Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of By-Product Extracts
2.2.1. Olive Leaf Extract
2.2.2. Olive Mill Wastewater Extract
2.2.3. Total Polyphenol Content and Antioxidant Activity of OL and OMW Extracts
2.3. Preparation of GF Breadsticks
2.4. Breadsticks Measurements
2.4.1. Moisture Content and Water Activity
2.4.2. Color Determination
2.4.3. Textural Properties
2.4.4. Determination of Polyphenol Fractions and Antioxidant Activity
2.4.5. Determination of Oxidation Stability (Oxitest) and Shelf-Life Estimation
2.4.6. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Activity of OL and OMW Extracts
3.2. Moisture Content and Water Activity of GF Breadisticks
3.3. Color and Textural Properties of GF Breadisticks
3.4. Polyphenol Fractions and Antioxidant Activity of GF Breadisticks
3.5. Oxidation Stability (Oxitest) and Estimated Shelf-Life of GF Breadisticks
3.6. Sensory Evaluation of GF Breadisticks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otles, S.; Despoudi, S.; Bucatariu, C.; Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery: Processing Technologies and Industrial Techniques, 1st ed.; Galanakis, C.M., Ed.; Elsevier Academic Press: London, UK, 2015; pp. 3–23. [Google Scholar]
- Mulinacci, N.; Romani, A.; Galardi, C.; Pinelli, P.; Giaccherini, C.; Vincieri, F.F. Polyphenolic content in olive oil waste waters and related olive samples. J. Agric. Food Chem. 2001, 49, 3509–3514. [Google Scholar] [CrossRef] [Green Version]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT Food Sci. Technol. 2019, 114. [Google Scholar] [CrossRef]
- Tabera, J.; Guinda, Á.; Ruiz-Rodríguez, A.; Señoráns, F.J.; Ibáñez, E.; Albi, T.; Reglero, G. Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J. Agric. Food Chem. 2004, 52, 4774–4779. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Skaltsounis, A.L.; Argyropoulou, A.; Aligiannis, N.; Xynos, N. Recovery of High Added Value Compounds from Olive Tree Products and Olive Processing Byproducts. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; Academic Press and AOCS Press: London, UK, 2015; pp. 333–356. [Google Scholar]
- Romero-García, J.M.; Niño, L.; Martínez-Patiño, C.; Álvarez, C.; Castro, E.; Negro, M.J. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 2014, 159, 421–432. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Galanakis, C.M. Recovery and removal of phenolic compounds from olive mill wastewater. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 1–18. [Google Scholar] [CrossRef]
- Azaizeh, H.; Halahlih, F.; Najami, N.; Brunner, D.; Faulstich, M.; Tafesh, A. Antioxidant activity of phenolic fractions in olive mill wastewater. Food Chem. 2012, 134, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- De las Hazas, M.C.L.; Rubio, L.; Macia, A.; Motilva, M.J. Hydroxytyrosol: Emerging Trends in Potential Therapeutic Applications. Curr. Pharm. Des. 2018, 24, 2157–2179. [Google Scholar] [CrossRef] [PubMed]
- Crespo, M.C.; Tomé-Carneiro, J.; Dávalos, A.; Visioli, F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Obied, H.K.; Prenzler, P.D.; Robards, K. Potent antioxidant biophenols from olive mill waste. Food Chem. 2008, 111, 171–178. [Google Scholar] [CrossRef]
- Faccioli, L.S.; Klein, M.P.; Borges, G.R.; Dalanhol, C.S.; Machado, I.C.K.; Garavaglia, J.; Dal Bosco, S.M. Development of crackers with the addition of olive leaf flour (Olea europaea L.): Chemical and sensory characterization. LWT Food Sci. Technol. 2021, 141. [Google Scholar] [CrossRef]
- Ataei, F.; Hojjatoleslamy, M. Physicochemical and sensory characteristics of sponge cake made with olive leaf. J. Food Meas. Charact. 2017, 11, 2259–2264. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jafari, S.M.; Esfanjani, A.F.; Akhavan, S. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem. 2016, 190, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Squeo, G.; Calasso, M.; Pasqualone, A.; Caponio, F. Physico-chemical, microbiological and sensory evaluation of ready-to-use vegetable pâté added with olive leaf extract. Foods 2019, 8, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofton, E.C.; Scannell, A.G.M. Snack foods from brewing waste: Consumer-led approach to developing sustainable snack options. Br. Food J. 2020, 122, 3899–3916. [Google Scholar] [CrossRef]
- Zeppa, G.; Rolle, L.; Piazza, L. Textural characteristics of typical italian “grissino stirato” and “rubatà” bread-sticks. Ital. J. Food Sci. 2007, 19, 449–459. [Google Scholar]
- Alamprese, C.; Cappa, C.; Ratti, S.; Limbo, S.; Signorelli, M.; Fessas, D.; Lucisano, M. Shelf life extension of whole-wheat breadsticks: Formulation and packaging strategies. Food Chem. 2017, 230, 532–539. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food Funct. 2019, 10, 4685–4692. [Google Scholar] [CrossRef]
- Difonzo, G.; Pasqualone, A.; Silletti, R.; Cosmai, L.; Summo, C.; Paradiso, V.M.; Caponio, F. Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res. Int. 2018, 108, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Del Caro, A.; Urgeghe, P.P.; Petretto, G.L.; Montanari, L.; Piga, A.; Fadda, C. Nutritional and aroma improvement of gluten-free bread: Is bee pollen effective? LWT Food Sci. Technol. 2020, 118. [Google Scholar] [CrossRef]
- Conte, P.; Fadda, C.; Drabińska, N.; Krupa-Kozak, U. Technological and nutritional challenges, and novelty in gluten-free breadmaking: A review. Pol. J. Food Nutr. Sci. 2019, 69, 5–21. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- AOCS Standard Procedure Cd 12c-16. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 2017; pp. 83–85.
- Palmeri, R.; Monteleone, J.I.; Spagna, G.; Restuccia, C.; Raffaele, M.; Vanella, L.; Li Volti, G.; Barbagallo, I. Olive leaf extract from sicilian cultivar reduced lipid accumulation by inducing thermogenic pathway during adipogenesis. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M.; Graulet, B. Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem. 2016, 209, 72–80. [Google Scholar] [CrossRef]
- Petchoo, J.; Jittinandana, S.; Tuntipopipat, S.; Ngampeerapong, C.; Tangsuphoom, N. Effect of partial substitution of wheat flour with resistant starch on physicochemical, sensorial and nutritional properties of breadsticks. Int. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bhattacharyya, D.K.; Ghosh, M. Extrusion treated meal concentrates of Brassica juncea as functionally improved ingredient in protein and fiber rich breadstick preparation. LWT Food Sci. Technol. 2021, 142. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.F.; Gallagher, E. Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.E.; Rosell, C.M. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar] [CrossRef]
- Chang, Y.P.; Cheah, P.B.; Seow, C.C. Variations in flexural and compressive fracture behavior of a brittle cellular food (dried bread) in response to moisture sorption. J. Texture Stud. 2000, 31, 525–540. [Google Scholar] [CrossRef]
- Roudaut, G. Water Activity and Physical Stability. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.L., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 199–213. [Google Scholar]
- Chan, C.L.; Gan, R.Y.; Corke, H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int. J. Food Sci. Technol. 2016, 51, 565–573. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Colantuono, A.; Vitaglione, P.; Ferracane, R.; Campanella, O.H.; Hamaker, B.R. Development and functional characterization of new antioxidant dietary fibers from pomegranate, olive and artichoke by-products. Food Res. Int. 2017, 101, 155–164. [Google Scholar] [CrossRef]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef] [Green Version]
- López de las Hazas, M.C.; Piñol, C.; Macià, A.; Romero, M.P.; Pedret, A.; Solà, R.; Rubió, L.; Motilva, M.J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods 2016, 22, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.; Delcuratolo, D.; Paradiso, V.M.; Nasti, R. The Oxidative State of Olive Oil Used in Bakery Products with Special Reference to Focaccia. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2010; pp. 745–753. [Google Scholar]
- McClements, D.J.; Decker; Andrew, E. Lipids. In Fennema’s Food Chemistry, 5th ed.; Damodaran, S., Parkin, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 171–233. [Google Scholar]
- Karel, M.; Yong, S. Autoxidation-Initiated Reactions in Foods. In Water Activity: Influences on Food Quality; Rockland, L.B., Stewart, G.F., Eds.; Academic Press: London, UK, 1981; pp. 511–529. [Google Scholar]
- Maltini, E.; Torreggiani, D.; Venir, E.; Bertolo, G. Water activity and the preservation of plant foods. Food Chem. 2003, 82, 79–86. [Google Scholar] [CrossRef]
Samples 1 | Total Polyphenols (mg GAE g−1, As Is) | Antioxidant Activity (% per mg of Extract) |
---|---|---|
OLE | 134.7 ± 2.1 a | 4.26 ± 0.08 a |
OMWE | 13.4 ± 0.2 b | 0.32 ± 0.01 b |
Characteristics | Samples 1 | ||||
---|---|---|---|---|---|
Control | Leaf50 | Leaf100 | WasteW50 | WasteW100 | |
Moisture (g 100 g−1) | 7.66 ± 0.07 e | 10.87 ± 0.14 b | 11.50 ± 0.12 a | 9.24 ± 0.08 d | 10.25 ± 0.09 c |
aw | 0.406 ± 0.00 e | 0.655 ± 0.00 b | 0.667 ± 0.01 a | 0.547 ± 0.00 d | 0.593 ± 0.00 c |
Characteristics | Samples 1 | ||||
---|---|---|---|---|---|
Control | Leaf50 | Leaf100 | WasteW50 | WasteW100 | |
Color properties | |||||
L | 60.10 ± 1.16 a | 59.85 ± 0.82 a | 60.55 ± 0.4 a | 60.88 ± 1.09 a | 60.67 ± 0.65 a |
a | 1.59 ± 0.05 a | 1.40 ± 0.08 b | 1.25 ± 0.04 c | 1.46 ± 0.08 b | 1.24 ± 0.08 c |
b | 12.93 ± 0.10 a | 12.63 ± 0.37 ab | 12.69 ± 0.31 ab | 12.93 ± 0.17 a | 12.39 ± 0.21 b |
ΔE | – | 0.13 | 0.22 | 0.08 | 0.23 |
Textural properties | |||||
Hardness (N) | 51.57 ± 3.83 a | 45.34 ± 5.02 c | 45.07 ± 3.24 c | 49.12 ± 3.05 b | 48.39 ± 2.74 b |
Brittleness (mm) | 0.70 ± 0.08 a | 0.80 ± 0.15 a | 0.72 ± 0.18 a | 0.65 ± 0.11 a | 0.69 ± 0.14 a |
Characteristics | Samples 1 | ||||
---|---|---|---|---|---|
Control | Leaf50 | Leaf100 | WasteW50 | WasteW100 | |
Polyphenol fractions (mg GAE/100 g d.m.) | |||||
Soluble | 20.32 ± 0.97 e | 35.85 ± 1.36 b | 46.26 ± 2.47 a | 27.05 ± 1.05 d | 31.81 ± 0.90 c |
Insoluble | 142.4 5± 1.64 a | 149.76 ± 5.56 a | 143.02 ± 1.51 a | 141.35 ± 1.93 a | 143.71 ± 3.56 a |
IP/SP | 6.98 a | 4.18 c | 3.10 d | 5.23 b | 4.52 c |
Total 2 | 162.87 ± 1.15 c | 185.61 ± 6.56 a | 189.28 ±3.55 a | 168.40 ± 1.86 bc | 175.52 ± 4.43 b |
Bio-accessible | 113.51 ± 2.30 d | 129.93 ± 2.44 bc | 139.68 ± 2.46 a | 125.29 ± 1.09 c | 130.64 ± 4.35 b |
Δ bio-accessibility (%) | - | 14.5 | 23.0 | 10.4 | 15.1 |
Antioxidant activity 3 (%) | 32.28 ± 2.19 d | 38.74 ± 0.24 b | 43.84 ± 0.93 a | 35.69 ± 0.17 c | 37.59 ± 1.08 bc |
Characteristics | Samples 1 | ||||
---|---|---|---|---|---|
Control | Leaf50 | Leaf100 | WasteW50 | WasteW100 | |
Estimated shelf-life | 62 ± 2 e | 76 ± 3 d | 82 ± 2 c | 92 ± 6 b | 116 ± 1 a |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 |
Samples | (a) 1 | (b) | ||||
---|---|---|---|---|---|---|
Control | Leaf50 | Leaf100 | Control | WasteW50 | WasteW100 | |
Rank sum | 131 | 120 | 109 | 125 | 122 | 113 |
Significance p < 0.05 | a | a | a | a | a | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, P.; Pulina, S.; Del Caro, A.; Fadda, C.; Urgeghe, P.P.; De Bruno, A.; Difonzo, G.; Caponio, F.; Romeo, R.; Piga, A. Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021, 10, 923. https://doi.org/10.3390/foods10050923
Conte P, Pulina S, Del Caro A, Fadda C, Urgeghe PP, De Bruno A, Difonzo G, Caponio F, Romeo R, Piga A. Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods. 2021; 10(5):923. https://doi.org/10.3390/foods10050923
Chicago/Turabian StyleConte, Paola, Simone Pulina, Alessandra Del Caro, Costantino Fadda, Pietro Paolo Urgeghe, Alessandra De Bruno, Graziana Difonzo, Francesco Caponio, Rosa Romeo, and Antonio Piga. 2021. "Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater" Foods 10, no. 5: 923. https://doi.org/10.3390/foods10050923
APA StyleConte, P., Pulina, S., Del Caro, A., Fadda, C., Urgeghe, P. P., De Bruno, A., Difonzo, G., Caponio, F., Romeo, R., & Piga, A. (2021). Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods, 10(5), 923. https://doi.org/10.3390/foods10050923