Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Roasted Lamb Processing
2.3. Residual Nitrite Contents in Roasted Lamb
2.4. Determination of Sulfhydryl Content
2.5. Determination of Thiobarbituric Acid Value (TBARS)
2.6. Instrumental Colour
2.7. Determination of Shear Force Value
2.8. Determination of Volatile Compounds
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Nitrite Content in Roasted Lamb
3.2. Protein and Lipid Oxidation
3.3. Colour and Shear Force Value
3.4. Volatile Compounds
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Colour | Lamb Odour | Tenderness | Juiciness | Roasted Flavour | Overall Acceptance | |
---|---|---|---|---|---|---|
CT | 4.27 ± 1.39 a | 4.30 ± 2.04 a | 6.18 ± 1.32 a | 7.17 ± 1.61 b | 5.68 ± 1.43 a | 5.62 ± 1.37 ab |
NT | 6.60 ± 1.82 b | 3.79 ± 2.12 a | 5.16 ± 1.62 a | 5.78 ± 1.50 a | 6.62 ± 1.05 a | 6.42 ± 0.90 b |
PT15 | 4.28 ± 1.98 a | 3.87 ± 2.09 a | 5.41 ± 1.49 a | 5.51 ± 1.34 a | 5.86 ± 1.57 a | 5.20 ± 1.82 a |
PT30 | 5.60 ± 1.55 ab | 3.90 ± 1.87 a | 5.98 ± 1.63 a | 6.06 ± 1.60 ab | 6.38 ± 1.11 a | 6.07 ± 1.27 ab |
PT45 | 6.04 ± 1.05 b | 3.23 ± 1.71 a | 5.32 ± 1.21 a | 5.18 ± 1.77 a | 6.35 ± 1.31 a | 6.11 ± 0.93 ab |
References
- Brar, S.K.; Belkacemi, K.; Gassara, F.; Kouassi, A.P. Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, M.; Toldra, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products—Invited review. Meat Sci. 2021, 171, 108272. [Google Scholar] [CrossRef]
- Pegg, R.B.; Honikel, K.O. Principles of Curing. In Handbook of Fermented Meat and Poultry; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Riel, G.; Boulaaba, A.; Popp, J.; Klein, G. Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella-type sausages—Impact on microbiological, physicochemical and sensory aspects. Meat Sci. 2017, 131, 166–175. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.M.; Munekata, P.E.; Jacinto-Valderrama, R.A.; Efraim, P.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci. 2021, 171, 108275. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wojciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci. Technol. 2020, 99, 142–151. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Oehmigen, K.; Hähnel, M.; Brandenburg, R.; Wilke, C.; Weltmann, K.D.; von Woedtke, T. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process. Polym. 2010, 7, 250–257. [Google Scholar] [CrossRef]
- Jung, S.; Lee, C.W.; Lee, J.; Yong, H.I.; Yum, S.J.; Jeong, H.G.; Jo, C. Increase in nitrite content and functionality of ethanolic extracts of Perilla frutescens following treatment with atmospheric pressure plasma. Food Chem. 2017, 237, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yan, W.; Nasiru, M.M.; Zhuang, H.; Zhou, G.; Zhang, J. Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasma-treated water brine. Sci. Rep. 2019, 9, 13793. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.-J.; Choe, W.; Jo, C. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci. 2015, 108, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jo, K.; Lim, Y.; Jeon, H.J.; Choe, J.H.; Jo, C.; Jung, S. The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 2018, 240, 430–436. [Google Scholar] [CrossRef]
- Yong, H.I.; Lee, S.H.; Kim, S.Y.; Park, S.; Park, J.; Choe, W.; Jo, C. Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 2019, 53, 78–84. [Google Scholar] [CrossRef]
- Jo, K.; Lee, J.; Lee, S.; Lim, Y.; Choi, Y.S.; Jo, C.; Jung, S. Curing of ground ham by remote infusion of atmospheric non-thermal plasma. Food Chem. 2020, 309, 125643. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Nitrites in Cured Meat Colorimetric Method 973.31 Offical Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Bao, Y.; Ertbjerg, P. Relationship between oxygen concentration, shear force and protein oxidation in modified atmosphere packaged pork. Meat Sci. 2015, 110, 174–179. [Google Scholar] [CrossRef]
- Oz, F.; Seyyar, E. Formation of Heterocyclic Aromatic Amines and Migration Level of Bisphenol-A in Sous-Vide-Cooked Trout Fillets at Different Cooking Temperatures and Cooking Levels. J. Agric. Food Chem. 2016, 64, 3070–3082. [Google Scholar] [CrossRef]
- Xiao, X.; Hou, C.; Zhang, D.; Li, X.; Ren, C.; Ijaz, M.; Hussain, Z.; Liu, D. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Sci. 2020, 169, 108220. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.; Pan, T.; Hui, T.; Ma, J. Characterization of Key Aroma Compounds in Beijing Roasted Duck by Gas Chromatography-Olfactometry-Mass Spectrometry, Odor-Activity Values, and Aroma-Recombination Experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar] [CrossRef]
- National Institute of Standard and Technology. Chemistry WebBook SRD 69[EB/OL]. Available online: https://webbook.nist.gov/chemistry/name-ser/ (accessed on 2 March 2021).
- van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Boelens Aroma Chemical Information Service: Zeist, The Netherlands, 2011. [Google Scholar]
- Schieberle, P.; Hofmann, T. Mapping the Combinatorial Code of Food Flavors by Means of Molecular Sensory Science Approach. In Food Flavors; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- He, W.; Chung, H.Y. Comparison between quantitative descriptive analysis and flash profile in profiling the sensory properties of commercial red sufu (Chinese fermented soybean curd). J. Sci. Food Agric. 2019, 99, 3024–3033. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.-S.; Jung, S. Nitrite sources for cured meat products. LWT Food Sci. Technol. 2020, 129, 109583. [Google Scholar] [CrossRef]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J. Water Process. Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Sci. 2019, 149, 107–113. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Khaneghah, A.M.; Barba, F.J.; Misra, N.N. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci. Technol. 2018, 77, 32–41. [Google Scholar] [CrossRef]
- Jung, S.; Lee, J.; Lim, Y.; Choe, W.; Yong, H.I.; Jo, C. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 113–118. [Google Scholar] [CrossRef]
- Kim, B.; Yun, H.; Jung, S.; Jung, Y.; Jung, H.; Choe, W.; Jo, C. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 2011, 28, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ursachi, C.T.; Pera-Crian, S.; Munteanu, F.D. Strategies to Improve Meat Products’ Quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Pegg, R.B. Hexanal as an Indicator of the Flavor Deterioration of Meat and Meat Products. In Lipids in Food Flavors; American Chemical Society: Washington, DC, USA, 1994; Volume 558, pp. 256–279. [Google Scholar]
- Hospital, X.F.; Carballo, J.; Fernández, M.; Arnau, J.; Gratacós, M.; Hierro, E. Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: Typical microbiota, residual nitrate and nitrite and volatile profile. Food Control. 2015, 57, 275–281. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; Lopez-Diez, J.J.; Belloch, C.; Flores, M. Counteracting the effect of reducing nitrate/nitrite levels on dry fermented sausage aroma by Debaryomyces hansenii inoculation. Meat Sci. 2020, 164, 108103. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, T.J.; Su, Z.; Khoo, C.; Gu, L. UHPLC-Q-Orbitrap-HRMS-based global metabolomics reveal metabolome modifications in plasma of young women after cranberry juice consumption. J. Nutr. Biochem. 2017, 45, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Shiekh, K.A.; Benjakul, S. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends Food Sci. Technol. 2021, 111, 617–627. [Google Scholar] [CrossRef]
- Watkins, P.J.; Jaborek, J.R.; Teng, F.; Day, L.; Castada, H.Z.; Baringer, S.; Wick, M. Branched chain fatty acids in the flavour of sheep and goat milk and meat: A review. Small Rumin. Res. 2021, 200, 106398. [Google Scholar] [CrossRef]
- Giannoglou, M.; Dimitrakellis, P.; Efthimiadou, A.; Gogolides, Ε.; Katsaros, G. Comparative Study on the Effect of Cold Atmospheric Plasma, Ozonation, Pulsed Electromagnetic Fields and High-Pressure Technologies on Sea Bream Fillet Quality Indices and Shelf Life. Food Eng. Rev. 2020, 13, 175–184. [Google Scholar] [CrossRef]
Treatment Groups a | CT | NT | PT15 | PT30 | PT45 |
---|---|---|---|---|---|
Salt | 1% | 1% | 1% | 1% | 1% |
Onion | 10% | 10% | 10% | 10% | 10% |
Egg white | 3.5% | 3.5% | 3.5% | 3.5% | 3.5% |
Nitrite sodium | - | 0.005% | - | - | - |
Plasma treatment time | - | - | 15 min | 30 min | 45 min |
CT | NT | PT15 | PT30 | PT45 | |
---|---|---|---|---|---|
Nitrite content (mg/kg) | ND | 2.66 ± 0.82 a | ND | ND | 1.88 ± 0.59 b |
LRI a | Identification d | CT | NT | PT15 | PT30 | PT45 | ||
---|---|---|---|---|---|---|---|---|
Literature b | Calculated c | |||||||
Aldehydes | ||||||||
Hexanal | 1073 | 1077 | MS + LRI | 2773.56 ± 423.64 a | ND | 131.09 ± 41.18 c | 1572.25 ± 120.73 b | 224.03 ± 39.84 c |
Heptanal | 1163 | 1180 | MS + LRI | 786.22 ± 270.82 a | ND | ND | 345.23 ± 2.18 b | ND |
Octanal | 1275 | 1283 | MS + LRI | 484.85 ± 136.37 a | 20.36 ± 6.54 c | ND | 252.42 ± 20.73 b | 91.30 ± 7.52 c |
(E)-2-Heptenal | 1334 | 1311 | MS + LRI | 17.25 ± 6.05 | ND | ND | ND | ND |
Nonanal | 1385 | 1387 | MS + LRI | 826.55 ± 159.97 a | 47.40 ± 11.09 d | 192.82 ± 33.86 c | 483.55 ± 16.69 b | 232.68 ± 21.39 c |
(E)-2-Octenal | 1416 | 1419 | MS + LRI | 38.28 ± 10.28 a | ND | ND | 16.37 ± 7.92 b | ND |
Decanal | 1483 | 1492 | MS + LRI | 11.71 ± 0.33 a | ND | 1.95 ± 0.39 d | 10.40 ± 0.88 b | 4.39 ± 0.43 c |
Benzaldehyde | 1508 | 1506 | MS + LRI | 43.30 ± 5.40 a | 28.75 ± 6.81 b | 31.55 ± 4.69 b | 36.15 ± 2.23 ab | 30.27 ± 2.28 b |
(E)-2-Nonenal | 1535 | 1526 | MS + LRI | 28.57 ± 7.64 a | ND | ND | 14.50 ± 5.24 b | ND |
Dodecanal | 1710 | 1704 | MS + LRI | 6.24 ± 1.23 a | ND | ND | 4.47 ± 0.87 b | ND |
2-Undecenal | 1755 | 1745 | MS + LRI | 7.98 ± 2.23 | ND | ND | ND | ND |
(E,E)-2,4-Decadienal | 1766 | 1757 | MS + LRI | 11.12 ± 2.80 | ND | ND | ND | ND |
Myristaldehyde | 1931 | 1918 | MS + LRI | 8.77 ± 2.79 a | ND | ND | 4.27 ± 1.00 b | ND |
Pentadecanal | 2042 | 2025 | MS + LRI | 11.86 ± 4.29 a | ND | 1.32 ± 0.70 b | 7.19 ± 3.14 a | ND |
Hexadecanal | 2141 | 2132 | MS + LRI | 4.41 ± 0.34 a | ND | 2.36 ± 0.43 b | 4.22 ± 0.35 a | 1.90 ± 0.27 b |
Alcohols | ||||||||
Pentanol | 1252 | 1250 | MS + LRI | 177.44 ± 30.82 a | ND | 7.62 ± 1.74 c | 77.33 ± 12.57 b | 9.84 ± 1.83 c |
Hexanol | 1344 | 1352 | MS + LRI | 45.99 ± 8.11 a | ND | 4.80 ± 0.72 c | 33.02 ± 10.66 b | 5.74 ± 1.46 c |
Propyl disulfide | 1378 | 1369 | MS + LRI | 26.31 ± 4.54 b | 63.9 ± 18.74 a | ND | 46.30 ± 3.39 a | 4.29 ± 0.70 c |
1-Octen-3-ol | 1430 | 1449 | MS + LRI | 433.01 ± 89.65 a | 15.58 ± 4.35 c | 42.73 ± 8.22 c | 202.97 ± 17.34 b | 57.32 ± 8.22 c |
Heptanol | 1456 | 1454 | MS + LRI | 46.41 ± 8.66 a | ND | ND | 24.57 ± 2.51 b | ND |
2-Ethyl-1-hexanol | 1484 | 1488 | MS + LRI | ND | ND | ND | 4.07 ± 0.41 | ND |
Octanol | 1554 | 1556 | MS + LRI | 48.19 ± 13.49 a | 2.50 ± 0.74 c | 9.07 ± 1.38 c | 26.34 ± 2.17 b | 12.36 ± 0.97 c |
(E)-2-Octen-1-ol | 1620 | 1613 | MS + LRI | 51.71 ± 11.01 a | 1.85 ± 0.51 c | 4.66 ± 0.68 c | 22.16 ± 2.96 b | 6.66 ± 0.72c |
Ketones | ||||||||
3-Hydroxy-2-butanone | 1280 | 1273 | MS + LRI | 115.51 ± 18.81 a | 56.61 ± 16.32 b | 110.85 ± 18.59 a | 59.86 ± 5.69 b | 48.70 ± 4.52 b |
2,3-Octanedione | 1325 | 1321 | MS + LRI | 1373.31 ± 292.40 a | ND | 48.19 ± 18.95 c | 645.8 ± 45.51 b | 80.81 ± 20.84 c |
6-Methyl-5-heptene-2-one | 1340 | 1328 | MS + LRI | ND | ND | 2.80 ± 0.09 b | 6.29 ± 0.74 a | ND |
Pyrazines | ||||||||
2,5-Dimethylpyrazine | 1325 | 1314 | MS + LRI | ND | 22.27 ± 7.51 a | ND | 14.22 ± 2.72 b | 14.25 ± 1.53 b |
2-Methyl-6-ethylpyrazine | 1393 | 1382 | MS + LRI | ND | 8.80 ± 5.27 a | 3.48 ± 0.23 b | 3.89 ± 0.74 b | 8.88 ± 1.48 a |
2,3,5-Trimethylpyrazine | 1408 | 1395 | MS + LRI | 18.68 ± 4.23 | 18.89 ± 6.70 | 15.22 ± 2.26 | 12.87 ± 1.48 | 17.97 ± 2.42 |
2-Ethyl-3,5-dimethylpyrazine | 1443 | 1438 | MS + LRI | 8.09 ± 4.37 ab | 13.40 ± 3.89 a | 10.15 ± 1.24 ab | 6.24 ± 0.36 b | 9.49 ± 1.56 ab |
Acids | ||||||||
Butanoic acid | 1625 | 1621 | MS + LRI | ND | 7.63 ± 2.33 b | 13.94 ± 2.52 a | ND | 11.73 ± 1.42 a |
Hexanoic acid | 1850 | 1839 | MS + LRI | 45.58 ± 15.17 a | 5.41 ± 1.51 c | 10.42 ± 1.40 c | 25.97 ± 6.43 b | 12.05 ± 1.32 c |
Others | ||||||||
2-Pentylfuran | 1235 | 1228 | MS + LRI | 103.49 ± 23.50 a | ND | 13.25 ± 3.65 c | 59.97 ± 7.54 b | 19.16 ± 1.07 c |
Butyrolactone | 1615 | 1606 | MS + LRI | 4.74 ± 1.45 a | 3.96 ± 1.07 ab | 5.11 ± 0.59 a | 2.92 ± 0.11 b | 4.58 ± 0.52 ab |
2-Acetylpyrrole | 1972 | 1960 | MS + LRI | 2.74 ± 0.59 a | 1.90 ± 0.60 b | 2.02 ± 0.22 ab | 2.32 ± 0.14 ab | 1.67 ± 0.17 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Zhang, D.; Liu, H.; Wang, Z.; Hui, T. Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment. Foods 2021, 10, 1234. https://doi.org/10.3390/foods10061234
Chen R, Zhang D, Liu H, Wang Z, Hui T. Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment. Foods. 2021; 10(6):1234. https://doi.org/10.3390/foods10061234
Chicago/Turabian StyleChen, Ruixia, Dequan Zhang, Huan Liu, Zhenyu Wang, and Teng Hui. 2021. "Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment" Foods 10, no. 6: 1234. https://doi.org/10.3390/foods10061234
APA StyleChen, R., Zhang, D., Liu, H., Wang, Z., & Hui, T. (2021). Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment. Foods, 10(6), 1234. https://doi.org/10.3390/foods10061234