Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection
Abstract
:1. Introduction
2. Conventional and Advanced Analytical Technologies
2.1. Molecular Recognition Elements
2.1.1. Antibodies
2.1.2. Aptamers
2.1.3. Molecularly Imprinted Polymers
2.2. Conventional Methods
2.2.1. High-Performance Liquid Chromatography (HPLC)
2.2.2. Gas Chromatography–Mass Spectrometry (GC-MS)
2.2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.3. Electrochemical (EC) Aptasensors for Mycotoxin
2.4. Commercial Mycotoxin Detection Kits
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitt, J.I.; Miller, J.D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2016, 65, 7021–7033. [Google Scholar] [CrossRef]
- Magdalena, B.F. Mycotoxin, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020, 182, 34–53. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poór, M.; Bálint, M.; Hetényi, C.; Gődér, B.; Kunsági-Máté, S.; Kőszegi, T.; Lemli, B. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin. Toxins 2017, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 2018, 91, 202–215. [Google Scholar] [CrossRef]
- Kebede, H.; Liu, X.; Jin, J.; Xing, F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 2020, 110, 106975. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Yan, P.; Liu, Z.; Liu, S.; Yao, L.; Liu, Y.; Wu, Y.; Gong, Z. Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017. Toxins 2020, 12, 200. [Google Scholar] [CrossRef] [Green Version]
- Mycotoxins, Detection and Prevention, A Review. Int. J. Pharm. Res. 2020, 12, 1001–1010. [CrossRef]
- Shan, H.; Li, X.; Liu, L.; Song, D.; Wang, Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J. Mater. Chem. B 2020, 8, 5808–5825. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Kailasa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.; Gobi, K.V.; Kim, K.-H. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens. Bioelectron. 2018, 121, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, W.; Zhu, C.; Li, Y.; Shen, X.; Li, L.; Yan, X.; You, T. Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC Trends Anal. Chem. 2020, 133, 115966. [Google Scholar] [CrossRef]
- Carlos, O.G.; Elena, C.L.; Vytautas, T.; Carsten, M.; Stefanka, B.; Joerg, S. Report on the 2016 Proficiency Test of the European Union Reference Laboratory for Mycotoxins. Eur. Union 2017. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Ricelli, A.; Fanelli, C.; Caputo, D.; de Cesare, G.; Chu, V.; Aires-Barros, M.R.; Conde, J.P. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018, 143, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.-H.; Ismail, N.; Latif, A.A.; Ahmad, R. Aflatoxin occurrence in nuts and commercial nutty products in Malaysia. Food Control 2010, 21, 334–338. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and aptamer- based immunosorbent assay for aflatoxin B1. J. Hazard. Mater. 2020, 399, 123154. [Google Scholar] [CrossRef] [PubMed]
- Park, M. Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: A Review. BioChip J. 2019, 13, 82–94. [Google Scholar] [CrossRef]
- Flaherty, D.K. (Ed.) Chapter 9 Antibodies. In Immunology for Pharmacy; Mosby: Meryland Heights, MO, USA, 2012; pp. 70–78. ISBN 978-0-323-06947-2. [Google Scholar]
- Tao, X.; Wang, X.; Liu, B.; Liu, J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020, 168, 112537. [Google Scholar] [CrossRef]
- Zhang, D.; Li, P.; Zhang, Q.; Zhang, W.; Huang, Y.; Ding, X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef]
- Dodd, R.; Schofield, D.J.; Wilkinson, T.; Britton, Z.T. Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020, 180, 111–126. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, Y.; Jiang, X. Antibody and antibody fragments for cancer immunotherapy. J. Control. Release 2020, 328, 395–406. [Google Scholar] [CrossRef]
- Wang, C.; Jin, D.; Yu, Y.; Tang, L.; Sun, Y.; Sun, Z.; Zhang, G.-J. A Dual Antibody-modified Nanochannel Biosensor for Capture and Identification of Exosomes. Sensors Actuators B Chem. 2020, 314, 128056. [Google Scholar] [CrossRef]
- Parray, H.A.; Shukla, S.; Samal, S.; Shrivastava, T.; Ahmed, S.; Sharma, C.; Kumar, R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int. Immunopharmacol. 2020, 85, 106639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, B.; Zhang, Y.; Wang, J.; Lu, Y.; Deng, J.; Wang, S. Application of CdTe/CdS/ZnS quantum dot in immunoassay for aflatoxin B1 and molecular modeling of antibody recognition. Anal. Chim. Acta 2019, 1047, 139–149. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Yu, X.; Wang, Z.; Ke, Y.; Jiang, H.; Li, J.; Shen, J.; Wen, K. Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control 2017, 79, 309–316. [Google Scholar] [CrossRef]
- Palla, G.; Malecka, K.; Dehaen, W.; Radecki, J.; Radecka, H. Immunosensor incorporating half-antibody fragment for electrochemical monitoring of amyloid-β fibrils in artificial blood plasma. Bioelectrochemistry 2021, 137, 107643. [Google Scholar] [CrossRef] [PubMed]
- Tzouvadaki, I.; Zapatero-Rodríguez, J.; Naus, S.; de Micheli, G.; O’Kennedy, R.; Carrara, S. Memristive biosensors based on full-size antibodies and antibody fragments. Sensors Actuators B Chem. 2019, 286, 346–352. [Google Scholar] [CrossRef]
- Sanli, S.; Moulahoum, H.; Ugurlu, O.; Ghorbanizamani, F.; Gumus, Z.P.; Evran, S.; Coskunol, H.; Timur, S. Screen printed electrode-based biosensor functionalized with magnetic cobalt/single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 2020, 217, 121111. [Google Scholar] [CrossRef]
- Ren, W.; Xu, Y.; Huang, Z.; Li, Y.; Tu, Z.; Zou, L.; He, Q.; Fu, J.; Liu, S.; Hammock, B.D. Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. Food Chem. 2020, 319, 126546. [Google Scholar] [CrossRef]
- Dong, J.; Li, Z.; Wang, Y.; Jin, M.; Shen, Y.; Xu, Z.; El-Aty, A.A.; Gee, S.J.; Hammock, B.D.; Sun, Y.; et al. Generation of functional single-chain fragment variable from hybridoma and development of chemiluminescence enzyme immunoassay for determination of total malachite green in tilapia fish. Food Chem. 2021, 337, 127780. [Google Scholar] [CrossRef]
- O’Farrell, B. Chapter 2.4—Lateral Flow Immunoassay Systems: Evolution from the Current State of the Art to the Next Generation of Highly Sensitive, Quantitative Rapid Assays. In The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques; Elsevier: Amsterdam, The Netherlands, 2013; pp. 89–107. [Google Scholar] [CrossRef]
- Tanaka, K.; Okuda, T.; Kasahara, Y.; Obika, S. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol. Ther. Nucleic Acids 2021, 23, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdian-Robati, R.; Bayat, P.; Oroojalian, F.; Zargari, M.; Ramezani, M.; Taghdisi, S.M.; Abnous, K. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol. 2020, 155, 1420–1431. [Google Scholar] [CrossRef]
- Hashemi, M.; Shamshiri, A.; Saeedi, M.; Tayebi, L.; Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 2020, 691, 108485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Latchoumanin, O.; Hebbard, L.; Duan, W.; Liddle, C.; George, J.; Qiao, L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv. Drug Deliv. Rev. 2018, 134, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Gajjala, R.K.R.; Gade, P.S.; Bhatt, P. Aptasensors: Paradigm Shift for Detection of Food Toxins. Innov. Food Process. Technol. 2021, 712–730. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Ghulam, M.; Li, L.; Qu, F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol. Adv. 2019, 37, 107432. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Chen, X.; Xia, Y.; Duan, N.; Wu, S.; Wang, Z. Selection, characterization and application of aptamers targeted to Aflatoxin B2. Food Control 2015, 47, 545–551. [Google Scholar] [CrossRef]
- Khodadadi, M.; Malekpour, A.; Mehrgardi, M.A. Aptamer functionalized magnetic nanoparticles for effective extraction of ultratrace amounts of aflatoxin M1 prior its determination by HPLC. J. Chromatogr. A 2018, 1564, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-T.; Zhao, B.-S.; Zhang, H.-B.; Jia, H.; Wu, M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J. Electroanal. Chem. 2020, 877, 114584. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Zhang, C.; Zheng, Y.; Wu, Y.; Wang, X. Development of an aptamer-functionalized capillary monolithic column for the highly-selective and highly-efficient recognition of patulin. Food Control 2021, 119, 107461. [Google Scholar] [CrossRef]
- Huo, B.; Hu, Y.; Gao, Z.; Li, G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2021, 222, 121565. [Google Scholar] [CrossRef]
- Pan, Q.; Luo, F.; Liu, M.; Zhang, X.-L. Oligonucleotide aptamers: Promising and powerful diagnostic and therapeutic tools for infectious diseases. J. Infect. 2018, 77, 83–98. [Google Scholar] [CrossRef]
- Li, L.-S.; Zhu, C.; Zhao, Y.; Yang, G.; Qu, F. Investigation of Library Input on Aptamers Selection Efficiency Using Capillary Electrophoresis. Chin. J. Anal. Chem. 2020, 48, 615–622. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Li, X.; Lu, L.; Du, S.; Zhang, H. Selection and identification of diethylstilbestrol-specific aptamers based on magnetic-bead SELEX. Microchem. J. 2020, 159, 105354. [Google Scholar] [CrossRef]
- Zhao, L.-P.; Yang, G.; Zhang, X.-M.; Qu, F. Development of Aptamer Screening against Proteins and Its Applications. Chin. J. Anal. Chem. 2020, 48, 560–572. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, J.; Li, J.; Liao, X.; Chen, F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal. Biochem. 2020, 598, 113620. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Chen, E.-N.; Yang, G.; Zhao, X.-Y.; Qu, F. Research Advances of Aptamers Selection for Small Molecule Targets. Chin. J. Anal. Chem. 2020, 48, 573–582. [Google Scholar] [CrossRef]
- Riccardi, C.; Napolitano, E.; Platella, C.; Musumeci, D.; Montesarchio, D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol. Ther. 2021, 217, 107649. [Google Scholar] [CrossRef] [PubMed]
- Kovačič, M.; Podbevšek, P.; Tateishi-Karimata, H.; Takahashi, S.; Sugimoto, N.; Plavec, J. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res. 2020, 48, 3975–3986. [Google Scholar] [CrossRef]
- Nan, M.-N.; Bi, Y.; Xue, H.-L.; Long, H.-T.; Xue, S.-L.; Pu, L.-M.; Prusky, D. Modification performance and electrochemical characteristics of different groups of modified aptamers applied for label-free electrochemical impedimetric sensors. Food Chem. 2021, 337, 127761. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens. Bioelectron. 2020, 167, 112478. [Google Scholar] [CrossRef] [PubMed]
- Verdian, A.; Fooladi, E.; Rouhbakhsh, Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019, 202, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.; Chatterjee, B.; Das, S.J.; Ghosh, S.; Sharma, T.K. Application of aptamers as molecular recognition elements in lateral flow assays. Anal. Biochem. 2020, 593, 113574. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Singh, S.P.; Patel, S.S. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix. Trends Environ. Anal. Chem. 2020, 27, e00092. [Google Scholar] [CrossRef]
- Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. [Google Scholar] [CrossRef]
- Zhou, T.; Ding, L.; Che, G.; Jiang, W.; Sang, L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. TrAC Trends Anal. Chem. 2019, 114, 11–28. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, T.; Xu, J.; Xue, C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens. Bioelectron. 2019, 141, 111447. [Google Scholar] [CrossRef]
- Guoning, C.; Hua, S.; Wang, L.; Qianqian, H.; Xia, C.; Hongge, Z.; Zhimin, L.; Chun, C.; Qiang, F. A surfactant-mediated sol-gel method for the preparation of molecularly imprinted polymers and its application in a biomimetic immunoassay for the detection of protein. J. Pharm. Biomed. Anal. 2020, 190, 113511. [Google Scholar] [CrossRef]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green Strategies for Molecularly Imprinted Polymer Development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudpour, M.; Torbati, M.; Mousavi, M.-M.; de la Guardia, M.; Dolatabadi, J.E.N. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends Anal. Chem. 2020, 129, 115943. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.-R.; Wang, W.-C.; Xue, J.; Huang, Y.-L.; Yang, X.-X.; Tan, B.; Zhou, X.-P.; Shao, C.; Ding, S.-J.; et al. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem. 2016, 192, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Var, I.; Kabak, B.; Gök, F. Survey of aflatoxin B1 in helva, a traditional Turkish food, by TLC. Food Control 2007, 18, 59–62. [Google Scholar] [CrossRef]
- Rubert, J.; Soler, C.; Mañes, J. Application of an HPLC–MS/MS method for mycotoxin analysis in commercial baby foods. Food Chem. 2012, 133, 176–183. [Google Scholar] [CrossRef]
- Bansal, V.; Malviya, R.; Pal, O.P.; Sharma, P.K. High Performance Liquid Chromatography: A Short Review. J. Glob. Pharma Technol. 2010, 2, 22–26. [Google Scholar]
- Nico, C.M. Advances in Liquid Chromatography–Tandem Mass Spectrometry (LC–MS–MS)-Based Quantitation of Bio-pharmaceuticals in Biological Samples. Adv. Biopharmacutical Anal. 2015, 18, 38–42. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Beltran, E.; Ibáñez, M.; Sancho, J.V.; Hernández, F.H. Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Ouakhssase, A.; Chahid, A.; Choubbane, H.; Aitmazirt, A.; Addi, E.A. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon 2019, 5, e01565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulyas, P.; Rudrabhatla, M.; Payne, T. MS/MS Identification of Four Aflatoxins Using the Agilent 500 Ion Trap LC/MS (Application Note); Agilent Technologies, Inc.: Santa Clara, CA, USA, 2011; SI-1283. [Google Scholar]
- Saldan, N.C.; Almeida, R.T.R.; Avíncola, A.; Porto, C.; Galuch, M.B.; Magon, T.F.S.; Pilau, E.J.; Svidzinski, T.I.E.; Oliveira, C.C. Development of an analytical method for identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chem. 2018, 241, 113. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wei, R.; Logrieco, A.F.; Wei, J.; Wen, J.; Xiao, X.; Yang, M. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets. Food Chem. 2014, 146, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pei, F.; Fang, Y.; Li, P.; Zhao, Y.; Shen, F.; Zou, Y.; Hu, Q. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chem. 2019, 275, 763–769. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, 364, 15–24. [Google Scholar]
- Beltran, E.; Ibáñez, M.; Sancho, J.V.; Cortés, M.Á.; Yusà, V.; Hernández, F. UHPLC–MS/MS highly sensitive determination of aflatoxins, the aflatoxin metabolite M1 and ochratoxin A in baby food and milk. Food Chem. 2011, 126, 737–744. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, X.; Zhang, Q.; Li, P. Determination for multiple mycotoxins in agricultural products using HPLC–MS/MS via a multiple antibody immunoaffinity column. J. Chromatogr. B 2016, 1021, 145–152. [Google Scholar] [CrossRef]
- Liao, X.; Jia, B.; Sun, C.; Shi, L.; Liu, X.; Zhou, L.; Kong, W. Reuse of regenerated immunoaffinity column for excellent clean-up and low-cost detection of trace aflatoxins in malt. Microchem. J. 2020, 157, 105007. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Gao, H.-L.; Guo, Z.-X.; Lu, A.-X.; Guo, X.-J.; Lu, J.-H.; Luan, Y.-X. Determination of Aflatoxin B1 in Lotus Seed by High Performance Liquid Chromatography with Aptamer Affinity Column for Purification and Enrichment. Chin. J. Anal. Chem. 2020, 48, 662–669. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, M.; Chi, J.; Yu, X.; Chen, Y.; Lin, X.; Xie, Z. Aptamer-based polyhedral oligomeric silsesquioxane (POSS)-containing hybrid affinity monolith prepared via a “one-pot” process for selective extraction of ochratoxin A. J. Chromatogr. A 2018, 1563, 37–46. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, X.; Zhu, D.; Lin, X.; Xie, Z. Preparation and evaluation of highly hydrophilic aptamer-based hybrid affinity monolith for on-column specific discrimination of ochratoxin A. Talanta 2019, 200, 193–202. [Google Scholar] [CrossRef]
- Lyu, H.; Sun, H.; Zhu, Y.; Wang, J.; Xie, Z.; Li, J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal. Chim. Acta 2020, 1103, 97–105. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Hu, X.; Zhang, Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: Current status and prospects. Mass Spectrom. Rev. 2013, 32, 420–452. [Google Scholar] [CrossRef]
- Falaki, F. Sample Preparation Techniques for Gas Chromatography. Gas Chromatogr. Deriv. Sample Prep. Appl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, S.C.; David, V. Derivatization Methods in GC and GC/MS. Gas Chromatogr. Deriv. Sample Prep. Appl. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.; Fernandes, J.; Cunha, S. Optimization and validation of a method based in a QuEChERS procedure and gas chromatography–mass spectrometry for the determination of multi-mycotoxins in popcorn. Food Control 2012, 27, 188–193. [Google Scholar] [CrossRef]
- McMaster, N.; Acharya, B.; Harich, K.; Grothe, J.; Mehl, H.L.; Schmale, D.G. Quantification of the Mycotoxin Deoxynivalenol (DON) in Sorghum Using GC-MS and a Stable Isotope Dilution Assay (SIDA). Food Anal. Methods 2019, 12, 2334–2343. [Google Scholar] [CrossRef]
- Jakovac-Strajn, B.; Tavčar-Kalcher, G. A Method Using Gas Chromatography—Mass Spectrometry for the Detection of Mycotoxins from Trichothecene Groups A and B in Grains. Gas Chromatogr. Deriv. Sample Prep. Appl. 2012. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, P.; Cui, F.; Pi, F.; Zhang, Y.; Sun, X. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry. Chemosphere 2017, 180, 267–274. [Google Scholar] [CrossRef]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Kohl, T.O.; Ascoli, C.A. Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harb. Protoc. 2017, 564–568. [Google Scholar] [CrossRef]
- Lagat, M.K.; Toroitich, F.J.; Obonyo, M.; Micah, L.K. Development of an ELISA-based method for testing aflatoxigenicity and aflatoxigenic variability among Aspergillus species in culture. Sci. Afr. 2020, 7, e00266. [Google Scholar] [CrossRef]
- Xiong, Y.; Pei, K.; Wu, Y.; Xiong, Y. Colorimetric ELISA based on glucose oxidase-regulated the color of acid–base indicator for sensitive detection of aflatoxin B1 in corn samples. Food Control 2017, 78, 317–323. [Google Scholar] [CrossRef]
- Xiong, Y.; Pei, K.; Wu, Y.; Duan, H.; Lai, W.; Xiong, Y. Plasmonic ELISA based on enzyme-assisted etching of Au nanorods for the highly sensitive detection of aflatoxin B1 in corn samples. Sensors Actuators B Chem. 2018, 267, 320–327. [Google Scholar] [CrossRef]
- Zhan, S.; Hu, J.; Li, Y.; Huang, X.; Xiong, Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chem. 2021, 342, 128327. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, N.B.; Fernando, C.J.; Munasinghe, D.; Fernando, R. Occurrence of aflatoxins in edible vegetable oils in Sri Lanka. Food Control 2019, 101, 97–103. [Google Scholar] [CrossRef]
- Srdjan, S.; Danka, S.; Radivoj, P.; Jelena, N.T.; Dragan, M.; Dragica, N.; Sasa, J. Comparison of two analytical methods (ELISA and LC-MS/MS) for determination of aflatoxin B1 in corn and aflatoxin M1 in milk. Procedia Food Sci. 2015, 5, 270–273. [Google Scholar]
- Oplatowska-Stachowiak, M.; Sajic, N.; Xu, Y.; Haughey, S.A.; Mooney, M.H.; Gong, Y.Y.; Verheijen, R.; Elliott, C.T. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control 2016, 63, 239–245. [Google Scholar] [CrossRef]
- Hebbrecht, T.; Liu, J.; Zwaenepoel, O.; Boddin, G.; Van Leene, C.; Decoene, K.; Madder, A.; Braeckmans, K.; Gettemans, J. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. New Biotechnol. 2020, 59, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Aghamollaei, H.; Hosseindokht, M.; Heiat, M.; Razei, A.; Bakherad, H. Nanobodies, the potent agents to detect and treat the Coronavirus infections: A systematic review. Mol. Cell. Probes 2021, 55, 101692. [Google Scholar] [CrossRef]
- Hung, J.-T.; Yu, A.L. GD2-Targeted Immunotherapy of Neuroblastoma. Neuroblastoma 2019, 63–78. [Google Scholar] [CrossRef]
- Zhao, F.; Tian, Y.; Shen, Q.; Liu, R.; Shi, R.; Wang, H.; Yang, Z. A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Talanta 2019, 195, 55–61. [Google Scholar] [CrossRef]
- Peltomaa, R.; Fikacek, S.; Benito-Peña, E.; Barderas, R.; Head, T.; Deo, S.; Daunert, S.; Moreno-Bondi, M.C. Bioluminescent detection of zearalenone using recombinant peptidomimetic Gaussia luciferase fusion protein. Microchim. Acta 2020, 187, 1–11. [Google Scholar] [CrossRef]
- Peltomaa, R.; Farka, Z.; Mickert, M.J.; Brandmeier, J.C.; Pastucha, M.; Hlaváček, A.; Martínez-Orts, M.; Canales, Á.; Skládal, P.; Benito-Peña, E.; et al. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens. Bioelectron. 2020, 170, 112683. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.-L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Mutharasan, R. Chapter 6—Biosensors. In Sensor Technology Handbook; Newnes: London, UK, 2005; pp. 161–180. [Google Scholar] [CrossRef]
- Negahdary, M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020, 216, 120999. [Google Scholar] [CrossRef]
- Xu, J.; Qiao, X.; Wang, Y.; Sheng, Q.; Yue, T.; Zheng, J.; Zhou, M. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Microchim. Acta 2019, 186, 238. [Google Scholar] [CrossRef] [PubMed]
- Chulkin, P.; Data, P. Electrochemical Impedance Spectroscopy as a Tool for Electrochemical Rate Constant Estimation. J. Vis. Exp. 2018, 140, e56611. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.H.M.; Abdullah, J.; Rozi, N.; Rozlan, A.A.M.; Abu Hanifah, S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials 2020, 10, 1346. [Google Scholar] [CrossRef]
- Lin, T.; Shen, Y. Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly. J. Electroanal. Chem. 2020, 870, 114247. [Google Scholar] [CrossRef]
- Feng, Z.; Gao, N.; Liu, J.; Li, H. Boron-doped diamond electrochemical aptasensors for trace aflatoxin B1 detection. Anal. Chim. Acta 2020, 1122, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Suea-Ngam, A.; Howes, P.D.; Stanley, C.; Demello, A.J. An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection. ACS Sensors 2019, 4, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri–Dehaghani, F.; Zare, H.R.; Shekari, Z. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label–free electrochemical aptasensor based on platinum nanoparticles loaded on Fe–based metal–organic frameworks. Food Chem. 2020, 310, 125820. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Bharti, A.; Batra, S.; Rana, S.; Rana, S.; Bhalla, A.; Prabhakar, N. An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem. J. 2019, 144, 102–109. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Zhou, Y.; Xing, Y.; Zhang, G.-M.; Zhang, Y.; Zhang, C.-H.; Lei, P.; Dong, C.; Deng, X.; He, Y.; et al. A Label-free aptasensor based on Aptamer/NH2 Janus particles for ultrasensitive electrochemical detection of Ochratoxin A. Talanta 2019, 199, 310–316. [Google Scholar] [CrossRef]
- He, B.; Yan, X. Ultrasensitive electrochemical aptasensor based on CoSe2/AuNRs and 3D structured DNA-PtNi@Co-MOF networks for the detection of zearalenone. Sensors Actuators B Chem. 2020, 306, 127558. [Google Scholar] [CrossRef]
- Hui, Y.; Wang, B.; Ren, R.; Zhao, A.; Zhang, F.; Song, S.; He, Y. An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B1. Food Control 2020, 109, 106902. [Google Scholar] [CrossRef]
- Arellano, M.; Oturan, N.; Oturan, M.A.; Pazos, M.; Sanromán, M.Á.; González-Romero, E. Differential pulse voltammetry as a powerful tool to monitor the electro-Fenton process. Electrochimica Acta 2020, 354, 136740. [Google Scholar] [CrossRef]
- Chen, W.; Yan, C.; Cheng, L.; Yao, L.; Xue, F.; Xu, J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens. Bioelectron. 2018, 117, 845–851. [Google Scholar] [CrossRef]
- Han, Z.; Tang, Z.; Jiang, K.; Huang, Q.; Meng, J.; Nie, D.; Zhao, Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS2-Au) for multiplex detection of mycotoxins. Biosens. Bioelectron. 2020, 150, 111894. [Google Scholar] [CrossRef]
- He, B.; Dong, X. Nb.BbvCI powered DNA walking machine-based Zr-MOFs-labeled electrochemical aptasensor using Pt@AuNRs/Fe-MOFs/PEI-rGO as electrode modification material for patulin detection. Chem. Eng. J. 2021, 405, 126642. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Qiang, Y. Ultrasensitive electrochemical aptasensor for ochratoxin A detection using AgPt bimetallic nanoparticles decorated iron-porphyrinic metal-organic framework for signal amplification. Sensors Actuators B Chem. 2020, 312, 127964. [Google Scholar] [CrossRef]
- Erdem, A.; Eksin, E.; Kesici, E.; Yaralı, E.; Kanat, E. Single-use sensor technology for monitoring of zearalenone in foods: ZentoSens. Microchem. J. 2019, 147, 37–42. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Zhao, Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens. Bioelectron. 2019, 144, 111641. [Google Scholar] [CrossRef]
- Xing, K.-Y.; Shan, S.; Liu, D.-F.; Lai, W.-H. Recent advances of lateral flow immunoassay for mycotoxins detection. TrAC Trends Anal. Chem. 2020, 133, 116087. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.; Kuang, H.; Xiao, J.; Xu, C. Immunoassays for rapid mycotoxin detection: State of the art. Analyst 2020, 145, 7088–7102. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) 1126/2007. Off. J. Eur. Union 2007, 255, 16–17. [Google Scholar]
- Sena-Torralba, A.; Ngo, D.B.; Parolo, C.; Hu, L.; Álvarez-Diduk, R.; Bergua, J.F.; Rosati, G.; Surareungchai, W.; Merkoçi, A. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosens. Bioelectron. 2020, 168, 112559. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed. European Commission. 2019. Available online: https://knowledge4policy.ec.europa.eu/publication/general-standard-contaminants-toxins-food-feed-codex-stan-193-1995_en (accessed on 4 June 2021).
Immunoassay | Antibody | Mycotoxin | Sample | Half Maximal Inhibitory Concentration, IC50 (µg kg−1) | Limit of Detection, LOD (µg kg−1) | Linear Range (µg kg−1) | Percent Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|
Direct competitive ELISA | Broad-specific monoclonal antibody (mAb) | Total AFs (AFB1, B2, G1, G2) | Maize | 0.04–0.06 | 0.21 | 0.001–0.81 | 74.5–96.5 | [28] |
FLISA | mAb | AFB1 | Cereal | 0.4 | 0.01 | 0.08–1.97 | 78.36–91.87 | [27] |
Immuno-chromatographic strip (ICS) | Single-chain variable fragment (scFv) | FUM B1 | Maize | 12.67 | 25 | 2.10–76.45 | - | [32] |
Instrumentation (Phase System, Column) | Mobile Phase for Liquid Chromatography (LC) Column | Mycotoxin | Pre-Concentration Step | Response Time (min) | LOD (µg kg−1) | Linear Range (µg kg−1) | Percent Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|
UHPLC-MS/MS (Reverse phase, Acquity UPLC Ethylene Bridged Hybrid (BEH) C18 column) | Methanol (aq), 0.1% formic acid Methanol (aq) 0.5 mM ammonium acetate | AFB1 AFB2 AFG1 AFG2 AFM1 | SPE (IAC)—AflaOcha HPLC | 4 | 0.001–0.008 | 25–1 × 104 | 80.0–110.0 | [80] |
HPLC-FLD (Reverse phase, Unimicro Technology C18 column) | Methanol 0.5% acetic acid (aq) | AFB1 AFB2 AFG1 AFG2 OTA | SPE (IAC)—AflaOcha HPLC | - | 0.04 0.02 0.08 0.03 0.30 | 0.20–50.0 0.06–15.0 0.30–50.0 0.09–15.0 1.0–50.0 | >62.0% | [77] |
HPLC-MS/MS (Reverse phase, Hypersil GOLD C18 column) | 0.05% formic acid (aq) Acetonitrile, 0.05% formic acid | AFB1 AFB2 AFG1 AFG2 OTA ZEN T-2 | In-lab mIAC | - | 0.10 0.04 0.10 0.04 0.20 0.10 0.40 | 0.30–25.0 0.12–20.0 0.30–20.0 0.12–20.0 0.60–30.0 0.30–25.0 1.2–40.0 | 98.8–102.3 | [81] |
HPLC-FLD (Reverse phase, Alltima C18 column) | 2.0% acetic acid (aq) Acetonitrile | OTA | Apt-polyhedral oligometric silsesquioxane (POSS)-monolithic column | 30 | 0.025 | 0.045–0.2 | >92.2% | [84] |
HPLC-FLD (Reverse phase, Alltima C18 column) | Acetonitrile, Tris-EDTA (TE) buffer | OTA | Poly(POSS-methacryl-co-N,N’-methylene-bisacrylamide-co-2-Acrylamido-2-methyl propane sulfonic acid-Apt (PMAA)-monolithic column | - | 0.06 | 0.06–5.0 | 94.9–99.8 | [85] |
HPLC-DAD-FLD (Reverse phase, ZORBAX StableBond-C18 column) | Ultra-pure water Acetonitrile | DON | mIAC–Huan Magnech Bio-Tech | 30 | 1.5–20.0 | 100–500 | 75.8–118.2 | [78] |
3-Acetyldeoxynivalenol (3-AcDON) | 100–500 | |||||||
15-Acetyldeoxynivalenol (15-AcDON) | 100–500 | |||||||
ZEN | 20–200 | |||||||
α-Zearalenol (α-ZOL) | 20–200 | |||||||
β -Zearalenol (β-ZOL) | 20–200 | |||||||
Zearalanone (ZAN) | 20–200 | |||||||
α-Zearalanol (α-ZAL) | 20–200 | |||||||
β-Zearalanol (β-ZAL) | 20–200 | |||||||
HPLC-MS/MS (Reverse phase, Zorbax Eclipse C18 column) | Water Methanol (aq), 5 mM ammonium acetate | AFB1 AFB2 AFG1 AFG2 | No SPE required | 9 | 0.16 0.11 0.36 0.16 | 0.225–1.25 | 50.0–120.0 | [74] |
HPLC-Photochemical Derivatisation (PCD)-FLD (Reverse phase, Agilent CAPCELL PAK-C18 column) | Water, methanol and acetonitrile (isocratic eluent) | AFB1 AFB2 AFG1 AFG2 | SPE (IAC)–ToxinFast | - | 0.4 0.5 0.4 0.3 | 0.625–50.0 0.156–12.5 0.625–50.0 0.156–12.5 | 74.5–88.2 | [82] |
HPLC-PCD-FLD (Reverse phase, Venusil MP C18 column) | Methanol and water (isocratic eluent) | AFB1 | In-lab SPE (AAC) | 12 | 0.05 | - | 91.8–108.6 | [83] |
HPLC-FLD (Reverse phase, Alltima C18 column) | 2.0% Acetic acid (aq) Acetonitrile | OTA | Apt-MIP-monolithic column | - | 0.05 | 0.14–1.0 | 95.5–105.9 | [86] |
UHPLC-MS/MS (Reversed phase, Shim-pack XR-ODS-III C18 column) | Water, acetonitrile | PAT | Solid-phase microextraction (SPME) | - | 0.334 | 0.001–1.250 | 85.4–106.0 | [45] |
ELISA Technique | Signal Producer | Substance for Labelling the Competing Agent | Mycotoxin | Half Maximal Inhibitory Concentration (IC50) | LOD (µg kg−1) | Linear Range (µg kg−1) | Percent Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|
Colorimetric direct competitive | Bromocresol purple (BCP) | Glucose oxidase (GOx) | AFB1 | 0.066 | - | 0.025–0.2 | 82–115 | [98] |
Colorimetric direct competitive | Horseradish peroxidase (HRP) | Glucose oxidase (GOx) | AFB1 | 0.0223 | 0.004 | 0.0031–0.1500 | 80.56–108.53 | [99] |
Dynamic light scattering direct competitive | AuNP solution | Glucose oxidase (GOx) | AFB1 | 0.00136 | 0.00012 | - | 90.60–107 | [100] |
Direct competitive ULISA | Up-conversion nanoparticles (UNCP, type NaYF4:Yb,Tm) Streptavidin (SA) | Up-conversion nanoparticles (UNCP, type NaYF4:Yb,Tm) Streptavidin (SA) | ZEN | 0.16 ± 0.08 | 0.02 | - | 77–105 | [109] |
Immunoassay | Molecular Recognition Element | Mycotoxin | Half Maximal Inhibitory Concentration, IC50 (µg kg−1) | LOD (µg kg−1) | Linear Range (µg kg−1) | Percent Recovery (%) | References |
---|---|---|---|---|---|---|---|
Direct ELISA | Monoclonal antibody | AFB1 Total AFs (AFB1, B2, G1, G2 | 0.037 ± 0.002 0.031 ± 0.001 | 0.38 0.43 | - | 97.1–107.3 | [103] |
Direct competitive ELISA | Nanobody Nb28 | AFB1 | 0.75 | 0.13 | 0.24–2.21 | 84.2–116.2 | [107] |
Direct competitive ULISA | Peptide mimotope | ZEN | 11 | 4.2 | - | 87–106 | [108] |
Competitive NAISA | Apt | AFB1 | - | 0.005 | 0.01–1000 | 80–105.2 | [75] |
EC Technique | Types of Working Electrode | Surface Conductivity Enhancer | Supporting Substances/Signal Amplifier | Mycotoxin | Real Sample | LOD (µg kg−1) | Linear Range (µg kg−1) | References |
---|---|---|---|---|---|---|---|---|
EIS | Glassy carbon | AuNPs | - | PAT | Apple juice | 0.046 | 0.154–1541.2 | [113] |
Boron-doped diamond | AuNPs | - | AFB1 | Peanut powder | 1.718 × 10−5 | 3.123 × 10−5–3.123 | [117] | |
Glassy carbon | Poly(diallyl dimethylammonium chloride) graphene nanosheets Carboxylated polystyrene nanospheres | - | AFB1 | Oil, soy sauce | 0.002 | 0.001–0.1 | [116] | |
Glassy carbon | Platinum nanoparticles Metal–organic frameworks (MIL-101 (Fe)) | - | AFM1 | Milk powder, pasteurised milk | 0.002 | 0.01–80 | [119] | |
DPV | Au | AuNPs | AuNPs Ferrocene (Fc) | OTA | Wine | 0.001 | 0.001–500 | [125] |
Glassy carbon | Carboxylated graphene | - | OTA | Wine | 1.333 × 10−6 | 4.038 × 10−6–4.038 | [121] | |
Indium-doped tin oxide (ITO) sheet | Carboxylated graphene | - | OTA | Grape juice | 0.01 | - | [120] | |
Pencil graphite | - | - | ZEN | Cornflour, cornstarch, malt | 29.47 | 100–600 | [129] | |
Au | Trogtalite (CoSe2) High crystallisation structure | Metal–organic frameworks (MOFs) Platinum-nickel (PtNi) | ZEN | Maize | 1.37 × 10−6 | 1 × 10−5–10 | [122] | |
Glassy carbon | AuNPs | DNA-AuNPs-HRP Exonuclease | AFB1 | Peanut, corn | 3.3 × 10−4 | 0.001–200 | [123] | |
Au | - | Metal–organic framework Silver–platinum (AgPt) Iron–porphyrin (PCN-223-Fe) | OTA | Wine | 1.4 × 10−5 | 2 × 10−5–2 | [128] | |
Glassy carbon | AuNPs Reduced molybdenum disulphide (rMoS2) | Gold nanoparticles Thionine (Thi) 6-(Ferrocenyl) hexanethiol (FC6S) | ZEN, FUM B1 | Maize | 5 × 10−4 | 0.001–10 | [126] | |
Au | Metal-organic frameworks (Fe-based) Gold-Platinum (Pt@AuNRs) Polyethyleneimine-reduced graphene oxide (PEI-rGO) | Nicking endonuclease (Nb.BbvCl) | PAT | Apple juice, apple wine | 4.14 × 10−5 | 5 × 10−5–0.5 | [127] | |
SWV | Au | - | Silver metallisation | OTA | Beer | 7 × 10−4 | 0.001–100 | [118] |
Au | - | Methylene blue | AFB1 | Beer, white wine | 0.625 | 0.625–1249 | [130] | |
Au | - | Methylene blue | AFB1 | Wine, milk, cornflour | 0.002 | 0.002–7.807 7.807–938 | [56] |
Methods | Products | Time Required (min) | Mycotoxin | LOD (µg kg−1) | Quantification Range/Highest Limit (µg kg−1) | Qualitative/Quantitative | On-Site Detection | Manufacturer |
---|---|---|---|---|---|---|---|---|
Lateral Flow | AgraStrip | 3 | Total AFs (AFB1, B2, G1, G2) | 3.3 | 0–500 | Both | Yes | Romer Labs |
3 | DON | 250 | 250 | |||||
3 | FUM | 150 | 250 | |||||
3 | ZEN | 30 | 40 | |||||
3 | OTA | 4 | 4 | |||||
Reveal Q+ | 6 | AFB1 | 2 | 3–100 | Quantitative | Yes | ||
3 | DON | 300 | 300–6000 | |||||
6 | FUM | 300 | 300–6000 | |||||
9 | OTA | 2 | 2–20 | |||||
6 | T-2 HT-2 | 50 | 50–600 | |||||
5 | AFM1 | 0.15 | 0.15–0.6 | |||||
Reveal Q+ MAX | 6 | AFB1 | 3 | 3–50 | Quantitative | Yes | ||
5 | T-2 HT-2 | 50 | 50–500 | |||||
5 | OTA | 1.1 | 2–25 | |||||
3 | DON | 300 | 300− 600 | |||||
5 | ZEN | 21, 36 | 25–500 | |||||
Smart Strip | 5−10 | AFB1 | - | 1–75 | Both | Yes | Eurofins Technologies | |
10 | Total AFs (AFB1, B2, G1, G2) | - | 2–75 | |||||
10 | DON | - | 125–12,500 | |||||
5 | FUM | - | 150–4000 750–20,000 (by dilution) | |||||
10 | ZEN | - | 50–1000 100–2000 (by dilution) | |||||
RIDA QUICK | 5 | Total AFs (AFB1, B2, G1, G2) | 2 | 2–75 50–300 | Quantitative | Yes | R-Biopharm | |
QuickTox | 2−4 | Total AFs (AFB1, B2, G1, G2) | - | 20 | Qualitative | Yes | EnviroLogix | |
QuickTox for QuickScan | 5 | Total AFs (AFB1, B2, G1, G2) | - | 2.5–100 | Quantitative | Yes | ||
5 | FUM | - | 18,000 | |||||
10 | OTA | - | 1.5–100 | |||||
5 | ZEN | - | 50–520 | |||||
TotalTox Comb | 4 | AFB1 | - | 2.7–30 | Quantitative | Yes | ||
4 | DON | - | 0.1–8 | |||||
4 | FUM | - | 0.1–10 | |||||
4 | ZEN | - | 50–500 | |||||
ROSA AFQ-FAST | 3−5 | Total AFs (AFB1, B2, G1, G2) | - | 5–30 20–100 50–300 | Quantitative | Yes | Charm Sciences Inc. | |
ROSA FAST5 | 5 | DON | - | 500–1500 1000–5400 >5000 | Quantitative | Yes | ||
5 | FUM | - | 500–1500 1000–5400 5000–25,000 | |||||
5 | ZEN | - | 50–350 300–1000 | |||||
ROSA DONQ2 | 2 | DON | - | 500–5400 400–30,000 | Quantitative | Yes | ||
ROSA AFQ-WETS5 | 5 | Total AFs (AFB1, B2, G1, G2) | - | 5–10 50–300 | Quantitative | Yes | ||
ROSA WET-S5 | 5 | DON | - | 500–5400 400–30,000 | Quantitative | Yes | ||
5 | ZEN | - | 50–1000 | |||||
ROSA | 10 | T-2 HT-2 | - | 25–200 100–2000 | Quantitative | Yes | ||
Charm SLAFM | 3 | AFM1 | 0.35 | - | Qualitative | Yes | ||
Charm SLAFMQ | 8 | AFM1 | 0.5 | - | Quantitative | Yes | ||
Charm OCHRAQ-G | 10 | OTA | - | 5–30 20–100 | Quantitative | Yes | ||
MycoTube | 5 | Total AFs (AFB1, B2, G1, G2) | >10 | - | Qualitative | Yes | ||
AflaSensor Quanti | 10 | AFM1 | - | 0.03–0.15 | Quantitative | Yes | Unisensor | |
10 | AFM1 | - | 0.2–0.75 | |||||
Rapid Test Strip | 15 | Total AFs (AFB1, B2, G1, G2) | 5 | - | Both | Yes | Nankai Biotech | |
AFB1 | 5 | - | ||||||
ZEN | 100 | - | ||||||
DON | 500 | - | ||||||
OTA | 50 | - | ||||||
T-2 HT-2 | 50 | - | ||||||
FUM | 200 | - | ||||||
ELISA | AgraQuant | 15 | Total AFs (AFB1, B2, G1, G2) | 1–3 | 1–40 | Quantitative | No | Romer Labs |
15 | AFM1 | 0.0023–0.72 | 0.1–2 | |||||
15 | AFB1 | 2 | 2–50 | |||||
15 | OTA | 1.9 | 2–40 | |||||
15 | ZEN | 20 | 25–1000 | |||||
15 | FUM | 200 | 250–5000 | |||||
15 | DON | 200 | 250–5000 | |||||
15 | T-2 | 10 | 20–500 | |||||
Agri-Screen | 5 | AFB1 | 20 | - | Qualitative | Yes | Neogen | |
10 | DON | 1000 | - | |||||
15 | FUM | 5000 | - | |||||
Veratox | 5 | AFB1 | 1.4 | 5–50 | Quantitative | No | ||
45 | AFM1 | 0.0043 | - | |||||
20 | FUM | 200 | 1000–6000 | |||||
20 | OTA | 1 | 2–25 | |||||
10 | T-2 HT-2 | 25 | 25–250 | |||||
10 | ZEN | 5 | 25–500 | |||||
Veratox HS | 20 | AFB1 | 0.5 | 1–8 | Quantitative | No | ||
20 | DON | 25 | 25–250 | |||||
15 | FUM | 50 | 50–600 | |||||
30 | OTA | 1 | 2–10 | |||||
Veratox HS | 10 | Total AFs (AFB1, B2, G1, G2) | 2.5 | 5–50 | Quantitative | No | ||
15 | ZEN | 19.5 | 25–500 | |||||
Celer | 20 | AFM1 | 0.025, 0.25 | - | Quantitative | No | Eurofins Technologies | |
15 | Total AFs (AFB1, B2, G1, G2) | 2 | - | |||||
20 | DON | 40, 120, 240 | - | |||||
20 | FUM | 750 | - | |||||
20 | OTA | 2, 4 | - | |||||
20 | T-2 | 25 | - | |||||
20 | ZEN | 10 | - | |||||
B ZERO | 15 | AFB1 | 1 | - | Quantitative | No | ||
30 | AFM1 | 0.01 | - | |||||
20 | DON | 40, 120, 240 | - | |||||
20 | FUM | 750 | - | |||||
20 | OTA | 2, 4 | - | |||||
20 | T-2 | 25 | - | |||||
20 | ZEN | 10 | - | |||||
SENSISpec | 10−20 | Total AFs (AFB1, B2, G1, G2) | 0.8–1.5 | - | Quantitative | No | ||
I’screen AFLA | 50 | Total AFs (AFB1, B2, G1, G2) | 0.5, 1.25 | - | Quantitative | No | ||
75 | AFM1 | 0.005, 0.05, 0.025, 0.037, 0.12 | - | |||||
RIDASCREEN | 45 | OTA | 0.5–1.6 | 0.3–30 0.6–60 | Quantitative | No | R-Biopharm | |
Screening Card | 10 | Total AFs (AFB1, B2, G1, G2) | Dependent on dilution | - | Qualitative | No | ||
10 | AFB1 | Dependent on dilution | - | |||||
>15 | OTA | <50 | - | |||||
ELISA Kit | 15 | Total AFs (AFB1, B2, G1, G2) | 1, 2 | - | Quantitative | No | Biorex Food Diagnostics | |
15 | AFB1 | 1 | - | |||||
20 | ZEN | 10 | - | |||||
20 | AFM1 | 0.025, 0.005 | - | |||||
40 | OTA | 0.5, 1, 2 | - | |||||
Plate Kit | 20 | Total AFs (AFB1, B2, G1, G2) | 0.4, 0.6 | 1.2, 1.8 | Quantitative | No | Beacon Analytical Systems | |
75 | AFM1 | - | 0.002–1 | |||||
15 | DON | - | 200–2500 | |||||
15 | FUM | - | 300–6000 | |||||
15 | ZEN | - | 20–100 | |||||
15 | T-2 HT-2 | - | 25–500 | |||||
Tube Kit | 20 | Total AFs (AFB2, G1, G2) | - | 2–100 | Quantitative | No | ||
20 | ZEN | - | 10–100 | |||||
ELISA Kit | 25 | AFM1 | <0.005 | 0.005–0.135 | Quantitative | No | Cusabio | |
25 | Total AFs (AFB1, B2, G1, G2, M1) | <0.02 | 0.02–1.62 | |||||
25 | AFB1 | 1, 2 | 0.15–4.05 | |||||
25 | OTA | <0.15 | 0.15–4.05 | |||||
25 | ZEN | <0.15 | 0.15–4.05 | |||||
25 | DON | <1 | 1–81 |
Mycotoxin Detection Technologies | Advantages | Disadvantages |
---|---|---|
HPLC |
|
|
GC-MS | - |
|
ELISA |
|
|
EC Aptasensor |
|
|
Lateral Flow |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, J.Y.; Pike, A.; Tan, L.L. Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods 2021, 10, 1437. https://doi.org/10.3390/foods10071437
Ong JY, Pike A, Tan LL. Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods. 2021; 10(7):1437. https://doi.org/10.3390/foods10071437
Chicago/Turabian StyleOng, Jing Yi, Andrew Pike, and Ling Ling Tan. 2021. "Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection" Foods 10, no. 7: 1437. https://doi.org/10.3390/foods10071437
APA StyleOng, J. Y., Pike, A., & Tan, L. L. (2021). Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods, 10(7), 1437. https://doi.org/10.3390/foods10071437