Multivariate Relationships among Carcass Traits and Proximate Composition, Lipid Profile, and Mineral Content of Longissimus lumborum of Grass-Fed Male Cattle Produced under Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Sample
2.2. Harvesting, Carcass Classification and Sample Collection
2.3. Proximate Composition Analysis
2.4. Mineral Analysis
2.5. Lipid Profile Analysis
2.6. Data Analysis
3. Results
3.1. Descriptive Statistics for Carcass Traits, Proximate Composition, Mineral Content, and Fatty Acid Composition of Beef
3.2. Characterization of the Carcass Traits and Chemical Components of Beef Longissimus Lumborum Muscle by HCA
3.3. Relationship among Subgroups of Variables by CCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Uzcátegui-Bracho, S.; Rincón-Villalobos, G.; Huerta-Leidenz, N. Mineral content of longissimus dorsi thoracis from water buffalo and Zebu-influenced cattle at four comparative ages. Meat Sci. 2007, 75, 487–493. [Google Scholar] [CrossRef]
- Binnie, M.A.; Barlow, K.; Johnson, V.; Harrison, C. Red meats: Time for a paradigm shift in dietary advice. Meat Sci. 2014, 98, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Huerta-Leidenz, N. Composición nutritiva de la carne de ganado tropical venezolano. An. Venez. Nutr. 2014, 27, 167–176. [Google Scholar]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef] [Green Version]
- Klurfeld, M.D. What is the role of meat in a healthy diet? Anim. Front. 2018, 8, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Balić, A.; Vlaŝi, D.; Žužul, K.; Marinović, B.; Mokos, Z.B. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the prevention and treatment of inflammatory skin diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppedisano, F.; Macri, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Zito, M.C.; Guarnieri, L.; et al. The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: A review of the state-of-the-art. Expert. Rev. Clin. Pharmacol. 2021, 14, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Bureš, D.; Bartoň, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Torres, S. Effect of Breed, and gender on meat quality of M. longissimus thoracis et lumborum muscle from Crossbred Beef Bulls and Steers. Foods 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Tait, R.G., Jr.; Schneider, M.J.; Beitz, D.C.; Wheeler, T.L.; Shackelford, S.D.; Cundiff, L.V.; Reecy, J.M. Sire breed effect on beef longissimus mineral concentrations and their relationships with carcass and palatability traits. Meat Sci. 2015, 106, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.-Y.; Hwang, Y.-H.; Joo, S.-T. The relationship between chemical compositions, meat quality, and palatability of the 10 primal cuts from Hanwoo steer. Korean J. Food Sci. An. 2016, 36, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Karakök, S.G.; Ozogul, Y.; Saler, M.; Ozogul, F. Proximate analysis. fatty acid profiles and mineral contents of meats: A comparative study. J. Muscle Foods 2010, 21, 210–223. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 3182746, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Lozano, M.S.R.; Ngapo, T.M.; Huerta-Leidenz, N. Tropical Beef: Is there an axiomatic basis to define the concept? Foods 2021, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Valero, M.V.; Campo, M.M.; Sañudo, C. Some factors that affect ruminant meat quality: From the farm to the fork. Review. Acta Sci. Anim. Sci. 2013, 35, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.-H.; Joo, S.-T. Fatty acid profiles, meat quality, and sensory palatability of grain-fed and grass-fed beef from Hanwoo, American, and Australian crossbred cattle. Korean J. Food Sci. Anim. Resour. 2017, 37, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Jerez-Timaure, N.; Huerta-Leidenz, N. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livest. Sci. 2009, 121, 219–226. [Google Scholar] [CrossRef]
- Comparin, M.A.S.; Morais, M.G.; Fernandes, H.J.; Coelho, R.G.; Coutinho, M.A.S.; Ribeiro, C.B.; Menezes, B.B.; Rocha, R.F.A.T. Chemical composition, and fatty acid profile of meat from heifers finished on pasture supplemented with feed additives. Rev. Bras. Saúde Produção Anim. 2015, 16, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida-Mendoza, M. Beneficios de la alimentación a pastoreo en la calidad nutritiva de la carne del ganado doble propósito. In Desarrollo Sostenible de la Ganadería de Doble Propósito; González-Stagnaro, C., Soto Belloso, E., Eds.; Fundación Grupo de Investigadores de la Reproducción animal en la Región Zuliana: Maracaibo, Venezuela, 2008; pp. 852–863. [Google Scholar]
- Uzcátegui-Bracho, S.; Rodas-González, A.; Hennig, K.; Arenas de Moreno, L.; Leal, M.; Vergara-López, J.; Jerez-Timaure, N. Composición proximal, mineral y contenido de colesterol del músculo Longissimus dorsi de novillos criollo limonero suplementados a pastoreo. Rev. Cien. 2008, 18, 589–594. [Google Scholar]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of conventional and grass feeding systems on the nutrient composition of beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenza, F.D.; Scott, L.; Kronberg, S.L.; Gregorini, P. Is grassfed meat and dairy better for human and Environmental Health? Front. Nutr. 2019, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Leidenz, N.; Rios, G. Bovine castration at different stages of growth. II. Carcass characteristics. Rev. Fac. Agron. LUZ 1993, 10, 163–187. [Google Scholar]
- Ruiz, M.R.; Matsushita, M.; Visentainer, J.V.; Hernandez, J.A.; Ribeiro, E.L.d.A.; Shimokomaki, M.; Reeves, J.J.; deSouza, N.E. Proximate chemical composition and fatty acid profiles of Longissimus thoracis from pasture fed LHRH immunocastrated, castrated and intact Bos indicus bulls. S. Afr. J. Anim. Sci. 2005, 35, 13–18. [Google Scholar]
- Aricetti, J.A.; Rotta, P.P.; Prado, R.M.D.; Perotto, D.; Moletta, J.L.; Matsushita, M.; Prado, I.N.D. Carcass characteristics chemical composition and fatty acid profile of longissimus muscle of bulls and steers finished in a pasture system bulls and steers finished in pasture systems. Asian Australas. J. Anim. Sci. 2008, 21, 1441–1448. [Google Scholar] [CrossRef]
- Eichhorn, J.M.; Coleman, L.J.; Wakayama, E.J.; Blomquist, G.J.; Bailey, C.M.; Jenkins, T.G. Effects of breed type and restricted versus ad libitum feeding on fatty acid composition and cholesterol content of muscle and adipose tissue from mature bovine females. J. Anim. Sci. 1986, 63, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Polkinghorne, R.J.; Thompson, J.M. Meat standards and grading. A world view. Meat Sci. 2010, 86, 227–235. [Google Scholar] [CrossRef]
- Rodas-González, A.; Huerta-Leidenz, N.; Jerez-Timaure, N. Benchmarking Venezuelan quality grades for grass-fed cattle carcasses. Meat Muscle Biol. 2017, 1, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Butler, G.; Ali, A.M.; Oladokun, S.; Wang, J.; Davis, D. Forage-fed cattle point the way forward for beef? Future Foods 2021, 3, 100012. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Jeong, T.-C.; Yang, H.-S.; Kim, G.-D. Multivariate analysis of muscle fiber characteristics, intramuscular fat content and fatty acid composition in porcine longissimus thoracis muscle. Livest. Sci. 2017, 202, 13–20. [Google Scholar] [CrossRef]
- Patel, N.; Bergamaschi, M.; Magro, L.; Petrini, A.; Bittante, G. Relationships of a detailed mineral profile of meat with animal performance and beef quality. Animals 2019, 9, 1073. [Google Scholar] [CrossRef] [Green Version]
- Chen, D. Analysis of input and output of China’s agriculture based on canonical correlation. Asian J. Agric. Res. 2011, 3, 9–15. [Google Scholar]
- Kim, T.W.; Kim, C.W.; Noh, C.W.; Kim, S.W.; Kim., I.S. Identification of association between supply of pork and production of meat products in Korea by canonical correlation analysis. Korean J. Food Sci. Anim. Resour. 2018, 38, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Saba, J.; Tavana, S.; Qorbanian, Z.; Shadan, E.; Shekari, F.; Jabbari, F. Canonical Correlation Analysis to Determine the Best Traits for Indirect Improvement of Wheat Grain Yield under Terminal Drought Stress. JAST 2018, 20, 1037–1048. Available online: http://jast.modares.ac.ir/article-23-19920-en.html (accessed on 11 June 2021).
- Tukimat, N.N.A.; Harun, S.; Tadza, M.Y.M. The potential of canonical correlation analysis in multivariable screening of climate model. IOP Conf. Ser. Earth Environ. Sci. 2019, 365, 012025. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis. A Global Perspective, 7th ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 978-0138132637. [Google Scholar]
- Diel, M.I.; Lúcio, A.D.; Lambrecht, D.M.; Pinheiro, M.V.M.; Sari, B.G.; Olivoto, T.; Valeriano, O.; de Melo, P.J.; de Lima Tartaglia, F.; Luis, A. Canonical correlations in agricultural research: Method of interpretation used leads to greater reliability of results. IJERI 2020, 8, 171–181. [Google Scholar] [CrossRef]
- Wickramasinghe, N.D. Canonical correlation analysis: An introduction to a multivariate statistical analysis. JCCPSL 2019, 25, 37–38. [Google Scholar] [CrossRef]
- Vargas, J.A.C.; Coutinho, J.E.S.; Gomes, D.I.; Alves, K.S.; Maciel, R.P. Multivariate relationship among pH, subcutaneous fat thickness, and color in bovine meat using canonical correlation analysis. Rev. Colomb. Cienc. Pecu. 2021, 34. [Google Scholar] [CrossRef]
- Montero, A.; Huerta-Leidenz, N.; Rodas-González, A.; Arenas de Moreno, L. Deshuese y variación del rendimiento carnicero de canales bovinas en Venezuela: Descripción anatómica el proceso y nomenclatura de cortes equivalentes a los correspondientes norteamericanos. Nacameh 2014, 8, 1–22. Available online: http://nacameh.cbsuami.org (accessed on 22 February 2021). [CrossRef]
- Ministerio del Poder Popular para Ciencia, Tecnología e Industrias Intermedias y Fondo Nacional de Ciencia, Tecnología e Innovación (MCT-FONACIT). Código de Bioética y Bioseguridad, 2nd ed.; Ministerio del Poder Popular para Ciencia, Tecnología e Industrias Intermedias y el Fondo Nacional de Ciencia, Tecnología e Innovación: Caracas, Venezuela, 2002; pp. 1–35. Available online: https://cupdf.com/download/bioetica-fonacit (accessed on 3 April 2021).
- Comisión Venezolana de Normas Industriales. Norma Venezolana 2072-83. Ganado Bovino. Inspección Postmortem; FONDONORMA: Caracas, Venezuela, 1983; pp. 1–10. Available online: http://www.sencamer.gob.ve/sencamer/normas/2072-83.pdf (accessed on 25 February 2021).
- United States Department of Agriculture (USDA). Official United States Standards for Grades of Carcass Beef; Agricultural Marketing Service: Washington, DC, USA, 2017. Available online: https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards (accessed on 11 June 2021).
- Huerta Leidenz, N.; Alvarado, E.; Martínez, L.; Rincón, E. Conformación, acabado y características biométricas de la canal de diferentes clases de bovinos sacrificados en el Estado Zulia. Rev. Fac. Agron. (LUZ) 1979, 5, 522–536. Available online: https://produccioncientificaluz.org/index.php/agronomia/article/view/25841 (accessed on 25 January 2021).
- Decreto Presidencial No. 181: Gaceta Oficial de la República de Venezuela; Nº 35-486; Ministerio de Agricultura y Cria: Caracas, Venezuela, 1994.
- Comisión Venezolana de Normas Industriales (COVENIN). Norma Venezolana 792-82: Carne de Bovino. Definición e Identificación de las Piezas de una Canal; FONDONORMA: Caracas, Venezuela, 1982; pp. 1–10. Available online: http://www.sencamer.gob.ve/sencamer/normas/792-82.pdf (accessed on 22 February 2021).
- Uzcátegui-Bracho, S.; Huerta-Leidenz, N.; Arenas de Moreno, L.; Colina, G.; Jerez-Timaure, N. Contenido de humedad, lípidos totales y ácidos grasos del músculo longissimus crudo de bovinos en Venezuela. Arch. Latinoamer. Nutr. 1999, 49, 171–180. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Section 960.39; ISBN 978-093-558-442-4. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipid from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Slover, H.T.; Lanza, E.; Thompson, R.H.; Davis, C.S.; Merola, G.V. Lipids in raw and cooked beef. J. Food Compos. Anal. 1987, 1, 26–37. [Google Scholar] [CrossRef]
- Rhee, K.S.; Thayne, R.; Dutson, T.R.; Smith, G.C.; Hostetler, R.L.; Reiser, R. Cholesterol content of raw and cooked beef Longissimus muscles with different degrees of marbling. J. Food Sci. 1982, 47, 716–719. [Google Scholar] [CrossRef]
- Slover, H.T.; Lanza, E. Quantitative Analysis of Food Fatty Acids by Capillary Gas Chromatography. J. Am. Oil Chem. Soc. 1979, 56, 933–943. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron fluoride- methanol. J. Lipid. Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- IBM SPSS Statistics 23; IBM Corporation: Armonk, NY, USA, 2019.
- Atencio-Valladares, O.; Huerta-Leidenz, N.; Jerez-Timaure, N. Predicción del rendimiento en cortes de carnicería de bovinos venezolanos. Rev. Cien. 2008, 18, 704–714. Available online: https://produccioncientificaluz.org/index.php/cientifica/article/view/15416 (accessed on 22 March 2021).
- Huerta-Leidenz, N.; Rodriguez, R.; Vidal-Ojeda, A.; Vidal-Quintero, A.; Jerez-Timaure, N. Características cárnicas de búfalos de agua vs. vacunos acebuados. Arch. Latinoam. Prod. Anim. 1997, 5 (Suppl. S1), 574–576. [Google Scholar]
- Arenas de Moreno, L.; Vidal, A.; Huerta-Sánchez, D.; Navas, Y.; Uzcátegui-Bracho, S.; Huerta-Leidenz, N. Análisis comparativo proximal y de minerales entre carnes de iguana, res y pollo. Arch. Latinoam. Nutr. 2000, 50, 409–415. [Google Scholar]
- Arenas de Moreno, L.; Ormos-Moreno, R.; Milli-París, S.; Huerta-Leidenz, N.; Uzcátegui-Bracho, S. Efecto de la dieta sobre la composición química de la carne de terneros. Rev. Cien. 2000, 10, 448–452. [Google Scholar]
- Huerta-Montauti, D.; Villa, V.; Arenas de Moreno, L.; Rodas-González, A.; Giuffrida-Mendoza, M.; Huerta-Leidenz, N. Proximate and mineral composition of imported versus domestic beef cuts for restaurant use in Venezuela. J. Muscle Foods 2007, 18, 237–252. [Google Scholar] [CrossRef]
- Uzcátegui-Bracho, S.; Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Jerez-Timaure, N. contenido proximal, lípidos y colesterol de las carnes de res, cerdo y pollo obtenidas de expendios carniceros de la zona sur de Maracaibo. RVTS 2010, 3, 13–29. [Google Scholar]
- Alam, M.K.; Rana, Z.H.; Akhtaruzzaman, M. Comparison of muscle and subcutaneous tissue fatty acid composition of Bangladeshi nondescript deshi bulls finished on pasture diet. J. Chem. 2017, 2017, 1–6. [Google Scholar] [CrossRef]
- Huerta-Leidenz, N.; Arenas de Moreno, L.; Morón-Fuenmayor, O.; Uzcátegui-Bracho, S. Composición mineral del músculo longissimus crudo derivado de canales bovinas producidas y clasificadas en Venezuela. Arch. Latinoam. Nutr. 2003, 53, 96–101. [Google Scholar]
- Arenas de Moreno, L.; Giuffrida-Mendoza, M.; Bulmes, L.; Uzcátegui-Bracho, S.; Huerta-Leidenz, N.; Jérez-Timaure, N. Efecto de la suplementación estratégica, régimen de implantes y condición sexual sobre la composición proximal y mineral de carne de bovinos cruda y cocida. Rev. Cien. 2008, 18, 65–72. [Google Scholar]
- Araujo, O. La nutrición mineral del ganado vacuno. In Desarrollo Sostenible de la Ganadería de Doble Propósito; González-Stagnaro, C., Soto Belloso, E., Eds.; Fundación Grupo de Investigadores de la Reproducción animal en la Región Zuliana: Maracaibo, Venezuela, 2008; pp. 463–475. [Google Scholar]
- Depablos, L.; Godoy, S.; Claudio, F.; Chicco, C.F.; Ordoñez, J. Nutrición mineral en sistemas ganaderos de las sabanas centrales de Venezuela. Zootec. Trop. 2009, 27, 25–37. [Google Scholar]
- López, M.; Godoy, S.; Alfaro, C.; Chicco, C.F. Evaluación de la nutrición mineral en sabanas bien drenadas al Sur del estado Monagas, Venezuela. Rev. Cien. 2008, 18, 197–206. [Google Scholar]
- Combes, S.; González, I.; Déjean, S.; Baccini, A.; Jehl, N.; Juin, H.; Cauquil, L.; Gabinaud, B.; Lebas, F.; Larzul, C. Relationships between sensory and physicochemical measurements in meat of rabbit from three different breeding systems using canonical correlation analysis. Meat Sci. 2008, 80, 835–841. [Google Scholar] [CrossRef]
- Byers, F.M. Nutritional factors affecting growth of muscle and adipose tissue in ruminants. Fed. Proc. 1982, 41, 2562–2566. [Google Scholar]
- Seideman, S.C.; Cross, H.R.; Oltjen, R.R.; Schanbacher, B.D. Utilisation of the intact male for red meat production: A review. J. Anim. Sci. 1982, 55, 826–840. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [Green Version]
- Vargas, J.A.C.; Almeida, A.K.; Härter, C.J.; Souza, A.P.; Fernandes, M.H.M.D.R.; Resende, K.T.D.; Teixeira, I.A.M.D.A. Multivariate relationship among body protein, fat, and macrominerals of male and female Saanen goats using canonical correlation analysis. Rev. Bras. Zootec. 2018, 47, e20170289. [Google Scholar] [CrossRef] [Green Version]
- Ventura, H.T.; Lopes, P.S.; Peloso, J.V.; Guimarães, S.E.F.; Carneiro, A.P.S.; Carneiro, P.L.S. A canonical correlation analysis of the association between carcass and ham traits in pigs used to produce dry-cured ham. Genet. Mol. Biol. 2011, 34, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Marinetti, G.V. Disorders of Fatty Acid Metabolism. In Disorders of Lipids Metabolism, 1st ed.; Plenum Press: New York, NY, USA, 1990; pp. 31–48. [Google Scholar]
- Garmyn, A.J.; Hilton, G.G.; Mateescu, R.G.; Morgan, J.B.; Reecy, J.M.; Tait, R.G., Jr.; Beitz, D.C.; Duan, Q.; Schoonmaker, J.P.; Mayes, M.S.; et al. Nutrient components and beef palatability: Estimation of relationships between mineral concentration and fatty acid composition of Longissimus muscle and beef palatability traits. J. Anim. Sci. 2011, 89, 2849–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotta, P.P.; Prado, R.M.; Prado, I.N.; Valero, M.V.; Visentainer, J.V.; Silva, R.R. The effects of genetic groups, nutrition, finishing systems and gender of Brazilian cattle on carcass characteristics and beef composition and appearance: A review. AJAS 2009, 22, 1718–1734. [Google Scholar] [CrossRef]
- Al-Jammas, M.; Agabriel, J.; Vernet, J.; Ortigues-Marty, I. Quantitative relationships between the tissue composition of bovine carcass and easily obtainable indicators. In Proceedings of the 61st International Congress of Meat Science and Technology (ICoMST), Clermont-Ferrand, France, 23–28 August 2015. [Google Scholar]
- Monteiro, A.C.G.; Santos-Silva, J.; Bessa, R.J.B.; Navas, D.R.; Lemos, J.P.C. Fatty acid composition of intramuscular fat of bulls and steers. Livest. Sci. 2006, 99, 13–19. [Google Scholar] [CrossRef]
- Moloney, A.P.; McGee, M. Factors Influencing the Growth of Meat Animals. In Lawrie´s Meat Science, 8th ed.; Toldrá, F., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 19–47. [Google Scholar]
- Giaretta, E.; Mordenti, A.L.; Canestrari, G.; Brogna, N.; Palmonari, A.; Formigoni, A. Assesment of muscle Longissmus thoracis et lumborum marbling by image analysis and relationships between meat quality parameters. PLoS ONE 2018, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kruk, Z.A.; Pitchford, W.S.; Siebert, B.D.; Deland, M.B.P.; Bottema, C.D.K. Factors affecting estimation of marbling in cattle and the relationship between marbling scores and intramuscular fat. Anim. Prod. Aust. 2002, 24, 129–132. [Google Scholar]
- Brackebusch, S.; McKeith, F.; Carr, T.; McLaren, D. Relationship between longissimus composition and the composition of other major muscles of the beef carcass. J. Anim. Sci. 1991, 69, 631–640. [Google Scholar] [CrossRef]
- Kornaska, M.; Kuchida, K.; Tarr, G.; Polkinghorne, R.J. Relationship between marbling measures across principal muscles. Meat Sci. 2017, 123, 67–78. [Google Scholar]
- Silva, S.; Teixeira, A.; Font-i-Furnois, M. Intramuscular fat and marbling. In A Handbook of Reference Methods for Meat Quality Assessment, 1st ed.; Font-i-Furnois, M., Candek-Potokar, M., Maltin, C., Prevolnik Povse, M., Eds.; European Cooperation in Science and Technology (COST): Edinburgh, UK, 2015; Chapter 2; pp. 12–21. [Google Scholar]
- Siebert, B.D.; Deland, M.P.; Pitchford, W.S. Breed differences in the fatty acid composition of subcutaneous and intramuscular lipid of early and late maturing, grain-finished cattle. Aust. J. Agric. Res. 1996, 47, 943–952. [Google Scholar] [CrossRef]
- Catillo, G.; Zappaterra, M.; Lo Fiego, D.P.; Steri, R.; Davoli, R. Relationships between EUROP carcass grading and backfat fatty acid composition in Italian Large White heavy pigs. Meat Sci. 2021, 171, 108291. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Definition |
---|---|
SM | Skeletal maturity |
LM | Lean maturity |
CW | Carcass weight |
BFT | Back fat thickness |
CFINISH | Carcass finish |
MARBLING | Degree of marbling |
TLIPIDS | Total lipids content |
DM | Dry matter content |
CP | Crude protein content |
CHOLEST | Cholesterol content |
C14:0 | Myristic acid |
C14:1 | Myristoleic acid |
C15:0 | Pentadecilic acid |
C16:0 | Palmitic acid |
C16:1 | Palmitoleic acid |
C18:0 | Stearic acid |
C18:1c | Oleic acid |
C18:1t | Elaidic acid |
C18:2 | Linoleic acid |
C18:3 | α-Linolenic acid |
C20:0 | Arachidic acid |
C20:4ω6 | Arachidonic acid |
C22:6ω3 | Docosahexaenoic acid |
SFA | Sum of saturated fatty acids |
UFA | Sum of unsaturated fatty acids |
MUFA | Sum of monounsaturated fatty acids |
PUFA | Sum of polyunsaturated fatty acids |
HCA | Hierarchical cluster analysis |
CCA | Canonical correlation analysis |
“CARCASS” | Canonical variate of the variable of carcass traits |
“PROXIMATE” | Canonical variate of the variables of proximate composition |
“LIPIDS” | Canonical variate of the variables of lipidic composition |
“MINERAL” | Canonical variate of the variables of mineral content |
SEXC | Sex condition |
Variable | Mean | SD | Minimum | Maximum | CV | |
---|---|---|---|---|---|---|
Carcass traits | SM 1 | 212.8 | 37.96 | 150.00 | 350.00 | 0.179 |
LM 1 | 193.1 | 23.46 | 150.00 | 260.00 | 0.121 | |
CW, kg | 279.5 | 34.41 | 207.00 | 380.00 | 0.123 | |
BFT, cm | 0.41 | 0.28 | 0.10 | 1.20 | 0.692 | |
MARBLING 2 | 1.90 | 0.88 | 1 | 3 | 0.464 | |
CFINISH 3 | 2.11 | 0.69 | 1 | 3 | 0.325 | |
Proximate g.100 g−1 | DM | 26.02 | 1.29 | 23.19 | 29.64 | 0.05 |
Moisture | 73.99 | 1.32 | 70.36 | 77.39 | 0.02 | |
Ash | 1.05 | 0.15 | 0.70 | 1.43 | 0.14 | |
CP | 20.79 | 1.53 | 16.90 | 24.00 | 0.07 | |
TLIPIDS | 2.79 | 1.09 | 0.93 | 6.67 | 0.39 | |
Mineral content mg.100 g−1 | Ca | 2.83 | 1.58 | 1.00 | 8.27 | 0.560 |
Mg | 21.73 | 3.05 | 14.34 | 29.27 | 0.140 | |
P | 210.05 | 34.68 | 100.13 | 322.53 | 0.165 | |
Na | 82.69 | 19.97 | 41.03 | 119.00 | 0.242 | |
K | 241.73 | 59.56 | 119.78 | 395.87 | 0.246 | |
Fe | 1.87 | 0.49 | 0.44 | 3.76 | 0.265 | |
Zn | 4.14 | 0.78 | 2.79 | 6.60 | 0.189 | |
Cu | 0.086 | 0.04 | 0.024 | 0.19 | 0.457 | |
Mn | 0.026 | 0.014 | 0.008 | 0.08 | 0.533 |
Variable | Mean | SD | Minimum | Maximum | CV | |
---|---|---|---|---|---|---|
Lipid profile mg.100 g−1 | CHOLEST | 64.96 | 13.86 | 30.16 | 97.34 | 0.213 |
C14:0 | 0.068 | 0.033 | 0.018 | 0.156 | 0.481 | |
C14:1 | 0.038 | 0.022 | 0.002 | 0.110 | 0.596 | |
C15:0 | 0.079 | 0.044 | 0.004 | 0.223 | 0.560 | |
C16:0 | 0.534 | 0.245 | 0.028 | 1.288 | 0.460 | |
C16:1 | 0.092 | 0.042 | 0.023 | 0.249 | 0.456 | |
C18:0 | 0.285 | 0.125 | 0.053 | 0.705 | 0.440 | |
C18:1c | 0.876 | 0.320 | 0.274 | 1.749 | 0.365 | |
C18:1t | 0.489 | 0.202 | 0.117 | 0.981 | 0.413 | |
C18:2 | 0.076 | 0.034 | 0.010 | 0.163 | 0.443 | |
C18:3 | 0.006 | 0.003 | 0.001 | 0.016 | 0.453 | |
C20:0 | 0.005 | 0.003 | 0.001 | 0.015 | 0.554 | |
C20:4ω6 | 0.013 | 0.006 | 0.003 | 0.034 | 0.447 | |
C22: 6ω3 | 0.025 | 0.011 | 0.002 | 0.062 | 0.442 | |
SFA | 0.973 | 0.429 | 0.275 | 2.432 | 0.442 | |
UFA | 1.632 | 0.563 | 0.544 | 3.032 | 0.345 | |
MUFA | 1.502 | 0.525 | 0.488 | 2.827 | 0.349 | |
PUFA | 0.121 | 0.044 | 0.036 | 0.234 | 0.362 | |
Cis | 1.156 | 0.423 | 0.368 | 2.637 | 0.366 | |
Trans | 0.491 | 0.202 | 0.117 | 0.981 | 0.411 | |
UFA/SFA | 1.794 | 0.552 | 0.773 | 4.583 | 0.308 | |
MUFA/SFA | 1.646 | 0.488 | 0.673 | 4.075 | 0.298 | |
PUFA/SFA | 0.136 | 0.057 | 0.051 | 0.508 | 0.418 | |
Cis/Trans | 2.528 | 0.790 | 1.229 | 5.709 | 0.312 |
Variable | Cluster 1 | Cluster 2 | Cluster 3 | p Value | ||||
---|---|---|---|---|---|---|---|---|
Steer (n = 25) | Bull (n = 3) | Steer (n = 7) | Bull (n = 26) | Steer (n = 22) | Bull (n = 26) | Cluster | SEXC | |
Carcass Traits | ||||||||
SM 1 | 213.60 | 193.33 | 228.57 | 201.92 | 211.82 | 220.38 | 0.581 | 0.527 |
LM 1 | 198.40 | 173.33 | 195.71 | 190.00 | 195.94 | 191.56 | 0.588 | 0.108 |
BFT 2 | 0.724 | 0.333 | 0.357 | 0.226 | 0.510 | 0.215 | <0.0001 | <0.0001 |
CW 3 | 289.48 | 301.33 | 247.14 | 276.42 | 280.00 | 278.96 | 0.066 | 0.863 |
Proximate composition (g.100 g−1) | ||||||||
DM | 26.78 | 25.95 | 25.27 | 24.97 | 26.55 | 26.10 | <0.0001 | <0.0001 |
Moisture | 73.20 | 74.05 | 74.69 | 75.07 | 73.47 | 73.91 | <0.0001 | <0.0001 |
Ash | 1.04 | 1.03 | 1.05 | 1.08 | 1.02 | 1.06 | 0.669 | 0.276 |
CP | 20.17 | 20.50 | 21.17 | 21.09 | 20.83 | 20.97 | 0.052 | <0.0001 |
TLIPIDS | 4.16 | 3.59 | 2.24 | 1.81 | 2.83 | 2.45 | <0.0001 | <0.0001 |
Mineral content (mg.100 g−1) | ||||||||
Ca | 1.88 | 2.09 | 2.58 | 1.98 | 4.16 | 3.59 | <0.0001 | 0.618 |
Mg | 20.26 | 22.58 | 18.29 | 20.47 | 23.08 | 24.09 | <0.0001 | 0.049 |
P | 198.27 | 226.87 | 201.72 | 189.04 | 223.45 | 231.33 | <0.0001 | 0.075 |
Na | 88.32 | 96.42 | 87.70 | 93.54 | 72.87 | 71.79 | <0.0001 | 0.703 |
K | 214.84 | 215.53 | 208.57 | 213.45 | 268.79 | 284.93 | <0.0001 | 0.322 |
Fe | 1.98 | 1.93 | 1.78 | 1.83 | 1.87 | 1.83 | 0.445 | 0.446 |
Zn | 4.04 | 3.69 | 3.78 | 3.75 | 4.49 | 4.49 | <0.0001 | 0.541 |
Cu | 0.067 | 0.064 | 0.093 | 0.086 | 0.109 | 0.082 | 0.010 | 0.535 |
Mn | 0.021 | 0.024 | 0.017 | 0.022 | 0.026 | 0.036 | <0.0001 | 0.015 |
Variable 1 | Cluster 1 | Cluster 2 | Cluster 3 | p Value | ||||
---|---|---|---|---|---|---|---|---|
Steer (n = 25) | Bull (n = 3) | Steer (n = 7) | Bull (n = 26) | Steer (n = 22) | Bull (n = 26) | Cluster | SEXC | |
Lipid profile (mg.100 g−1) | ||||||||
CHOLEST | 65.99 | 64.88 | 62.45 | 63.27 | 61.244 | 69.49 | <0.0001 | 0.311 |
C14:0 | 0.103 | 0.092 | 0.051 | 0.043 | 0.068 | 0.059 | <0.0001 | <0.0001 |
C14:1 | 0.060 | 0.045 | 0.025 | 0.026 | 0.036 | 0.030 | <0.0001 | <0.0001 |
C15:0 | 0.131 | 0.104 | 0.064 | 0.046 | 0.078 | 0.060 | <0.0001 | <0.0001 |
C16:0 | 0.8280 | 0.715 | 0.434 | 0.311 | 0.564 | 0.456 | <0.0001 | <0.0001 |
C16:1 | 0.131 | 0.117 | 0.071 | 0.085 | 0.081 | 0.075 | <0.0001 | 0.002 |
C18:0 | 0.425 | 0.402 | 0.218 | 0.191 | 0.283 | 0.248 | <0.0001 | <0.0001 |
C18:1c | 1.216 | 1.209 | 0.724 | 0.611 | 0.917 | 0.781 | <0.0001 | <0.0001 |
C18:1t | 0.713 | 0.601 | 0.363 | 0.311 | 0.493 | 0.464 | <0.0001 | <0.0001 |
C18:2 | 0.108 | 0.097 | 0.056 | 0.051 | 0.071 | 0.075 | <0.0001 | 0.001 |
α-C18:3 | 0.008 | 0.007 | 0.005 | 0.004 | 0.006 | 0.005 | <0.0001 | <0.0001 |
C20:0 | 0.007 | 0.005 | 0.002 | 0.003 | 0.005 | 0.005 | <0.0001 | 0.010 |
C20:6ω6 | 0.016 | 0.011 | 0.011 | 0.010 | 0.013 | 0.013 | <0.0001 | 0.023 |
C22:6ω3 | 0.032 | 0.024 | 0.025 | 0.020 | 0.025 | 0.021 | <0.0001 | <0.0001 |
Original Variables | Standardized Canonical Coefficient | Canonical Correlation Coefficient |
---|---|---|
DM | 0.230 | −0.502 |
Moisture | 0.283 | 0.510 |
Ash | 0.088 | 0.071 |
CP | 0.034 | 0.173 |
TLIPIDS | −0.966 | −0.993 |
Original Variables | Standardized Canonical Coefficient | Canonical Correlation Coefficient |
---|---|---|
SM | 0.143 | −0.023 |
LM | −0.037 | −0.099 |
CW | 0.027 | −0.196 |
CFINISH | 0.297 | 0.751 |
BFT | −0.424 | −0.855 |
MARBLING | −0.501 | −0.836 |
Original Variables | Canonical Variate “CARCASS” | Original Variables | Canonical Variate “PROXIMATE” |
---|---|---|---|
DM | −0.316 | SM | −0.014 |
Moisture | 0.320 | LM | −0.062 |
Ash | 0.045 | CW | −0.123 |
CP | 0.109 | CFINISH | 0.472 |
TLIPIDS | −0.624 | BFT | −0.538 |
MARBLING | −0.526 |
Variables | TLIPIDS | CFINISH | BFT | MARBLING |
---|---|---|---|---|
TLIPIDS | 1 | −0.471 ** | 0.5532 ** | 0.519 ** |
CFINISH | −0.471 ** | 1 | −0.580 ** | −0.432 ** |
BFT | 0.532 ** | −0.580 ** | 1 | 0.549 ** |
MARBLING | 0.519 ** | −0.432 ** | 0.549 ** | 1 |
Original Variable | Standardized Coefficient | Correlation Coefficient |
---|---|---|
CHOLEST | 0.082 | 0.064 |
C14:0 | 0.125 | −0.738 |
C14:1 | 0.065 | −0.517 |
C15:0 | −0.030 | −0.742 |
C16:0 | −0.796 | −0.912 |
C16:1 | 0.127 | −0.501 |
C18:0 | −0.032 | −0.798 |
C18:1c | −0.566 | −0.878 |
C18:1t | 0.144 | −0.679 |
C18.2 | 0.257 | −0.549 |
α-C18:3 | −0.073 | −0.542 |
C20:0 | −0.072 | −0.474 |
C20:4ω6 | −0.226 | −0.423 |
C22:6ω3 | 0.047 | −0.344 |
OriginalVariables | “CARCASS” | Variables | “LIPIDS” |
---|---|---|---|
CHOLEST | 0.045 | SM | 0.026 |
C14:0 | −0.518 | LM | −0.036 |
C14:1 | −0.363 | CW | −0.177 |
C15:0 | −0.521 | CFINISH | 0.603 |
C16:0 | −0.640 | BFT | −0.567 |
C16:1 | −0.352 | MARBLING | −0.534 |
C18:0 | −0.560 | ||
C18:1c | −0.617 | ||
C18:1t | −0.477 | ||
C18:2 | −0.385 | ||
α-C18:3 | −0.380 | ||
C20:0 | −0.332 | ||
C20:4ω6 | −0.297 | ||
C22:6ω3 | −0.241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas de Moreno, L.; Jerez-Timaure, N.; Huerta-Leidenz, N.; Giuffrida-Mendoza, M.; Mendoza-Vera, E.; Uzcátegui-Bracho, S. Multivariate Relationships among Carcass Traits and Proximate Composition, Lipid Profile, and Mineral Content of Longissimus lumborum of Grass-Fed Male Cattle Produced under Tropical Conditions. Foods 2021, 10, 1364. https://doi.org/10.3390/foods10061364
Arenas de Moreno L, Jerez-Timaure N, Huerta-Leidenz N, Giuffrida-Mendoza M, Mendoza-Vera E, Uzcátegui-Bracho S. Multivariate Relationships among Carcass Traits and Proximate Composition, Lipid Profile, and Mineral Content of Longissimus lumborum of Grass-Fed Male Cattle Produced under Tropical Conditions. Foods. 2021; 10(6):1364. https://doi.org/10.3390/foods10061364
Chicago/Turabian StyleArenas de Moreno, Lilia, Nancy Jerez-Timaure, Nelson Huerta-Leidenz, María Giuffrida-Mendoza, Eugenio Mendoza-Vera, and Soján Uzcátegui-Bracho. 2021. "Multivariate Relationships among Carcass Traits and Proximate Composition, Lipid Profile, and Mineral Content of Longissimus lumborum of Grass-Fed Male Cattle Produced under Tropical Conditions" Foods 10, no. 6: 1364. https://doi.org/10.3390/foods10061364
APA StyleArenas de Moreno, L., Jerez-Timaure, N., Huerta-Leidenz, N., Giuffrida-Mendoza, M., Mendoza-Vera, E., & Uzcátegui-Bracho, S. (2021). Multivariate Relationships among Carcass Traits and Proximate Composition, Lipid Profile, and Mineral Content of Longissimus lumborum of Grass-Fed Male Cattle Produced under Tropical Conditions. Foods, 10(6), 1364. https://doi.org/10.3390/foods10061364