | 62 * | ||
Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 44 * | ||||
Single; ss: 0.095 kWhkg−1, bt: 160 °C, m: 7% | 62 * | ||||
Maize + dried green peas | Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 0.22 | 61 * | ||
Pea (Pisum sativum L. var. laguna) | Single; ss: 60 rpm, bt: 129 °C, m: 40L/h | 0.196 ± 0.012 | 0.104 ± 0.009 | [112] | |
Single; ss: 60 rpm, bt: 135 °C, m: 35L/h | 0.100 ± 0.008 | ||||
Single; ss: 60 rpm, bt: 142 °C, m: 25L/h | 0.089 ± 0.005 | ||||
Riboflavin | Oats | Single; ss: 0.012 kWhkg−1, bt: 152 °C, m: 7% | 0.06 | 100 * | [115] |
Maize | Single; ss: 0.095 kWhkg−1, bt: 130 °C, m: 7% | 0.04 | 100 * | ||
Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 86 * | ||||
Single; ss: 0.095 kWhkg−1, bt: 160 °C, m: 7% | 100 * | ||||
Maize + dried green peas | Single; ss: 0.095kWhkg−1, bt: 152 °C, m: 7% | 0.08 | 70 * | ||
Pea (Pisum sativum L. var. laguna) | Single; ss: 60 rpm, bt: 129 °C, m: 40 L/h | 0.102 ± 0.004 | 0.096 ± 0.006 | [112] | |
Single; ss: 60 rpm, bt: 135 °C, m: 35 L/h | 0.087 ± 0.005 | ||||
Single; ss: 60 rpm, bt: 142 °C, m: 25 L/h | 0.089 ± 0.004 | ||||
Niacin | Oats | Single; ss: 0.012 kWhkg−1, bt: 152 °C, m: 7% | 1.35 | 100 * | [115] |
Maize | Single; ss: 0.095 kWhkg−1, bt: 130 °C, m: 7% | 0.63 | 83 * | ||
Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 75 * | ||||
Single; ss: 0.095 kWhkg−1, bt: 160 °C, m: 7% | 73 * | ||||
Maize + dried green peas | Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 1.85 | 60 * | ||
Pyridoxine | Oats | Single; ss: 0.012 kWhkg−1, bt: 152 °C, m: 7% | 0.10 | 35 * | [115] |
Maize | Single; ss: 0.095 kWhkg−1, bt: 130 °C, m: 7% | 0.04 | 86 * | ||
Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 100 * | ||||
Single; ss: 0.095 kWhkg−1, bt: 160 °C, m: 7% | 100 * | ||||
Maize + dried green peas (Pisum sativum L.) | Single; ss: 0.095 kWhkg−1, bt: 152 °C, m: 7% | 0.06 | 18 * |
Food Matrix | Extrusion Conditions | Effect of the Extrusion Process | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TIA | CIA | α-AIA | HA | |||||||
NE | E | NE | E | NE | E | NE | E | |||
Vicia faba L. | Twin; ss: 100 rpm; m: 25%; bt: 152 °C | 4.47 ± 0.21 | 0.05 ± 0.01 | 3.56 ± 0.16 | 1.68 ± 0.19 | 18.9 ± 1.80 | 0.00 ± 0.00 | 49.3 ± 0.00 | 0.2 ± 0.00 | [145] |
Phaseolus vulgaris L. | Twin; ss: 100 rpm; m: 25%; bt: 156 °C | 3.10 ± 0.24 | 0.43 ± 0.11 | 3.97 ± 0.16 | 0.00 ± 0.00 | 248 ± 4.25 | 0.00 ± 0.00 | 74.5 ± 0.00 | 0.2 ± 0.00 | |
Phaseolus vulgaris L. Pontal | Single; cr: 3:1; ss: 150 rpm; bt: 150 °C m: 20% | 4.64 ± 0.03 | 1.36 ± 0.12 | - | - | 18.16 ± 2.98 | ND | Presence | Absence | [63] |
Phaseolus vulgaris L. Grafite | Single; cr: 3:1; ss: 150 rpm; BT: 150 °C m: 20% | 4.61 ± 0.21 | 1.41 ± 0.06 | - | - | 16.08 ± 1.06 | ND | Presence | Absence | |
Lentil (Lens culinaris L. Medik) | Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 11.43 ± 0.52 | 0.36 ± 0.02 | - | - | - | - | 1.36 ± 0.14 | 0.0 ± 0.00 | [12] |
Lentil (Lens culinaris L.) + apple fibre+ corn fibre | Twin; ss: 500 rpm; bt: 160 °C; m: 17% | 3.51 ± 0.07 | 0.08 ± 0.00 | - | - | - | - | 0.67 ± 0.13 | 0.0 ± 0.00 | |
Rice (80%) + pea (Pisum sativum L.) (20%) | Twin; ss: 900 rpm; bt: 125 °C; m: 2.50 kg/h | 1.33 | n.d. | 1.32 | n.d. | - | - | 20.41 | 0.63 | [82] |
Rice (60%) + pea (Pisum sativum L.) (40%) | Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 3.11 | n.d. | 3.04 | n.d. | - | - | 20.41 | 5.13 | |
Rice (80%) + bean (Pisum vulgaris L.) (20%) | Twin; ss: 900 rpm; bt: 125°C; m: 2.50 kg/h | 4.10 ± 0.09 | n.d. | 1.97 ± 0.09 | n.d. | - | - | - | - | [43] |
Rice (60%) + bean (Pisum vulgaris L.) (40%) | Twin; ss: 950 rpm; bt: 125 °C; m: 2.50 kg/h | 7.83 ± 0.11 | n.d. | 5.65 ± 0.17 | n.d. | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotacallapa-Sucapuca, M.; Vega, E.N.; Maieves, H.A.; Berrios, J.D.J.; Morales, P.; Fernández-Ruiz, V.; Cámara, M. Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods 2021, 10, 1096. https://doi.org/10.3390/foods10051096
Cotacallapa-Sucapuca M, Vega EN, Maieves HA, Berrios JDJ, Morales P, Fernández-Ruiz V, Cámara M. Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods. 2021; 10(5):1096. https://doi.org/10.3390/foods10051096
Chicago/Turabian StyleCotacallapa-Sucapuca, Mario, Erika N. Vega, Helayne A. Maieves, José De J. Berrios, Patricia Morales, Virginia Fernández-Ruiz, and Montaña Cámara. 2021. "Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review" Foods 10, no. 5: 1096. https://doi.org/10.3390/foods10051096
APA StyleCotacallapa-Sucapuca, M., Vega, E. N., Maieves, H. A., Berrios, J. D. J., Morales, P., Fernández-Ruiz, V., & Cámara, M. (2021). Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods, 10(5), 1096. https://doi.org/10.3390/foods10051096