Food Waste Biorefinery: Pathway towards Circular Bioeconomy
Abstract
:1. Introduction
2. Food Waste Generations
3. Impact of Food Waste on the Environment
4. Food Waste Biorefinery
4.1. Bioconversion Processes
4.1.1. Anaerobic Digestion
4.1.2. Dark Fermentation
4.1.3. Electro-Fermentation
4.1.4. Photofermentation
4.2. Integrated Approach
5. Food Waste Biorefinery Products
5.1. Biofuels
5.2. Platform Chemicals
5.3. Biopolymers
5.4. Bio-Based Proteins and Enzymes
5.5. Bio-Based Fertilizers
5.6. Other Bio-Based Compounds and Materials
6. Contributions of Food Wastes for Bioeconomy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011; ISBN 9781788975391. [Google Scholar]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development Preamble; United Nations: New York, NY, USA, 2015; ISBN 9781138029415. [Google Scholar]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef] [PubMed]
- EU. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- EU. Closing the Loop—An EU Action Plan for the Circular Economy; Europe Union: Brussels, Belgium, 2015. [Google Scholar]
- Cristóbal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. Food Waste Index; United Nations: Nairobi, Kenya, 2021; ISBN 9789280738513. [Google Scholar]
- Chalak, A.; Abou-Daher, C.; Chaaban, J.; Abiad, M.G. The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Manag. 2016, 48, 418–422. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Wastage Footprint: Fool Cost–Accounting; FAO: Rome, Italy, 2014; ISBN 978-92-5-108512-7. [Google Scholar]
- United States Environmental Protection Agency. 2018 Wasted Food Report; EPA: Washington, DC, USA, 2018.
- FUSIONS. Estimates of European Food Waste Levels; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, S.; Liu, X.; Cao, X.; Xue, L.; Liu, G. Plate waste in school lunch programs in Beijing, China. Sustainability 2016, 8, 1288. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.E.; Liu, G.; Liu, X.; Liu, Y.; Gao, J.; Zhou, B.; Gao, S.; Cheng, S. The weight of unfinished plate: A survey based characterization of restaurant food waste in Chinese cities. Waste Manag. 2017, 66, 3–12. [Google Scholar] [CrossRef]
- De Clercq, D.; Wen, Z.; Gottfried, O.; Schmidt, F.; Fei, F. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renew. Sustain. Energy Rev. 2017, 79, 204–221. [Google Scholar] [CrossRef]
- Garot, G. Lutte Contre Le Gaspillage Alimentaire: Propositions Pour Une Politique Publique; Prime Minster Office: Paris, France, 2015. [Google Scholar]
- Buzby, J.C.; Wells, H.F.; Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels; USDA: Washington, DC, USA, 2014; Volume EIB-121.
- Venkat, K. ClimateChangeImpactofUSFoodWaste.pdf. Int. J. Food Syst. Dyn. 2012, 2, 431–446. [Google Scholar]
- Wharton, C.; Vizcaino, M.; Berardy, A.; Opejin, A. Waste watchers: A food waste reduction intervention among households in Arizona. Resour. Conserv. Recycl. 2021, 164, 105109. [Google Scholar] [CrossRef]
- Schmidt, K. Explaining and promoting household food waste-prevention by an environmental psychological based intervention study. Resour. Conserv. Recycl. 2016, 111, 53–66. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; Garcia, I.L.; Leiva-Candia, D.; Dorado, M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018, 14, 67–79. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Samadder, S.R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Feng, L.; Chen, Y.; Zheng, X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: The effect of pH. Environ. Sci. Technol. 2009, 43, 4373–4380. [Google Scholar] [CrossRef]
- Chernicharo, C.A.L.; van Lier, J.B.; Noyola, A.; Bressani Ribeiro, T. Anaerobic sewage treatment: State of the art, constraints and challenges. Rev. Environ. Sci. Biotechnol. 2015, 14, 649–679. [Google Scholar] [CrossRef]
- Carneiro, R.B.; Gonzalez-Gil, L.; Londoño, Y.A.; Zaiat, M.; Carballa, M.; Lema, J.M. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. J. Hazard. Mater. 2020, 389, 121888. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.G.; Andreani, C.L.; Tonello, T.U.; Leite, L.C.C.; Fernandes, J.R.; Lopes, D.D.; Rodrigues, J.A.D.; Gomes, S.D. Biohydrogen and biomethane production from cassava wastewater in a two-stage anaerobic sequencing batch biofilm reactor. Int. J. Hydrogen Energy 2020, 45, 5165–5174. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Q.; Li, H.; Zhang, Y.; Deng, Z.; Liu, J.; Du, X. Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renew. Energy 2020, 154, 385–393. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Nandhini Devi, G. Critical considerations in two-stage anaerobic digestion of food waste—A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Lohani, S.P.; Shakya, S.; Gurung, P.; Dhungana, B.; Paudel, D.; Mainali, B. Anaerobic co-digestion of food waste, poultry litter and sewage sludge: Seasonal performance under ambient condition and model evaluation. Energy Sources Part A Recover. Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Ghimire, A.; Luongo, V.; Frunzo, L.; Lens, P.N.; Pirozzi, F.; Esposito, G. Biohythane production from food waste in a two-stage process: Assessing the energy recovery potential. Environ. Technol. 2021. [Google Scholar] [CrossRef]
- Patinvoh, R.J.; Millati, R.; Sárvári-horváth, I.; Taherzadeh, M.J. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion production. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, O.; Santhosh, J.; Dhar, A.; Mohan, S.V. Green hythane production from food waste: Integration of dark-fermentation and methanogenic process towards biogas up- gradation. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Kuo, J.; Dow, J. Biogas production from anaerobic digestion of food waste and relevant air quality implications. J. Air Waste Manag. Assoc. 2017, 67, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Srivastava, S.; Rai, P.; Duke, M. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. acidophilus. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Sinha, P.; Pandey, A. An evaluative report and challenges for fermentative biohydrogen production. Int. J. Hydrogen Energy 2011, 36, 7460–7478. [Google Scholar] [CrossRef]
- Zong, W.; Yu, R.; Zhang, P.; Fan, M.; Zhou, Z. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and. Biomass Bioenergy 2009, 33, 1458–1463. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Hung, P.; Vo, T. Effect of food to microorganisms (F/M) ratio on biohythane production via single-stage dark fermentation. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Cabrol, L.; Marone, A.; Tapia-Venegas, E.; Steyer, J.P.; Ruiz-Filippi, G.; Trably, E. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 2017, 41, 158–181. [Google Scholar] [CrossRef] [PubMed]
- Saady, N.M.C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. Int. J. Hydrogen Energy 2013, 38, 13172–13191. [Google Scholar] [CrossRef]
- Liu, C.G.; Xue, C.; Lin, Y.H.; Bai, F.W. Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol. Adv. 2013, 31, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Alarcón, J.; Fuentes, L.; Etchebehere, C.; Bernet, N.; Trably, E. Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. Int. J. Hydrogen Energy 2021, 46, 1694–1704. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Moscoviz, R.; Trably, E.; Bernet, N. Glucose electro-fermentation as main driver for efficient H2-producing bacteria selection in mixed cultures. Int. J. Hydrogen Energy 2019, 2230–2238. [Google Scholar] [CrossRef]
- Moscoviz, R.; Toledo-Alarcón, J.; Trably, E.; Bernet, N. Electro-Fermentation: How to Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016, 34, 856–865. [Google Scholar] [CrossRef]
- Creasey, R.C.G.; Mostert, A.B.; Nguyen, T.A.H.; Virdis, B.; Freguia, S.; Laycock, B. Microbial nanowires—Electron transport and the role of synthetic analogues. Acta Biomater. 2018, 69, 1–30. [Google Scholar] [CrossRef]
- Thrash, J.C.; Coates, J.D. Review: Direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42, 3921–3931. [Google Scholar] [CrossRef] [PubMed]
- Hirose, A.; Kouzuma, A.; Watanabe, K. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol. Adv. 2019, 37, 107351. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Meng, J.; Wang, X. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture. Sci. Total Environ. 2021, 767, 145011. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Deng, Z.; Li, H.; Feng, K. Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste. Bioresour. Technol. 2019, 288, 121536. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, M.; Wang, Y.; Wu, Y.; Zhu, L.; Wang, X.; Zhao, Y. Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste. Environ. Sci. Ecotechnology 2020, 1, 100006. [Google Scholar] [CrossRef]
- Hanipa, M.A.F.; Abdul, P.M.; Jahim, J.M.; Takriff, M.S.; Reungsang, A.; Wu, S.Y. Biotechnological approach to generate green biohydrogen through the utilization of succinate-rich fermentation wastewater. Int. J. Hydrogen Energy 2020, 45, 22246–22259. [Google Scholar] [CrossRef]
- Basak, N.; Jana, A.K.; Das, D.; Saikia, D. Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. Int. J. Hydrogen Energy 2014, 39, 6853–6871. [Google Scholar] [CrossRef]
- Seifert, K.; Waligorska, M.; Laniecki, M. Hydrogen generation in photobiological process from dairy wastewater. Int. J. Hydrogen Energy 2010, 35, 9624–9629. [Google Scholar] [CrossRef]
- Laurinavichene, T.; Tekucheva, D.; Laurinavichius, K.; Tsygankov, A. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme Microb. Technol. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, G.; He, S.; Peng, C.; Ren, Z. Production of photosynthetic bacteria using organic wastewater in photobioreactors in lieu of a culture medium in fermenters: From lab to pilot scale. J. Clean. Prod. 2020, 259, 120871. [Google Scholar] [CrossRef]
- Assawamongkholsiri, T.; Reungsang, A.; Plangkang, P.; Sittijunda, S. Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. Int. J. Hydrogen Energy 2018, 43, 3605–3617. [Google Scholar] [CrossRef]
- Sinigaglia, T.; Lewiski, F.; Santos Martins, M.E.; Mairesse Siluk, J.C. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int. J. Hydrogen Energy 2017, 42, 24597–24611. [Google Scholar] [CrossRef]
- Hay, J.X.W.; Wu, T.Y.; Juan, J.C.; Jahim, J.M. Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: Wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ. Sci. Pollut. Res. 2017, 24, 10354–10363. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Dairkee, U.K.; Chowdhury, R.; Bhattacharya, P. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB)—A review. Energy Convers. Manag. 2017, 141, 299–314. [Google Scholar] [CrossRef]
- Du Toit, J.P.; Pott, R.W.M. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. Biotechnol. Biofuels 2020, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Banerjee, S.; Banerjee, S.; Singh, V.; Das, D. Sustainable approach for the treatment of poultry manure and starchy wastewater by integrating dark fermentation and microalgal cultivation. J. Mater. Cycles Waste Manag. 2021. [Google Scholar] [CrossRef]
- Mahata, C.; Dhar, S.; Ray, S.; Das, D. Effect of thermal pretreated organic wastes on the dark fermentative hydrogen production using mixed microbial consortia. Fuel 2021, 284, 119062. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Thanigaivelan, A.; Das, D.B.; Show, P.L.; Banat, F. Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Bioresour. Technol. 2021, 319, 124243. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.R.S.; Rojas, S.M.; Ventura, R.L.G.; Nayve, F.R.P.; Lantican, N.B. Potential for biohydrogen production from organic wastes with focus on sequential dark- and photofermentation: The Philippine setting. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strateg. Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, S.P. Integrated dark- and photo-fermentation: Recent advances and provisions for improvement. Int. J. Hydrogen Energy 2016, 41, 19957–19971. [Google Scholar] [CrossRef]
- Shanthi Sravan, J.; Butti, S.K.; Sarkar, O.; Vamshi Krishna, K.; Venkata Mohan, S. Electrofermentation of food waste—Regulating acidogenesis towards enhanced volatile fatty acids production. Chem. Eng. J. 2018, 334, 1709–1718. [Google Scholar] [CrossRef]
- Sarkar, O.; Kiran Katari, J.; Chatterjee, S.; Venkata Mohan, S. Salinity induced acidogenic fermentation of food waste regulates biohydrogen production and volatile fatty acids profile. Fuel 2020, 276, 117794. [Google Scholar] [CrossRef]
- Yan, B.H.; Selvam, A.; Wong, J.W.C. Bio-hydrogen and methane production from two-phase anaerobic digestion of food waste under the scheme of acidogenic off-gas reuse. Bioresour. Technol. 2020, 297, 122400. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Gupta, R.K.; Das, D.; Lee, J.K.; Kalia, V.C. Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J. Clean. Prod. 2021, 287, 125037. [Google Scholar] [CrossRef]
- Ben Yahmed, N.; Dauptain, K.; Lajnef, I.; Carrere, H.; Trably, E.; Smaali, I. New sustainable bioconversion concept of date by-products (Phoenix dactylifera L.) to biohydrogen, biogas and date-syrup. Int. J. Hydrogen Energy 2021, 46, 297–305. [Google Scholar] [CrossRef]
- RamKumar, N.; Anupama, P.D.; Nayak, T.; Subudhi, S. Scale up of biohydrogen production by a pure strain; Clostridium butyricum TM-9A at regulated pH under decreased partial pressure. Renew. Energy 2021, 170, 1178–1185. [Google Scholar] [CrossRef]
- Jung, J.H.; Sim, Y.B.; Baik, J.H.; Park, J.H.; Kim, S.H. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Bioresour. Technol. 2021, 320, 124279. [Google Scholar] [CrossRef]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Sivagurunathan, P.; Sen, B.; Kim, S.H.; Lin, C.Y. Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. Bioresour. Technol. 2017, 240, 137–143. [Google Scholar] [CrossRef]
- Fazzino, F.; Mauriello, F.; Paone, E.; Sidari, R.; Calabrò, P.S. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere 2021, 271. [Google Scholar] [CrossRef] [PubMed]
- Clementz, A.L.; Manuale, D.; Sanchez, E.; Vera, C.; Yori, J.C. Use of discards of bovine bone, yeast and carrots for producing second generation bio-ethanol. Biocatal. Agric. Biotechnol. 2019, 22, 101392. [Google Scholar] [CrossRef]
- Kastner, V.; Somitsch, W.; Schnitzhofer, W. The anaerobic fermentation of food waste: A comparison of two bioreactor systems. J. Clean. Prod. 2012, 34, 82–90. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.Z.; Xing, Y.; Yu, M.; Wang, Q. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl. Energy 2014, 129, 89–93. [Google Scholar] [CrossRef]
- Vescovi, V.; Rojas, M.J.; Baraldo, A.; Botta, D.C.; Santana, F.A.M.; Costa, J.P.; Machado, M.S.; Honda, V.K.; de Lima Camargo Giordano, R.; Tardioli, P.W. Lipase-Catalyzed Production of Biodiesel by Hydrolysis of Waste Cooking Oil Followed by Esterification of Free Fatty Acids. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 1615–1624. [Google Scholar] [CrossRef]
- Moscoviz, R.; Trably, E.; Bernet, N.; Carrère, H. The environmental biorefinery: State-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chem. 2018, 20, 3159–3179. [Google Scholar] [CrossRef]
- Iglesias, J.; Martínez-Salazar, I.; Maireles-Torres, P.; Martin Alonso, D.; Mariscal, R.; López Granados, M. Advances in catalytic routes for the production of carboxylic acids from biomass: A step forward for sustainable polymers. Chem. Soc. Rev. 2020, 49, 5704–5771. [Google Scholar] [CrossRef]
- Vidal-Antich, C.; Perez-Esteban, N.; Astals, S.; Peces, M.; Mata-Alvarez, J.; Dosta, J. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Sci. Total Environ. 2021, 757, 143763. [Google Scholar] [CrossRef]
- Jones, R.J.; Fernández-feito, R.; Massanet-nicolau, J.; Dinsdale, R.; Guwy, A. Continuous recovery and enhanced yields of volatile fatty acids from a continually-fed 100 L food waste bioreactor by filtration and electrodialysis. Waste Manag. 2021, 122, 81–88. [Google Scholar] [CrossRef]
- Wainaina, S.; Parchami, M.; Mahboubi, A.; Horváth, I.S. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 2019, 274, 329–334. [Google Scholar] [CrossRef]
- Yousuf, A.; Schmidt, J.E. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag. 2018, 77, 516–521. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, X.; Chen, Y.; Liu, M.; Bao, X. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. J. Hazard. Mater. 2021, 402, 123471. [Google Scholar] [CrossRef] [PubMed]
- Maciel, M.; Coelho, H.; Wagner, N.; Morais, S.; Jorge, T.; Ferreira, T.; Schiavon, F.; Silva, S.; Lopes, E. Carboxylic acids production using residual glycerol as a substrate in anaerobic fermentation: A kinetic modeling study. Biomass Bioenergy 2020, 143. [Google Scholar] [CrossRef]
- Ma, H.; Lin, Y.; Jin, Y.; Gao, M.; Li, H.; Wang, Q.; Ge, S.; Cai, L.; Huang, Z.; Van Le, Q.; et al. Effect of ultrasonic pretreatment on chain elongation of sacchari fi ed residue from food waste by anaerobic fermentation. Environ. Pollut. 2021, 268, 115936. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cao, J.; Zhang, T.; Zhao, J.; Xu, R.; Zhang, Q. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co- fermentation: Performance and mechanisms. Bioresour. Technol. 2020, 305, 123078. [Google Scholar] [CrossRef]
- Leite, P.; Silva, C.; Salgado, J.M.; Belo, I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crops Prod. 2019, 137, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, X.Y.; Gan, R.Y.; Zheng, J.; Li, Y.; Zhang, J.J.; Xu, D.P.; Li, H. Bin Optimization of ultrasound-assisted extraction of antioxidant polyphenols from the seed coats of red sword bean (Canavalia gladiate (Jacq.) DC.). Antioxidants 2019, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, J.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H. Bin Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules 2017, 22, 638. [Google Scholar] [CrossRef] [Green Version]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Sci. Nutr. 2018, 6, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, I.G.; Maran, J.P.; Ilakya, S.; Anitha, S.L.; Sabarima, S.P.; Priya, B. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 2017, 34, 525–530. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of bakery waste for succinic acid production 2. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- Sengar, A.S.; Rawson, A.; Muthiah, M.; Kalakandan, S.K. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason. Sonochem. 2020, 61, 104812. [Google Scholar] [CrossRef] [PubMed]
- Pataro, G.; Bobinaitė, R.; Bobinas, Č.; Šatkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G.; Viškelis, P. Improving the Extraction of Juice and Anthocyanins from Blueberry Fruits and Their By-products by Application of Pulsed Electric Fields. Food Bioprocess Technol. 2017, 10, 1595–1605. [Google Scholar] [CrossRef]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate) Production by Haloferax mediterranei on Whey. Int. J. Polym. Sci. 2015, 2015, 370164. [Google Scholar] [CrossRef] [Green Version]
- Poomipuk, N.; Reungsang, A.; Plangklang, P. Poly- b -hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. Int. J. Biol. Macromol. 2014, 65, 51–64. [Google Scholar] [CrossRef]
- Uranga, J.; Etxabide, A.; Guerrero, P.; Caba, K. De Development of active fi sh gelatin fi lms with anthocyanins by compression molding. Food Hydrocoll. 2018, 84, 313–320. [Google Scholar] [CrossRef]
- Araújo, C.S.; Rodrigues, A.M.C.; Joele, M.R.S.P.; Araújo, E.A.F.; Lourenço, L.F.H. Optimizing process parameters to obtain a bioplastic using proteins from fi sh byproducts through the response surface methodology. Food Packag. Shelf Life 2018, 16, 23–30. [Google Scholar] [CrossRef]
- Prieto, C.V.G.; Ramos, F.D.; Estrada, V.; Villar, M.A.; Diaz, M.S. Optimization of an integrated algae-based biore fi nery for the production of biodiesel, astaxanthin and PHB. Energy 2017, 139, 1159–1172. [Google Scholar] [CrossRef]
- Novak, M.; Koller, M.; Braunegg, G.; Horvat, P. Mathematical Modelling as a Tool for Optimized PHA Production. Chem. Biochem. Eng. Q. 2015, 29, 183–220. [Google Scholar] [CrossRef]
- Bueno, L.; Toro, C.; Martín, M. Techno-economic evaluation of the production of polyesters from glycerol and adipic acid. Chem. Eng. Res. Des. 2014, 93, 432–440. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Jacob-Lopes, E.; Goldbeck, R.; Queiroz, M.I. Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chem. Eng. Process. Process Intensif. 2008, 47, 1305–1310. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Baqir, S.; Faye, B.; Purchas, R. Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric. 2015, 14, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Yunus, F.U.N.; Nadeem, M.; Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 2015, 121, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Aruna, T.E.; Aworh, O.C.; Raji, A.O.; Olagunju, A.I. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann. Agric. Sci. 2017, 62, 33–37. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Mg, G.-; Gaonkar, S.K.; Furtado, I.J. Valorization of low-cost agro-wastes residues for the maximum production of protease and lipase haloextremozymes by Haloferax lucentensis. Process Biochem. 2021, 101, 72–88. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, Q.; Lv, C.; Wang, D.; Ye, X. Fermentation time-dependent pectinase activity is associated with metabolomics variation in Bacillus licheniformis DY2. Process Biochem. 2021, 101, 147–155. [Google Scholar] [CrossRef]
- Saleh, F.; Hussain, A.; Younis, T.; Ali, S.; Rashid, M.; Ali, A.; Mustafa, G.; Jabeen, F.; Al-surhanee, A.A.; Alnoman, M.M.; et al. Comparative growth potential of thermophilic amylolytic Bacillus sp. on unconventional media food wastes and its industrial application. Saudi J. Biol. Sci. 2020, 27, 3499–3504. [Google Scholar] [CrossRef]
- Debosz, K.; Petersen, S.O.; Kure, L.K.; Ambus, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol. 2002, 19, 237–248. [Google Scholar] [CrossRef]
- Tsai, S.; Liu, C.; Yang, S. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renew. Energy 2007, 32, 904–915. [Google Scholar] [CrossRef]
- Gao, S.; Lu, D.; Qian, T.; Zhou, Y. Thermal hydrolyzed food waste liquor as liquid organic fertilizer. Sci. Total Environ. 2021, 775, 145786. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Dias-ferreira, C.; González-garcía, I.; Labrincha, J.; Horta, C. A novel approach for nutrients recovery from municipal waste as biofertilizers by combining electrodialytic and gas permeable membrane technologies. Waste Manag. 2021, 125, 293–302. [Google Scholar] [CrossRef]
- Chakravarty, I.; Mandavgane, S.A. Valorization of fruit and vegetable waste for biofertilizer and biogas. Food Process Eng. 2020, 1–8. [Google Scholar] [CrossRef]
- dos Santos Mathias, T.R.; de Aguiar, P.F.; de Almeida e Silva, J.B.; de Mello, P.P.M.; Camporese Sérvulo, E.F. Brewery waste reuse for protease production by lactic acid fermentation. Food Technol. Biotechnol. 2017, 55, 218–224. [Google Scholar] [CrossRef]
- Javed, U.; Ansari, A.; Aman, A.; Ul Qader, S.A. Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. Biocatal. Agric. Biotechnol. 2019, 21, 101341. [Google Scholar] [CrossRef]
- Javed, U.; Aman, A.; Qader, S.A.U. Utilization of corncob xylan as a sole carbon source for the biosynthesis of endo-1,4-β xylanase from Aspergillus niger KIBGE-IB36. Bioresour. Bioprocess. 2017, 4, 1–7. [Google Scholar] [CrossRef]
- Naik, B.; Goyal, S.K.; Tripathi, A.D.; Kumar, V. Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatal. Agric. Biotechnol. 2019, 22, 101423. [Google Scholar] [CrossRef]
- Campos-vega, R.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- González-Rivera, J.; Spepi, A.; Ferrari, C.; Duce, C.; Longo, I.; Falconieri, D.; Piras, A.; Tinè, M.R. Innovative Novel configurations for a citrus waste based biorefinery: From solventless to simultaneous ultrasound and microwave assisted extraction. Green Chem. 2016, 18, 6482–6492. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, M.D.; Buntic, A.V.; Šiler-Marinkovic, S.S.; Suzana, I. Dimitrijevic’-Brankovic Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee. Sep. Purif. Technol. 2013, 118, 503–510. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Kehili, M.; Schmidt, L.M.; Reynolds, W.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol. Biofuels 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Abad, A.; Ramos, M.; Hamzaoui, M.; Kohnen, S.; Jiménez, A.; Garrigós, M.C. Optimisation of sequential microwave-assisted extraction of essential oil and pigment from lemon peels waste. Foods 2020, 9, 1493. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chu, Y.L.; Sridhar, K.; Tsai, P.J. Effect of ultrasound, high-pressure processing, and enzymatic hydrolysis on carbohydrate hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon) flavedo. LWT 2021, 138. [Google Scholar] [CrossRef]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods 2021, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, K.; Narodoslawsky, M.; Sagir, M.; Ali, N.; Ali, S.; Rashid, M.I.; Ismail, I.M.I.; Koller, M. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manag. 2017, 67, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Maldonado, A.F.; Mudge, E.; Gänzle, M.G.; Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Biddy, M.J.; Davis, R.; Humbird, D.; Tao, L.; Dowe, N.; Guarnieri, M.T.; Linger, J.G.; Karp, E.M.; Salvachúa, D.; Vardon, D.R.; et al. The Techno-Economic Basis for Coproduct Manufacturing to Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2016, 4, 3196–3211. [Google Scholar] [CrossRef]
- Yang, M.; Baral, N.R.; Simmons, B.A.; Mortimer, J.C.; Shih, P.M.; Scown, C.D. Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proc. Natl. Acad. Sci. USA 2020, 117, 27061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew. Sustain. Energy Rev. 2021, 139. [Google Scholar] [CrossRef]
- van Rijn, R.; Nieves, I.U.; Shanmugam, K.T.; Ingram, L.O.; Vermerris, W. Techno-Economic Evaluation of Cellulosic Ethanol Production Based on Pilot Biorefinery Data: A Case Study of Sweet Sorghum Bagasse Processed via L+SScF. Bioenergy Res. 2018, 11, 414–425. [Google Scholar] [CrossRef]
- Nitzsche, R.; Budzinski, M.; Gröngröft, A. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour. Technol. 2016, 200, 928–939. [Google Scholar] [CrossRef]
- Zetterholm, J.; Bryngemark, E.; Ahlström, J.; Söderholm, P.; Harvey, S.; Wetterlund, E. Economic evaluation of large-scale biorefinery deployment: A framework integrating dynamic biomass market and techno-economic models. Sustainability 2020, 12, 7126. [Google Scholar] [CrossRef]
Region | Countries | Annual per Capita Food Wastage (kg/Capital/Year) | Estimated Amount of Total Food Waste Generated (Tons/Year) |
---|---|---|---|
Global | 121 | 931 million (17% of total produced) | |
Africa | Egypt | 91 | 9,136,941 |
Sudan | 97 | 4,162,396 | |
Angola | 100 | 3,169,523 | |
Burkina Faso | 103 | 2,086,893 | |
Ethiopia | 92 | 10,327,236 | |
Ghana | 84 | 2,555,332 | |
Kenya | 99 | 5,217,367 | |
Mali | 103 | 2,018,765 | |
Nigeria | 189 | 37,941,470 | |
Rwanda | 164 | 2,075,405 | |
South Africa | 40 | 2,329,228 | |
Uganda | 103 | 4,546,237 | |
Zambia | 78 | 1,391,729 | |
Asia | Uzbekistan | 91 | 3,001,868 |
China | 64 | 91,646,213 | |
Japan | 64 | 8,159,891 | |
Indonesia | 77 | 20,938,252 | |
Malaysia | 91 | 2,921,577 | |
Vietnam | 76 | 7,346,717 | |
Bangladesh | 65 | 10,618,233 | |
India | 50 | 68,760,163 | |
Pakistan | 74 | 15,947,645 | |
Iraq | 120 | 4,734,434 | |
Israel | 100 | 848,395 | |
Jordan | 93 | 939,897 | |
Saudi Arabia | 105 | 3,594,080 | |
Australia | Australia | 102 | 2,563,110 |
New Zealand | 61 | 291,759 | |
Europe | Hungary | 94 | 908,669 |
Poland | 56 | 2,119,455 | |
Denmark | 81 | 469,449 | |
Finland | 65 | 361,937 | |
Ireland | 55 | 267,073 | |
Norway | 79 | 423,857 | |
Sweden | 81 | 812,948 | |
UK | 77 | 5,199,825 | |
Greece | 142 | 1,483,996 | |
Italy | 67 | 4,059,806 | |
Slovenia | 34 | 71,107 | |
Spain | 77 | 3,613,954 | |
Austria | 39 | 349,249 | |
Belgium | 50 | 576,036 | |
France | 85 | 5,522,358 | |
Germany | 75 | 6,263,775 | |
Netherland | 50 | 854,855 | |
Switzerland | 72 | 616,037 | |
North America | Canada | 79 | 2,938,321 |
USA | 59 | 19,359,951 | |
South America | Argentina | 72 | 3,243,563 |
Brazil | 60 | 12,578,308 | |
Colombia | 70 | 3,545,499 | |
Ecuador | 72 | 1,258,415 | |
Mexico | 94 | 11,979,364 | |
Peru | 72 | 2,354,806 | |
Uruguay | 74 | 255,909 |
Feedstock | Bioprocess Type | Reactor Type/Configuration | Products | Yields | Reference |
---|---|---|---|---|---|
Food waste | Dark fermentation | Lab-scale fermenter | H2 | 1.25 mol/mol of glucose | [76] |
Fruit and vegetable waste | Dark fermentation and anaerobic digestion | Integrated CSTR + anaerobic fixed bed reactor | H2 and CH4 | 115.2 L H2/kg VS 334 L CH4/kg COD | [77] |
De-oiled Jatropha waste | Acid pretreatment + fermentation | Lab-scale fermenter | H2 | 86 mL/g of reducing sugar | [78] |
Orange peel waste | Ensiling + centrifugation | Freezing + thawing | Bioethanol | 120 g/kg TS | [79] |
Date byproduct (Deglet-Nour) | Dark fermentation | 550 mL Plasma bottle | H2 | 292 mL H2/g VS | [74] |
Date byproduct (Deglet-Nour) | Anaerobic digestion | 550 mL Plasma bottle | CH4 | 235 mL CH4/g VS | [74] |
Carrot discard juices | Batch fermentation | 250 mL flask | Bioethanol | 11.98 g/L | [80] |
Calcium alginate | Batch fermentation | 250 mL flask | Bioethanol | 29.9 g/L | [80] |
Food waste (fruit and vegetable wastes, dairies waste, manure, blood, leftovers, animal feedstuff) | Anaerobic digestion | 45 L CSTR 40 °C, 53 HRT | Biogas (60% methane content) | 670 NL biogas/kg VS | [81] |
Anaerobic digestion | 45 L Fluidized bed reactor 40 °C, 53 HRT | Biogas, (methane content of 60%) | 550 NL biogas/kg VS | [81] | |
Various food waste | Dark fermentation and second stage anaerobic digestion | Fermenter | Biohythane | CH4 (70–90%, v/v) + H2 (10–30%, v/v | [82] |
Kitchen waste | Immobilization of oxidase and glucoamylase | Simultaneous scarifications and fermentations, pH 6.2, 55 °C | ethanol | 30 g/L | [83] |
Waste cooking oil | Immobilization of lipase | Hydrolysis and esterification | Biodiesel | 91.8% fatty acid | [84] |
Feedstock | Bioprocess Type | Reactor Type/Conditions | Products | Yields | Reference |
---|---|---|---|---|---|
Orange peel waste | Ensiling + centrifugation | Freezing and thawing | Lactic acid | 55 g/kg TS | [79] |
Orange peel waste | Ensiling + centrifugation | Freezing and thawing | Acetic acid | 26 g/kg TS | [79] |
Grape stalk | Solvent extraction | Phenols | 4.44 g/kg dry solid | [95] | |
Seed coat waste of red sword bean | Ultrasound treatment | 400 W L/S ratio (29.3 mL/g) 500 °C, 18.4 min | Polyphenols | 755.98 µmol Trolox/g | [96] |
Mung seed waste | Ultrasound treatment | 500 W L/S ratio 35:1 700 °C, 46.1 min | Polyphenols | 178.28 µmol Trolox/g | [97] |
Gac peel | Microwave assisted extraction | 120 W, 25 min | Carotenoid and Antioxidant | 262 mg/100 g and 716 µmol/L TE/100 g | [98] |
Gac peel | Ultrasound assisted extraction | 200 W, 80 min | Carotenoid and Antioxidant | 268 mg/100 g and 820 µmol/L TE/100 g | [98] |
Jackfruit peel | Ultrasound assisted extraction | 500 W S/L ratio 1:15, pH 1.6 60 °C, 24 min | Pectin | Yield, 14.5% | [99] |
Pastry and cake waste | Hydrolysis and fermentation | Lab-scale fermenter | Succinic acid (96–98% purity) | 0.35–0.28 g/g of substrate | [100] |
Tomato processing waste | Ultrasound assisted extraction | 600 W 60 °C, 8.61 min | Pectin | Yield, 15.21% | [101] |
Tomato processing waste | Ultrasound assisted + microwave extraction | (600 W 60 °C, 8.61 min) + (450 W 85.1 °C, 8 min) | Pectin | Yield, 18% | [101] |
Tomato processing waste | Ultrasound assisted + Ohmic heating extraction | (450 W, 10 min) + (60 V, 5 min) | Pectin | Yield, 14.6% | [101] |
Blueberries waste (Juice waste) | Pulsed electric field | Energy input, 10 kJ/kg | Anthocyanin | 75% | [102] |
Grape marc | Microwave assisted extraction | 48% ethanol, 1.77 g extract, 10 min | Flavanols | 1.21 mg GAE/mL | [103] |
Feedstock | Bioprocess Type | Reactor Conditions | Products | Activity | Reference |
---|---|---|---|---|---|
Brewery waste | Lactic acid fermentation | Flask-500 mL, incubator 37 °C, pH 6.5, 100 rpm, Lactobacillus delbrueckii | Protease | 145 U/g | [126] |
Brewery’s spent grain | Solid state fermentation | Glass petri dishes 25 °C, 6 days, A. nigerCECt2088 | β-glucosidase | 94 U/g | [95] |
Brewery’s spent grain | Solid state fermentation | Glass petri dishes 25 °C, 6 days, A. ibericus | Xylanase | 300–313 U/g | [95] |
Brewery’s spent grain | Solid state fermentation | Glass petri dishes 25 °C, 6 days, A. ibericus | Cellulase | 51–62 U/g | [95] |
Wheat bran | Submerged fermentation | 30 °C, pH 8, 6 days, A. niger KIBGE-IB36 | Xylanase | 3071 U/mg | [127] |
Corncob | Submerged fermentation | 30 °C, pH 8, 6 days, A. niger KIBGE-IB36 | Endo-1,4-β xylanase | 1523 U/mg | [128] |
Wheat bran | Solid state fermentation | Aspergillus sp. 28.62 °C, 3 days, 69.92% moisture, 6.42 log inoculum size | Pullulanase | 396.2 U/g | [129] |
Carrot discard juice | Batch fermentation | Flask 250 mL, S. cerevisiae 35 °C, 3 days | Single cell protein | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. https://doi.org/10.3390/foods10061174
Tsegaye B, Jaiswal S, Jaiswal AK. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods. 2021; 10(6):1174. https://doi.org/10.3390/foods10061174
Chicago/Turabian StyleTsegaye, Bahiru, Swarna Jaiswal, and Amit K. Jaiswal. 2021. "Food Waste Biorefinery: Pathway towards Circular Bioeconomy" Foods 10, no. 6: 1174. https://doi.org/10.3390/foods10061174
APA StyleTsegaye, B., Jaiswal, S., & Jaiswal, A. K. (2021). Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods, 10(6), 1174. https://doi.org/10.3390/foods10061174