Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Culture Conditions
2.2. Pretreatments Application
2.3. Fermentation Trials
2.4. Analytical Determinations
2.5. Mathematical Modelling of Glucose and Fructose Consumption
- -
- Linear equation [7]:
- -
- Exponential function model [13]:
- -
- Sigmoidal or modified Gompertz function model [22]:
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Hellín, P.; Naranjo, V.; Úbeda, J.; Briones, A. Saccharomyces cerevisiae and metabolic activators: HXT3 gene expression and fructose/glucose discrepancy in sluggish fermentation conditions. World J. Microbiol. Biotechnol. 2016, 32, 1–18. [Google Scholar] [CrossRef]
- Berry, D.B.; Gasch, A.P. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol. Biol. Cell 2008, 19, 4580–4587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Maeda, Y.; Ikeda, A.; Sakurai, H. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. Eukaryot. Cell 2008, 7, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piper, P.W.; Ortiz-Calderon, C.; Holyoak, C.; Coote, P.; Cole, M. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 1997, 2, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Ltd.: New York, NY, USA, 2016. [Google Scholar]
- Perez, M.; Luyten, K.; Michel, R.; Riou, C.; Blondin, B. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: Both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res. 2005, 5, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Thevelein, J.M.; Pretorius, I.S. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Fleet, G.H. The Microbiology of Alcoholic Beverages. In Microbiology of Fermented Foods; Brian, J.B.W., Ed.; Springer Nature: Basingstoke, UK, 1998. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Pretorius, I.S.; Thevelein, J.M. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbiol. Biotechnol. 2008, 77, 1083–1091. [Google Scholar] [CrossRef]
- Kayikci, Ö.; Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov068. [Google Scholar] [CrossRef] [Green Version]
- Gafner, J.; Schütz, M. Impact of glucose-fructose-ratio on stuck fermentations: Practical experiences to restart stuck fermentations. Wein-Wissenschaft 1996, 51, 214–218. [Google Scholar]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Quartacci, M.F.; Andrich, G. Kinetics of d-glucose and d-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. J. Biosci. Bioeng. 2013, 115, 43–49. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Bautista-Gallego, J.; Durán-Quintana, M.C.; Garrido-Fernández, A. Effects of ascorbic acid, sodium metabisulfite and sodium chloride on freshness retention and microbial growth during the storage of Manzanilla-Aloreña cracked table olives. LWT Food Sci. Technol. 2008, 41, 551–560. [Google Scholar] [CrossRef]
- Báleš, V.; Timár, P.; Baláž, J.; Timár, P. Wine fermentation kinetic model verification and simulation of refrigeration malfunction during wine fermentation. Acta Chim. Slovaca 2016, 9, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Boulton, R. The prediction of fermentation behavior by a kinetic model. Am. J. Enol. Vitic. 1980, 31, 40–45. [Google Scholar]
- Caro, I.; Pérez, L.; Cantero, D. Development of a kinetic model for the alcoholic fermentation of must. Biotechnol. Bioeng. 1991, 38, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.C.; Fish, R.; Block, D.E. Temperature-dependent kinetic model for nitrogen-limited wine fermentations. Appl. Environ. Microbiol. 2007, 73, 5875–5884. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xu, Y.; Hu, J.; Zhao, G. Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. J. Inst. Brew. 2004, 110, 340–346. [Google Scholar] [CrossRef]
- Tronchoni, J.; Gamero, A.; Arroyo-López, F.N.; Barrio, E.; Querol, A. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Int. J. Food Microbiol. 2009, 134, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Baǧder Elmaci, S.; Özçelik, F.; Tokatli, M.; Çakir, I. Technological properties of indigenous wine yeast strains isolated from wine production regions of Turkey. Antonie van Leeuwenhoek 2014, 105, 835–847. [Google Scholar] [CrossRef]
- Musatti, A.; Mapelli, C.; Foschino, R.; Picozzi, C.; Rollini, M. Unconventional bacterial association for dough leavening. Int. J. Food Microbiol. 2016, 237, 28–34. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Pearson, J. Susceptibility testing: Accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J. Appl. Microbiol. 2000, 88, 784–790. [Google Scholar] [CrossRef]
- Bauer, F.F.; Pretorius, I.S. Yeast Stress Response and Fermentation Efficiency: How to Survive the Making of Wine—A Review. South African J. Enol. Vitic. 2000, 21, 27–51. [Google Scholar] [CrossRef]
- Querol, A.; Fernández-Espinar, M.T.; Del Olmo, M.; Barrio, E. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 2003, 86, 3–10. [Google Scholar] [CrossRef]
- Ivorra, C.; Pérez-Ortín, J.E.; Del Olmo, M. lí An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol. Bioeng. 1999, 64, 698–708. [Google Scholar] [CrossRef]
- Guillaume, C.; Delobel, P.; Sablayrolles, J.M.; Blondin, B. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: A mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 2007, 73, 2432–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liccioli, T.; Chambers, P.J.; Jiranek, V. A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J. Ind. Microbiol. Biotechnol. 2011, 38, 833–843. [Google Scholar] [CrossRef]
- Viana, T.; Loureiro-Dias, M.C.; Prista, C. Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 2014, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mannazzu, I.; Angelozzi, D.; Belviso, S.; Budroni, M.; Farris, G.A.; Goffrini, P.; Lodi, T.; Marzona, M.; Bardi, L. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity. Int. J. Food Microbiol. 2008, 121, 84–91. [Google Scholar] [CrossRef]
- Mattar, J.R.; Turk, M.F.; Nonus, M.; Lebovka, N.I.; El Zakhem, H.; Vorobiev, E. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry 2015, 103, 92–97. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Ruiz-Cruz, S.; Cruz-Valenzuela, R.; Rodríguez-Félix, A.; Wang, C.Y. Physiological and quality changes of fresh-cut pineapple treated with antibrowning agents. LWT Food Sci. Technol. 2004, 37, 369–376. [Google Scholar] [CrossRef]
- Soto, B. Fermentation Processes; ED-Tech Press: London, UK, 2019; pp. 90–91. [Google Scholar]
- O’Neill, B.; Van Heeswijck, T.; Muhlack, R. Models for predicting wine fermentation kinetics. In Proceedings of the Chemeca 2011: Engineering a Better World, Sydney, Australia, 18–21 September 2011. [Google Scholar]
- Morano, K.A.; Grant, C.M.; Moye-Rowley, W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190, 1157–1195. [Google Scholar] [CrossRef] [Green Version]
Yeast Strain | Pretreatment | Time Distance (h) | Glucose (g/L) | Fructose (g/L) | Ethanol (g/L) |
---|---|---|---|---|---|
2 | None (control) | 0–19 | 39.01 ± 6.36 | 18.79 ± 7.09 | 21.65 ± 1.45 |
0–24 | 57.23 ± 4.34 | 28.48 ± 7.46 | 30.65 ± 8.49 | ||
0–48 | 95.08 ± 5.93 | 75.38 ± 13.40 | 66.93 ± 9.93 | ||
Temperature | 0–19 | 10.68 ± 4.42 | 2.30 ± 2.30 | 7.68 ± 7.08 | |
0–24 | 33.33 ± 29.45 | 14.53 ± 12.27 | 18.63 ± 18.63 | ||
0–48 | 89.50 ± 16.26 | 60.18 ± 8.10 | 58.70 ± 0.01 | ||
Ethanol | 0–19 | 60.50 ± 16.05 | 27.53 ± 1.52 | 24.05 ± 10.18 | |
0–24 | 76.63 ± 14.04 | 34.10 ± 1.56 | 34.72 ± 2.14 | ||
0–48 | 127.35 ± 7.00 | 73.93 ± 1.38 | 76.50 ± 1.27 | ||
7 | None (control) | 0–19 | 22.28 ± 2.30 | 14.15 ± 1.98 | 5.33 ± 5.33 |
0–24 | 41.00 ± 15.63 | 20.40 ± 2.19 | 20.20 ± 15.13 | ||
0–48 | 99.75 ± 0.95 | 83.15 ± 15.27 | 92.43 ± 23.43 | ||
Temperature | 0–19 | 31.23 ± 1.03 | 24.35 ± 5.73 | 9.75 ± 2.76 | |
0–24 | 47.35 ± 2.62 | 32.40 ± 6.65 | 26.63 ± 8.03 | ||
0-48 | 103.18 ± 7.81 | 98.15 ± 2.83 | 71.78 ± 9.93 | ||
Ethanol | 0–19 | 32.60 ± 1.34 | 19.53 ± 0.11 | 18.05 ± 3.82 | |
0–24 | 39.40 ± 11.03 | 24.53 ± 9.58 | 26.93 ± 5.34 | ||
0–48 | 77.53 ± 9.86 | 66.73 ± 6.33 | 70.45 ± 19.45 | ||
47 | None (control) | 0–19 | 43.70 ± 2.48 | 17.08 ± 1.10 | 11.65 ± 11.65 |
0–24 | 38.04 ± 18.23 | 29.98 ± 6.19 | 34.95 ± 5.02 | ||
0–48 | 102.18 ± 6.98 | 83.10 ± 18.74 | 76.55 ± 3.96 | ||
Temperature | 0–19 | 20.85 ± 16.12 | 11.14 ± 9.03 | 11.67 ± 6.76 | |
0–24 | 38.04 ± 12.89 | 19.56 ± 11.83 | 22.35 ± 12.23 | ||
0–48 | 91.36 ± 5.96 | 84.24 ± 2.05 | 75.89 ± 3.80 | ||
Ethanol | 0-19 | 60.93 ± 1.31 | 18.58 ± 13.47 | 21.53 ± 21.53 | |
0–24 | 75.45 ± 2.26 | 39.33 ± 1.66 | 47.48 ± 1.52 | ||
0–48 | 110.88 ± 5.27 | 87.68 ± 6.97 | 87.30 ± 3.68 | ||
S122 | None (control) | 0–19 | 32.13 ± 0.74 | 19.30 ± 0.85 | 20.80 ± 0.42 |
0–24 | 45.58 ± 0.32 | 28.98 ± 0.74 | 33.38 ± 1.80 | ||
0–48 | 90.05 ± 1.95 | 90.45 ± 1.98 | 80.25 ± 4.45 | ||
Temperature | 0–19 | 4.92 ± 2.58 | 1.15 ± 0.85 | 6.15 ± 2.76 | |
0–24 | 22.48 ± 8.38 | 14.08 ± 6.12 | 13.85 ± 5.80 | ||
0–48 | 80.58 ± 6.89 | 77.73 ± 6.26 | 71.33 ± 1.31 | ||
Ethanol | 0–19 | 48.35 ± 16.48 | 23.50 ± 6.51 | 34.23 ± 8.87 | |
0–24 | 67.33 ± 13.75 | 38.60 ± 2.69 | 40.85 ± 7.50 | ||
0–48 | 105.85 ± 12.37 | 87.93 ± 6.61 | 85.30 ± 0.85 |
Source | Dependent Variable | df | Sum of Square | F |
---|---|---|---|---|
Type of Pretreatment (TP) | Glucose a | 2 | 3986.344 | 36.684 *** |
Fructose b | 2 | 453.384 | 7.247 ** | |
Ethanol c | 2 | 1257.563 | 14.136 *** | |
Type of Strain (TS) | Glucose | 3 | 776.018 | 7.141 ** |
Fructose | 3 | 142.591 | 2.279 | |
Ethanol | 3 | 165.783 | 1.863 | |
TP × TS | Glucose | 6 | 933.023 | 8.586 *** |
Fructose | 6 | 439.423 | 7.024 *** | |
Ethanol | 6 | 130.316 | 1.465 |
Pretreatment | Yeast Strain | Glucose (g/L) | Fructose (g/L) | Ethanol (g/L) |
---|---|---|---|---|
None (control) | 2 | 63.77 abcde* | 40.88 ab | 41.23 a |
7 | 54.34 cdef | 39.23 ab | ||
47 | 69.38 abcd | 43.84 ab | ||
S122 | 55.92 cdef | 46.24 ab | ||
Temperature | 2 | 44.50 ef | 25.67 b | 32.87 a |
7 | 60.58 cde | 51.63 a | ||
47 | 50.08 def | 38.31 ab | ||
S122 | 35.99 f | 30.98 b | ||
Ethanol | 2 | 88.159 a | 45.18 ab | 47.28 b |
7 | 49.84 def | 36.93 ab | ||
47 | 82.42 ab | 48.53 a | ||
S122 | 73.84 abc | 50.01 a |
Strain | Treatment | Linear | Exponential Decay Function | Sigmoid Function | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MBE | χ2 | R2 | RMSE | MBE | χ2 | R2 | RMSE | MBE | χ2 | |||
2 | Control | Glucose | 0.991 | 3.225 | 0.002 | 20.80 | 0.994 | 2.698 | 0 * | 14.56 | 0.994 | 2.505 | 0.0 * | 12.55 |
Temperature | 0.806 | 16.144 | 0.004 | 521.23 | 0.763 | 21.441 | 11.910 | 919.43 | 0.999 | 0.888 | 0 * | 1.58 | ||
Ethanol | 0.981 | 4.169 | 0 * | 34.76 | 0.987 | 3.599 | 0.854 | 0.987 | 0.986 | 3.631 | 0 * | 26.36 | ||
7 | Control | 0.961 | 6.192 | 0.003 | 76.69 | 0.961 | 4 × 105 | 4 × 105 | 3 × 109 | 0.989 | 3.594 | 0 * | 25.83 | |
Temperature | 0.989 | 3.913 | 0.003 | 30.62 | 0.989 | 3.922 | 0 * | 30.77 | 0.993 | 3.303 | 0 * | 21.82 | ||
Ethanol | 0.988 | 3.864 | 0 * | 29.85 | 0.988 | 13.023 | 0 * | 339.19 | 0.991 | 3.290 | 0 * | 21.65 | ||
47 | Control | 0.979 | 5.596 | 0 * | 62.64 | 0.990 | 3.740 | 0 * | 27.98 | 0.998 | 1.664 | 0 * | 5.53 | |
Temperature | 0.965 | 7.001 | 0 * | 98.02 | 0.965 | 7.008 | 0 * | 98.22 | 0.997 | 2.141 | 0 * | 9.17 | ||
Ethanol | 0.948 | 8.701 | 0 * | 151.40 | 0.990 | 3.824 | 0 * | 29.25 | 0.996 | 4.524 | 1.712 | 40.94 | ||
S122 | Control | 0.990 | 3.828 | 0.003 | 29.30 | 0.990 | 3.807 | 0 * | 28.99 | 0.999 | 1.390 | 0 * | 3.86 | |
Temperature | 0.963 | 7.437 | 0.008 | 110.63 | 0.963 | 7.445 | 0 * | 110.86 | 0.996 | 2.313 | 0 * | 10.70 | ||
Ethanol | 0.974 | 6.148 | 0 * | 75.59 | 0.989 | 3.976 | 0 * | 31.62 | 0.997 | 2.252 | 0 * | 10.14 | ||
2 | Control | Fructose | 0.946 | 6.836 | 0 * | 93.47 | 0.946 | 8.140 | 4.411 | 132.52 | 0.977 | 4.462 | 0 * | 39.82 |
Temperature | 0.795 | 11.521 | 0 * | 265.47 | 0.795 | 14.021 | 7.988 | 393.18 | 0.972 | 4.297 | 0.101 | 36.93 | ||
Ethanol | 0.955 | 4.000 | 0.006 | 32.00 | 0.955 | 6.220 | 0 * | 77.38 | 0.964 | 3.568 | 0 * | 25.46 | ||
7 | Control | 0.946 | 12.152 | 0 * | 295.36 | ND ** | 6 × 104 | 0 * | 7 × 107 | 0.994 | 2.207 | 0.020 | 9.74 | |
Temperature | 0.795 | 20.182 | 11.94 | 814.60 | 0.794 | 19.683 | 11.075 | 774.86 | 0.973 | 5.709 | 0 * | 65.19 | ||
Ethanol | 0.955 | 12.513 | 6.230 | 313.16 | 0.930 | 16.115 | 4.640 | 519.40 | 0.988 | 3.260 | 0 * | 21.25 | ||
47 | Control | 0.966 | 5.504 | 0 * | 60.60 | 0.965 | 5.511 | 0 * | 60.74 | 0.996 | 1.990 | 0 * | 7.92 | |
Temperature | 0.893 | 10.633 | 0.005 | 226.10 | 0.893 | 10.636 | 0 * | 226.27 | 0.995 | 2.266 | 0 * | 10.27 | ||
Ethanol | 0.970 | 5.253 | 0.008 | 55.18 | ND ** | ND ** | 16.484 | 937.79 | 0.988 | 3.353 | 0.032 | 22.48 | ||
S122 | Control | 0.960 | 7.126 | 0 * | 101.56 | 0.959 | 7.133 | 0 * | 101.77 | 0.999 | 1.007 | 0 * | 2.03 | |
Temperature | 0.916 | 10.262 | 0.007 | 210.63 | 0.916 | 10.267 | 0 * | 210.82 | 0.996 | 2.323 | 0 * | 10.79 | ||
Ethanol | 0.976 | 4.700 | 0 * | 44.17 | 0.975 | 4.707 | 0 * | 44.31 | 0.988 | 3.295 | 0 * | 21.71 |
Yeast Code | Treatment | Sugar | Model Equations | t50 (h) | t90 (h) |
---|---|---|---|---|---|
2 | Control | Glucose | 24.60 | 49.22 | |
Temperature | 34.60 | 43.71 | |||
Ethanol | 21.84 | 49.13 | |||
7 | Control | 28.46 | 47.92 | ||
Temperature | 26.40 | 43.32 | |||
Ethanol | 22.60 | 43.51 | |||
47 | Control | 21.67 | 36.39 | ||
Temperature | 25.64 | 33.39 | |||
Ethanol | 18.38 | 34.52 | |||
S122 | Control | 24.27 | 38.16 | ||
Temperature | 28.06 | 39.33 | |||
Ethanol | 20.93 | 35.57 | |||
2 | Control | Fructose | 34.11 | 53.05 | |
Temperature | 42.03 | 54.50 | |||
Ethanol | 41.58 | 74.83 | |||
7 | Control | 36.83 | 54.42 | ||
Temperature | 31.59 | 49.92 | |||
Ethanol | 33.02 | 51.52 | |||
47 | Control | 34.61 | 53.70 | ||
Temperature | 34.81 | 48.44 | |||
Ethanol | 31.69 | 51.88 | |||
S122 | Control | 30.84 | 45.19 | ||
Temperature | 33.67 | 47.19 | |||
Ethanol | 30.26 | 50.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaoglan, H.A.; Ozcelik, F.; Musatti, A.; Rollini, M. Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods 2021, 10, 1129. https://doi.org/10.3390/foods10051129
Karaoglan HA, Ozcelik F, Musatti A, Rollini M. Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods. 2021; 10(5):1129. https://doi.org/10.3390/foods10051129
Chicago/Turabian StyleKaraoglan, Hatice Aybuke, Filiz Ozcelik, Alida Musatti, and Manuela Rollini. 2021. "Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains" Foods 10, no. 5: 1129. https://doi.org/10.3390/foods10051129
APA StyleKaraoglan, H. A., Ozcelik, F., Musatti, A., & Rollini, M. (2021). Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods, 10(5), 1129. https://doi.org/10.3390/foods10051129