Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards
Abstract
:1. Introduction
1.1. Fishery/Aquaculture Practices and Targeted Organisms
1.2. Most Useful Discards from Several Seafood Taxa
1.3. Aim of the Review
2. Collagen and Gelatin
3. Mineral Salts
4. Protein and Protein Hydrolysates
5. Lipids
6. Carotenoids
7. Polysaccharides
8. Phenols
9. Industrial Status and Trends
10. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pauly, D.; Zeller, D.; Palomares, M.L.D. Sea around Us. Concepts, Design and Data (seaaroundus.org). Available online: http://www.seaaroundus.org/data/#/spatial-catch (accessed on 15 March 2021).
- Zeller, D.; Cashion, T.; Palomares, M.; Pauly, D. Global marine fisheries discards: A synthesis of reconstructed data. Fish Fish. 2018, 19, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, T.L.; Gray, T.S. Reducing discards of fish at sea: A review of European pilot projects. J. Environ. Manag. 2010, 91, 717–723. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Milli, M.C.; Neff, R. Wasted seafood in the United States: Quantifying loss from production to consumption and moving toward solutions. Glob. Environ. Chang. 2015, 35, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Karadeniz, F.; Kim, S.-K. Trends in the Use of Seafood Processing By-Products in Europe; Springer Science and Business Media LLC.: Berlin, Germany, 2013; Volume 9781461495, pp. 11–19. [Google Scholar]
- Boopendranath, M.R. Waste minimisation in fishing operations. Fish. Technol. 2012, 49, 109–119. [Google Scholar]
- Suuronen, P.; Chopin, F.; Glass, C.; Løkkeborg, S.; Matsushita, Y.; Queirolo, D.; Rihan, D. Low impact and fuel efficient fishing—Looking beyond the horizon. Fish. Res. 2012, 119–120, 135–146. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Macfadyen, G.; Huntington, T.; Cappell, R. Abandoned, Lost or Otherwise Discarded Fishing Gear; FAO: Rome, Italy, 2009. [Google Scholar]
- Thompson, R.C.; La Belle, B.E.; Bouwman, H.; Neretin, L. Marine Debris as a Global Environmental Problem: Introducing a Solutions-Based Framework Focused on Plastic. A STAP Information Document. Available online: https://www.thegef.org/sites/default/files/publications/STAP_MarineDebris_-_website_1.pdf (accessed on 5 April 2021).
- Link, J.; Segal, B.; Casarini, L.M. Abandoned, lost or otherwise discarded fishing gear in Brazil: A review. Perspect. Ecol. Conserv. 2019, 17, 1–8. [Google Scholar] [CrossRef]
- Bellido, J.M.; Santos, M.B.; Pennino, M.G.; Valeiras, X.; Pierce, G. Fishery discards and bycatch: Solutions for an ecosystem approach to fisheries management? Hydrobiology 2011, 670, 317–333. [Google Scholar] [CrossRef]
- Binns, C.W. Discards in the world’s marine fisheries: An update. FAO Fish. Tech. Pap. 2011, 16, 177–178. [Google Scholar]
- Gilman, E.; Roda, A.P.; Huntington, T.; Kennelly, S.J.; Suuronen, P.; Chaloupka, M.; Medley, P.A.H. Benchmarking global fisheries discards. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef]
- Environmental Justice Foundation Squandering the Seas: How Shrimp Trawling is Threatening Ecological Integrity and Food Security around the World: A Report. 2003. Available online: https://www.eldis.org/document/A12837 (accessed on 15 April 2021).
- Najmudeen, T.; Sathiadhas, R. Economic impact of juvenile fishing in a tropical multi-gear multi-species fishery. Fish. Res. 2008, 92, 322–332. [Google Scholar] [CrossRef]
- Nunoo, F.; Boateng, J.O.; Ahulu, A.M.; Agyekum, K.A.; Sumaila, U.R. When trash fish is treasure: The case of Ghana in West Africa. Fish. Res. 2009, 96, 167–172. [Google Scholar] [CrossRef]
- Stergiou, K.I.; Machias, A.; Somarakis, S.; Kapantagakis, A. Can we define target species in Mediterranean trawl fisheries? Fish. Res. 2003, 59, 431–435. [Google Scholar] [CrossRef]
- Bazi, C.C.; Pessatti, M.; Junior, C.R. Utilization of the jellyfish occuring in the bycatch for human consumption in the south of Brazil. Panam. J. Aquat. Sci. 2019, 14, 13–23. [Google Scholar]
- Nagata, R.M.; Haddad, M.A.; Nogueira, M. The nuisance of medusae (Cnidaria, Medusozoa) to shrimp trawls in central part of southern Brazilian Bight, from the perspective of artisanal fishermen. Panam. J. Aquat. Sci. 2009, 4, 312–325. [Google Scholar]
- Lucas, C.H.; Dawson, M.N. What Are Jellyfishes and Thaliaceans and Why Do They Bloom; Springer Science and Business Media LLC.: Berlin, Germany, 2014; pp. 9–44. [Google Scholar]
- Ohta, N.; Sato, M.; Ushida, K.; Kokubo, M.; Baba, T.; Taniguchi, K.; Urai, M.; Kihira, K.; Mochida, J. Jellyfish mucin may have potential disease-modifying effects on osteoarthritis. BMC Biotechnol. 2009, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, D.L.; Underwood, M.Y.; Gabourie, T.A.; Lerner, K.C. Effects of a Supplement Containing Apoaequorin on Verbal Learning in Older Adults in the Community. Adv. Mind Body Med. 2016, 30, 4–11. [Google Scholar]
- Moran, D.L.; Tetteh, A.O.; Goodman, R.E.; Underwood, M.Y. Safety assessment of the calcium-binding protein, apoaequorin, expressed by Escherichia coli. Regul. Toxicol. Pharmacol. 2014, 69, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban, M.; García, A.; Ramos, P.; Márquez, M. Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Manag. 2007, 27, 193–200. [Google Scholar] [CrossRef]
- Bhaskar, N.; Suresh, P.; Sakhare, P.; Sachindra, N. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzym. Microb. Technol. 2007, 40, 1427–1434. [Google Scholar] [CrossRef]
- De Arruda, L.F.; Borghesi, R.; Oetterer, M. Use of fish waste as silage: A review. Braz. Arch. Biol. Technol. 2007, 50, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.; Nogueira, M.; Durán, A.; Prieto, M.A.; Rodríguez-Amado, I.; Rial, D.; González, M.; Murado, M. Preparation of marine silage of swordfish, ray and shark visceral waste by lactic acid bacteria. J. Food Eng. 2011, 103, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Ms, R.V.B.; Ae, R.V.G. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V.; Lele, S.S. Nutraceuticals and bioactive compounds from seafood processing waste. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin, Germany, 2015; pp. 1405–1425. ISBN 9783642539718. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Ombra, M.N.; D’Acierno, A.; Coppola, R. Recovery of biomolecules of high benefit from food waste. Curr. Opin. Food Sci. 2018, 22, 43–54. [Google Scholar] [CrossRef]
- Venugopal, V. Seafood Processing: Adding Value through Quick Freezing, Retortable Packaging, and Cook-Chilling; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781420027396. [Google Scholar]
- Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.M.; Castro, P. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res. Int. 2010, 43, 2221–2233. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Gates, K.W. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean, Vazhiyil Venugopal. J. Aquat. Food Prod. Technol. 2010, 19, 48–54. [Google Scholar] [CrossRef]
- Mao, X.; Guo, N.; Sun, J.; Xue, C. Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J. Clean. Prod. 2017, 143, 814–823. [Google Scholar] [CrossRef]
- Sasidharan, A.; Venugopal, V. Proteins and Co-products from Seafood Processing Discards: Their Recovery, Functional Properties and Applications. Waste Biomass Valorization 2020, 11, 5647–5663. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Barber, A.R.; Corbin, K.; Zhang, W. Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresour. Bioprocess. 2017, 4, 1–19. [Google Scholar] [CrossRef]
- Fasciglione, G.; Goñi, M.; Yommi, A.; Perez-Bravo, J.; Ortueta, R.; Scampini, A.; Buffa, L.; Andreu, A.; Creus, C. Revaluation of waste from fishing industry through generation of chitosan coatings to improve quality and extend shelf-life of minimally processed lettuce. Postharvest Biol. Technol. 2020, 170, 111310. [Google Scholar] [CrossRef]
- Bonecco, M.B.; Martínez Sáenz, M.G.; Buffa, L.M. Chitosan, from residue to industry. In Advances in Physicochemical Properties of Biopolymers; Masuell, M., Renard, D., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; pp. 224–256. ISBN 978-1-68108-545-6. [Google Scholar]
- Kim, S.-K.; Senevirathne, M. Membrane Bioreactor Technology for the Development of Functional Materials from Sea-Food Processing Wastes and Their Potential Health Benefits. Membranes 2011, 1, 327–344. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.C.; Rodrigues, D.; Rocha-Santos, T.A.; Gomes, A.M.; Duarte, A.C. Marine biotechnology advances towards applications in new functional foods. Biotechnol. Adv. 2012, 30, 1506–1515. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Simpson, B.K. Enzymes in food bioprocessing—Novel food enzymes, applications, and related techniques. Curr. Opin. Food Sci. 2018, 19, 30–35. [Google Scholar] [CrossRef]
- Menon, V.V. Enzymes from Seafood Processing Waste and Their Applications in Seafood Processing. Adv. Food Nutr. Res. 2016, 78, 47–69. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention. Available online: http://www.fao.org/fileadmin/user_upload/ags/publications/GFL_web.pdf (accessed on 2 February 2021).
- Al Khawli, F.; Martí-Quijal, F.J.; Ferrer, E.; Ruiz, M.-J.; Berrada, H.; Gavahian, M.; Barba, F.J.; de la Fuente, B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. Adv. Food Nutr. Res. 2020, 92, 1–33. [Google Scholar] [CrossRef]
- Hamed, I.; Ozogul, F.; Ozogul, Y.; Regenstein, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Kandra, P.; Challa, M.M.; Jyothi, H.K.P. Efficient use of shrimp waste: Present and future trends. Appl. Microbiol. Biotechnol. 2012, 93, 17–29. [Google Scholar] [CrossRef]
- Wade, N.M.; Gabaudan, J.; Glencross, B.D. A review of carotenoid utilisation and function in crustacean aquaculture. Rev. Aquac. 2015, 9, 141–156. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.C.; Yusoff, F.M.; Shariff, M.; Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 2018, 10, 738–773. [Google Scholar] [CrossRef]
- Kumar, C.S.; Ganesan, P.; Suresh, P.V.; Bhaskar, N. Seaweeds as a source of nutritionally beneficial compounds—A review. J. Food Sci. Technol. 2008, 45, 1–13. [Google Scholar]
- Carvalho, L.G.; Pereira, L. Review of marine algae as source of bioactive metabolites. In Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology; Pereira, L., Neto, J.M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 195–227. ISBN 9781466581814. [Google Scholar]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murúa, P.; Yang, Z. The global status of seaweed production, trade and utilization. FAO Globefish Res. Program. 2018, 124, 120. [Google Scholar]
- Silva, T.H.; Moreira-Silva, J.; Marques, A.L.P.; Domingues, A.; Bayon, Y.; Reis, R.L. Marine Origin Collagens and Its Potential Applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef] [Green Version]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; De Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Omura, Y.; Urano, N.; Kimura, S. Occurrence of fibrillar collagen with structure of (α1)2α2 in the test of sea urchin Asthenosoma ijimai. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996, 115, 63–68. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N. Partial characterization of collagen from purple sea urchin (Anthocidaris crassispina) test. Int. J. Food Sci. Technol. 2000, 35, 497–501. [Google Scholar] [CrossRef]
- Kimura, S.; Takema, Y.; Kubota, M. Octopus skin collagen. Isolation and characterization of collagen comprising two distinct alpha chains. J. Biol. Chem. 1981, 256, 13230–13234. [Google Scholar] [CrossRef]
- Kimura, S.; Miura, S.; Park, Y.-H. Collagen as the Major Edible Component of Jellyfish (Stomolophus nomural). J. Food Sci. 1983, 48, 1758–1760. [Google Scholar] [CrossRef]
- Kimura, S.; Zhu, X.-P.; Matsui, R.; Shijoh, M.; Takamizawa, S. Characterization of Fish Muscle Type I Collagen. J. Food Sci. 1988, 53, 1315–1318. [Google Scholar] [CrossRef]
- Nagai, T.; Araki, Y.; Suzuki, N. Collagen of the skin of ocellate puffer fish (Takifugu rubripes). Food Chem. 2002, 78, 173–177. [Google Scholar] [CrossRef]
- Meyers, M.A.; Lin, Y.S.; Olevsky, E.A.; Chen, P.-Y. Battle in the Amazon: Arapaima versus Piranha. Adv. Eng. Mater. 2012, 14, B279–B288. [Google Scholar] [CrossRef]
- Regenstein, J.M.; Zhou, P. Collagen and gelatin from marine by-products. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing: Shaxton, UK, 2007; pp. 279–303. ISBN 9781845690137. [Google Scholar]
- Salvatore, L.; Gallo, N.; Natali, M.L.; Campa, L.; Lunetti, P.; Madaghiele, M.; Blasi, F.S.; Corallo, A.; Capobianco, L.; Sannino, A. Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Mater. Sci. Eng. C 2020, 113, 110963. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-S.; Ok, Y.-J.; Hwang, S.-Y.; Kwak, J.-Y.; Yoon, S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar. Drugs 2019, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Hashim, P.; Mohd Ridzwan, M.S.; Bakar, J.; Mat Hashim, D. Collagen in food and beverage industries. Int. Food Res. J. 2015, 22, 1–8. [Google Scholar]
- King‘ori, A.M. A Review of the Uses of Poultry Eggshells and Shell Membranes. Int. J. Poult. Sci. 2011, 10, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Benjakul, S.; Kittiphattanabawon, P.; Regenstein, J.M. Fish Gelatin. In Food Biochemistry and Food Processing; Wiley: Hoboken, NJ, USA, 2012; pp. 388–405. [Google Scholar]
- Karim, A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Boran, G.; Regenstein, J.M. Fish Gelatin. In Advances in Food and Nutrition Research; Elsevier BV: Amsterdam, The Netherlands, 2010; Volume 60, pp. 119–143. [Google Scholar]
- Irwandi, J.; Faridayanti, S.; Mohamed, E.S.M.; Hamzah, M.S.; Torla, H.H.; Man, Y.B.C. Extraction and characterization of gelatin from different marine fish species in Malaysia. Int. Food Res. J. 2009, 16, 381–389. [Google Scholar]
- Gómez-Guillén, M.; Me, L.-C.; Giménez, B.; Montero, P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. In Sea By-Products as a Real Material: New Ways of Application; Le Bihan, E., Ed.; Kerala: Madrid, Spain, 2010; Volume 661, pp. 89–115. ISBN 9788178954851. [Google Scholar]
- Aleman, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Antioxidant activity of several marine skin gelatins. LWT 2011, 44, 407–413. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Ryu, B.; Vo, T.-S.; Himaya, S.; Wijesekara, I.; Kim, S.-K. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 2011, 49, 1110–1116. [Google Scholar] [CrossRef]
- Chen, T.; Hou, H.; Lu, J.; Zhang, K.; Li, B. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin. J. Ocean. Univ. China 2016, 15, 711–718. [Google Scholar] [CrossRef]
- Liang, J.; Pei, X.; Zhang, Z.; Wang, N.; Wang, J.; Li, Y. The Protective Effects of Long-Term Oral Administration of Marine Collagen Hydrolysate from Chum Salmon on Collagen Matrix Homeostasis in the Chronological Aged Skin of Sprague-Dawley Male Rats. J. Food Sci. 2010, 75, H230–H238. [Google Scholar] [CrossRef]
- Fan, J.; Zhuang, Y.; Li, B. Effects of Collagen and Collagen Hydrolysate from Jellyfish Umbrella on Histological and Immunity Changes of Mice Photoaging. Nutrient 2013, 5, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.K.; Venkatesan, J. Bycatch utilization in Asia. In Seafood Processing By-Products: Trends and Applications; Kim, S., Ed.; Springer-Verlag: New York, NY, USA, 2014; pp. 1–597. ISBN 9781461495901. [Google Scholar]
- Morishige, H.; Sugahara, T.; Nishimoto, S.; Muranaka, A.; Ohno, F.; Shiraishi, R.; Doi, M. Immunostimulatory effects of collagen from jellyfish in vivo. Cytotechnology 2011, 63, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Trailokya, A.; Srivastava, A.; Bhole, M.; Zalte, N. Calcium and calcium salts. J. Assoc. Physicians India 2017, 65, 100–103. [Google Scholar]
- Das, J.K.; Salam, R.A.; Kumar, R.; Bhutta, Z.A. Micronutrient fortification of food and its impact on woman and child health: A systematic review. Syst. Rev. 2013, 2, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.-K.; Park, P.-J.; Byun, H.-G.; Moon, S.-H.; Kim, S.-K. Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chem. 2005, 91, 333–340. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Kim, A.Y.; Min, S.-G.; Kwak, H.-S. Characteristics of milk tablets supplemented with nanopowdered eggshell or oyster shell. Int. J. Dairy Technol. 2016, 69, 337–345. [Google Scholar] [CrossRef]
- Alsuhaibani, A.M.A. Rheological and Nutritional Properties and Sensory Evaluation of Bread Fortified with Natural Sources of Calcium. J. Food Qual. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Ravichandran, Y.D.; Kong, C.-S. Applications of Calcium and its Supplement derived from Marine Organisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 469–474. [Google Scholar] [CrossRef]
- Gkouvatsos, K.; Papanikolaou, G.; Pantopoulos, K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta Gen. Subj. 2012, 1820, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Bin Song, K. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process. Biochem. 2009, 44, 378–381. [Google Scholar] [CrossRef]
- Yun, S.; Zhang, T.; Li, M.; Chen, B.; Zhao, G. Proanthocyanidins Inhibit Iron Absorption from Soybean (Glycine max) Seed Ferritin in Rats with Iron Deficiency Anemia. Plant. Foods Hum. Nutr. 2011, 66, 212–217. [Google Scholar] [CrossRef]
- Guo, L.; Hou, H.; Li, B.; Zhang, Z.; Wang, S.; Zhao, X. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process. Biochem. 2013, 48, 988–993. [Google Scholar] [CrossRef]
- Tanna, B.; Mishra, A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, N.; Kim, S.-K. Nutritional and Digestive Health Benefits of Seaweed. Adv. Food Nutr. Res. 2011, 64, 17–28. [Google Scholar] [CrossRef]
- Ren, D.; Noda, H.; Amano, H.; Nishino, T.; Nishizawa, K. Study on Antihypertensive and Antihyperlipidemic Effects of Marine Algae. Fish. Sci. 1994, 60, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Dicpinigaitis, P.V. Angiotensin-Converting Enzyme Inhibitor-Induced Cough. Chest 2006, 129, 169S–173S. [Google Scholar] [CrossRef]
- Cotton, J.; Hayashi, M.A.F.; Cuniasse, P.; Vazeux, G.; Ianzer, D.; De Camargo, A.C.M.; Dive, V. Selective Inhibition of the C-Domain of Angiotensin I Converting Enzyme by Bradykinin Potentiating Peptides. Biochemistry 2002, 41, 6065–6071. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Mendis, E. Bioactive compounds from marine processing byproducts—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Khora, S.S. Marine fish-derived bioactive peptides and proteins for human therapeutics. Int. J. Pharm. Pharm. Sci. 2013, 5, 31–37. [Google Scholar]
- Chalamaiah, M.; Kumar, B.D.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.-S.; Kim, S.-K. Biological Activities of Marine Bioactive Peptides. In Marine Proteins and Peptides; Wiley: Hoboken, NJ, USA, 2013; pp. 509–521. [Google Scholar]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Mendis, E.; Rajapakse, A.N.; Kim, S.-K. Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. J. Agric. Food Chem. 2005, 53, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-I.; Ho, H.-Y.; Chu, Y.-J.; Chow, C.-J. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 2008, 110, 128–136. [Google Scholar] [CrossRef]
- Šližytė, R.; Mozuraitytė, R.; Martínez-Alvarez, O.; Falch, E.; Fouchereau-Peron, M.; Rustad, T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process. Biochem. 2009, 44, 668–677. [Google Scholar] [CrossRef]
- Barkia, A.; Bougatef, A.; Ben Khaled, H.; Nasri, M. Antioxidant activities of sardinelle heads and/or viscera protein hydrolysates prepared by enzymatic treatment. J. Food Biochem. 2010, 34, 303–320. [Google Scholar] [CrossRef]
- Bougatef, A.; Nedjar-Arroume, N.; Manni, L.; Ravallec, R.; Barkia, A.; Guillochon, D.; Nasri, M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinellaaurita) by-products proteins. Food Chem. 2010, 118, 559–565. [Google Scholar] [CrossRef]
- Jia, J.; Zhou, Y.; Lu, J.; Chen, A.; Li, Y.; Zheng, G. Enzymatic hydrolysis of Alaska pollack (Theragra chalcogramma) skin and antioxidant activity of the resulting hydrolysate. J. Sci. Food Agric. 2010, 90, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Naqash, S.Y.; Nazeer, R.A. Antioxidant Activity of Hydrolysates and Peptide Fractions of Nemipterus japonicus and Exocoetus volitans Muscle. J. Aquat. Food Prod. Technol. 2010, 19, 180–192. [Google Scholar] [CrossRef]
- Ganesh, R.J.; Nazeer, R.A.; Kumar, N.S.S. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Sci. Biotechnol. 2011, 20, 1087–1094. [Google Scholar] [CrossRef]
- Kumar, N.S.; Nazeer, R.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 2011, 32, 1496–1501. [Google Scholar] [CrossRef]
- Kumar, N.S.S.; Nazeer, R.A.; Jaiganesh, R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2011, 42, 1641–1649. [Google Scholar] [CrossRef]
- Nazeer, R.; Kumar, N.S.; Ganesh, R.J. In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides 2012, 35, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ktari, N.; Fakhfakh, N.; Balti, R.; Ben Khaled, H.; Nasri, M.; Bougatef, A. Effect of Degree of Hydrolysis and Protease Type on the Antioxidant Activity of Protein Hydrolysates from Cuttlefish (Sepia officinalis) By-Products. J. Aquat. Food Prod. Technol. 2013, 22, 436–448. [Google Scholar] [CrossRef]
- Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.-C.; Barkia, A.; Nasri, M. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J. Funct. Foods 2015, 13, 225–238. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.-K.; Byun, H.-G. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. J. Funct. Foods 2014, 7, 381–389. [Google Scholar] [CrossRef]
- Leone, A.; Lecci, R.M.; Durante, M.; Meli, F.; Piraino, S. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Mar. Drugs 2015, 13, 4654–4681. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Song, C.; Zhao, J.; Shi, X.; Sun, M.; Liu, J.; Fu, Y.; Jin, W.; Zhu, B. Separation and Characterization of Antioxidative and Angiotensin Converting Enzyme Inhibitory Peptide from Jellyfish Gonad Hydrolysate. Molecules 2018, 23, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.L.; Sun, L.P.; Zhao, X.; Hou, H.; Li, B.F. Investigation of gelatin polypeptides of jellyfish (Rhopilema esculentum) for their antioxidant activity in vitro. Food Technol. Biotechnol. 2010, 48, 222–228. [Google Scholar]
- Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of Bioactive Peptides with α-Amylase Inhibitory Potential from Enzymatic Protein Hydrolysates of Red Seaweed (Porphyra spp.). J. Agric. Food Chem. 2018, 66, 4872–4882. [Google Scholar] [CrossRef]
- Indumathi, P.; Mehta, A. A novel anticoagulant peptide from the Nori hydrolysate. J. Funct. Foods 2016, 20, 606–617. [Google Scholar] [CrossRef]
- Cullis, P.R.; Kruijff, B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta Rev. Biomembr. 1979, 559, 399–420. [Google Scholar] [CrossRef]
- Adamovich, Y.; Aviram, R.; Asher, G. The emerging roles of lipids in circadian control. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 1017–1025. [Google Scholar] [CrossRef]
- Mišurcová, L.; Ambrožová, J.; Samek, D. Seaweed Lipids as Nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Calder, P. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Bi, X.; Wang, S.; Zhang, Z.; Li, F.; Zhao, A.Z. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019, 10, 2241. [Google Scholar] [CrossRef] [Green Version]
- Chotard, É.; Mohammadi, F.; Julien, P.; Berthiaume, L.; Rudkowska, I.; Bertrand, N. Drinkable lecithin nanovesicles to study the biological effects of individual hydrophobic macronutrients and food preferences. Food Chem. 2020, 322, 126736. [Google Scholar] [CrossRef]
- Higgins, J.P.; Flicker, L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. 2000, CD001015. [Google Scholar] [CrossRef]
- Baker, C. Lecithin in cosmetics. In Lecithin: Sources, Manufacture & Uses; Szuhaj, B.F., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1989; pp. 253–260. [Google Scholar]
- Uddin, M.S.; Ahn, H.-M.; Kishimura, H.; Chun, B.-S. Production of valued materials from squid viscera by subcritical water hydrolysis. J. Environ. Biol. 2010, 31, 675–679. [Google Scholar] [PubMed]
- Uddin, S.; Kishimura, H.; Chun, B.-S. Isolation and Characterization of Lecithin from Squid (Todarodes pacificus) Viscera Deoiled by Supercritical Carbon Dioxide Extraction. J. Food Sci. 2011, 76, C350–C354. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Joo, D.-S.; Choi, H.-G.; Nara, E.; Miyashita, K. Oxidative stability of lipids from squid tissues. Fish. Sci. 2001, 67, 738–743. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Zhang, W.; Barber, A.R.; Su, P.; He, S. Significant Enrichment of Polyunsaturated Fatty Acids (PUFAs) in the Lipids Extracted by Supercritical CO2from the Livers of Australian Rock Lobsters (Jasus edwardsii). J. Agric. Food Chem. 2015, 63, 4621–4628. [Google Scholar] [CrossRef] [PubMed]
- Amiguet, V.T.; Kramp, K.L.; Mao, J.; McRae, C.; Goulah, A.; Kimpe, L.E.; Blais, J.; Arnason, J.T. Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chem. 2012, 130, 853–858. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.; Jinap, S.; Jahurul, M.; Khatib, A.; Norulaini, N. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. J. Food Eng. 2010, 99, 63–69. [Google Scholar] [CrossRef]
- Ferdosh, S.; Sarker, Z.I.; Ab Rahman, N.N.N.; Akanda, J.H.; Ghafoor, K.; Ab Kadir, M.O. Simultaneous Extraction and Fractionation of Fish Oil from Tuna By-Product Using Supercritical Carbon Dioxide (SC-CO2). J. Aquat. Food Prod. Technol. 2014, 25, 230–239. [Google Scholar] [CrossRef]
- Haq, M.; Ahmed, R.; Cho, Y.-J.; Chun, B.-S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valorization 2016, 8, 1953–1967. [Google Scholar] [CrossRef]
- Bierer, T.L.; Bui, L.M. Improvement of Arthritic Signs in Dogs Fed Green-Lipped Mussel (Perna canaliculus). J. Nutr. 2002, 132, 1634S–1636S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, M.W.; Macrides, T.A.; Kalafatis, N.; Betts, W.H.; Haynes, D.R.; Broadbent, J. Anti-inflammatory activity of a lipid fraction (lyprinol) from the NZ green-lipped mussel. Inflammopharmacology 1997, 5, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Kim, S.-K.; Karadeniz, F. Biological Importance and Applications of Squalene and Squalane. In Advances in Food and Nutrition Research; Elsevier BV: Amsterdam, The Netherlands, 2012; Volume 65, pp. 223–233. [Google Scholar]
- Burton, G.W.; Ingold, K.U. Autoxidation of biological molecules. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981, 103, 6472–6477. [Google Scholar] [CrossRef]
- Fujisawa, A.; Dunlap, W.C.; Yamamoto, Y. Vitamin E protection in the biochemical adaptation of marine organisms to cold-water environments. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 157, 145–158. [Google Scholar] [CrossRef]
- Seabra, L.M.J.; Pedrosa, L.F.C. Astaxanthin: Structural and functional aspects. Rev. Nutr. 2010, 23, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Armenta-Lopez, R.; Guerrero, I.L.; Huerta, S. Astaxanthin Extraction from Shrimp Waste by Lactic Fermentation and Enzymatic Hydrolysis of the Carotenoprotein Complex. J. Food Sci. 2002, 67, 1002–1006. [Google Scholar] [CrossRef]
- Sachindra, N.; Mahendrakar, N. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 2005, 96, 1195–1200. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Bohn, T. Carotenoids, Chronic Disease Prevention and Dietary Recommendations. Int. J. Vitam. Nutr. Res. 2017, 87, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, H.; Koda, H.; Asami, S.; Kiso, Y.; Tanaka, T. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci. 2002, 70, 2509–2520. [Google Scholar] [CrossRef]
- Sila, A.; Ayed-Ajmi, Y.; Sayari, N.; Nasri, M.; Martinez-Alvarez, O.; Bougatef, A. Antioxidant and Anti-proliferative Activities of Astaxanthin Extracted from the Shell Waste of Deep-water Pink Shrimp (Parapenaeus longirostris). Nat. Prod. J. 2013, 3, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Taksima, T.; Limpawattana, M.; Klaypradit, W. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT 2015, 62, 431–437. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Fung, A.; Hamid, N.; Lu, J. Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem. 2013, 136, 1055–1062. [Google Scholar] [CrossRef]
- Raji, V.; Loganathan, C.; Sadhasivam, G.; Kandasamy, S.; Poomani, K.; Thayumanavan, P. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: An in vitro and in silico studies. Int. J. Biol. Macromol. 2020, 148, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Artan, M.; Karadeniz, F.; Karagozlu, M.Z.; Kim, M.-M.; Kim, S.-K. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr. Res. 2010, 345, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Rúnarsson, Ö.V.; Holappa, J.; Malainer, C.; Steinsson, H.; Hjálmarsdóttir, M.; Nevalainen, T.; Másson, M. Antibacterial activity of N-quaternary chitosan derivatives: Synthesis, characterization and structure activity relationship (SAR) investigations. Eur. Polym. J. 2010, 46, 1251–1267. [Google Scholar] [CrossRef]
- Li, R.; Guo, Z.; Jiang, P. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives. Carbohydr. Res. 2010, 345, 1896–1900. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-L.; Liang, T.-W.; Yen, Y.-H. Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydr. Polym. 2011, 84, 732–742. [Google Scholar] [CrossRef]
- Apetroaei, M.R.; Zgârian, R.G.; Manea, A.-M.; Rau, I.; Tihan, G.T.; Schroder, V. New source of chitosan from Black Sea marine organisms identification. Mol. Cryst. Liq. Cryst. 2016, 628, 102–109. [Google Scholar] [CrossRef]
- Takarina, N.D.; Fanani, A.A. Characterization of chitin and chitosan synthesized from red snapper (Lutjanus sp.) scale’s waste. In Proceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences, Bali, Indonesia, 1–2 November 2016. [Google Scholar] [CrossRef] [Green Version]
- Rasti, H.; Parivar, K.; Baharara, J.; Iranshahi, M.; Namvar, F. Chitin from the Mollusc Chiton: Extraction, Characterization and Chitosan Preparation. Iran. J. Pharm. Res. 2017, 16, 366–379. [Google Scholar]
- Jothi, N.; Nachiyar, R.K. Identification and isolation of chitin and chitosan from cuttle bone of Sepia prashadi Winckworth, Glob. J. Biotechnol. Biochem. 2013, 8, 1–7. [Google Scholar] [CrossRef]
- Alencar, P.O.C.; Lima, G.C.; Barros, F.C.N.; Costa, L.E.; Ribeiro, C.V.P.; Sousa, W.M.; Sombra, V.G.; Abreu, C.M.W.; Abreu, E.S.; Pontes, E.O.; et al. A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: In vitro and in vivo activities. Food Hydrocoll. 2019, 90, 28–34. [Google Scholar] [CrossRef]
- Sudharsan, S.; Subhapradha, N.; Seedevi, P.; Shanmugam, V.; Madeswaran, P.; Shanmugam, A.; Srinivasan, A. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int. J. Biol. Macromol. 2015, 81, 1031–1038. [Google Scholar] [CrossRef]
- Zainudin, N.H.; Sirajudeen, K.N.S.; Ghazali, F.C. Marine sourced glycosaminoglycans “GAGs”. J. Adv. Lab. Res. Biol. 2014, 5, 46–53. [Google Scholar]
- Valcarcel, J.; Novoa-Carballal, R.; Perez-Martin, R.; Reis, R.L.; Vázquez, J.A. Glycosaminoglycans from marine sources as therapeutic agents. Biotechnol. Adv. 2017, 35, 711–725. [Google Scholar] [CrossRef]
- Mycroft-West, C.; Yates, E.A.; Skidmore, M.A. Marine glycosaminoglycan-like carbohydrates as potential drug candidates for infectious disease. Biochem. Soc. Trans. 2018, 46, 919–929. [Google Scholar] [CrossRef]
- Colliec-Jouault, S.; Zykwinska, A. Marine glycosaminoglycans (GAGs) and GAG-mimetics: Applications in medicine and tissue engineering. In Extracellular Sugar-Based Biopolymers Matrices; Cohen, E., Merzendorfer, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 625–648. [Google Scholar]
- Cheras, P.; Stevenson, L.; Myers, S. Vascular mechanisms in osteoarthritis: Rationale for treatment with a marine-based complementary medicine. Osteoarthr. Cartil. 2005, 13, S95. [Google Scholar]
- Aroma New Zealand Ltd. Available online: www.aromanz.com (accessed on 31 March 2021).
- Draget, K.I. Alginates. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P., Eds.; Woodhead Publishing: Shaxton, UK, 2009; pp. 807–828. ISBN 9781845695873. [Google Scholar]
- Borazjani, N.J.; Tabarsa, M.; You, S.; Rezaei, M. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int. J. Biol. Macromol. 2017, 101, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Marudhupandi, T.; Kumar, T.T.A.; Lakshmanasenthil, S.; Suja, G.; Vinothkumar, T. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines. Int. J. Biol. Macromol. 2015, 72, 919–923. [Google Scholar] [CrossRef]
- Vo, T.-S.; Kim, S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods 2013, 5, 16–27. [Google Scholar] [CrossRef]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [Google Scholar] [CrossRef]
- Kumar, T.V.; Lakshmanasenthil, S.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Suganya, P. Fucoidan—A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. Int. J. Biol. Macromol. 2015, 72, 1044–1047. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Zaharudin, N.; Salmeán, A.A.; Dragsted, L.O. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chem. 2018, 245, 1196–1203. [Google Scholar] [CrossRef]
- Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.; Kim, J.-S.; Seo, S.; Lee, K.; Um, M.Y.; Lee, J.; Jung, J.; Cho, S. Dieckol, a Major Marine Polyphenol, Enhances Non-Rapid Eye Movement Sleep in Mice via the GABAA-Benzodiazepine Receptor. Front. Pharmacol. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Mai, H.; Fotedar, R.; Fewtrell, J. Evaluation of Sargassum sp. as a nutrient-sink in an integrated seaweed-prawn (ISP) culture system. Aquaculture 2010, 310, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Daniotti, S.; Re, I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar. Drugs 2021, 19, 61. [Google Scholar] [CrossRef]
- Venugopal, V. Nutrients and nutraceuticals from seafood. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K.G., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 1–45. [Google Scholar]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef]
- Adam, O.; Beringer, C.; Kless, T.; Lemmen, C.; Adam, A.; Wiseman, M.; Adam, P.; Klimmek, R.; Forth, W. Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. Rheumatol. Int. 2003, 23, 27–36. [Google Scholar] [CrossRef]
- Grienke, U.; Silke, J.; Tasdemir, D. Bioactive compounds from marine mussels and their effects on human health. Food Chem. 2014, 142, 48–60. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef] [PubMed]
- Kushnarev, M.; Pirvulescu, I.P.; Candido, K.D.; Knezevic, N.N. Neuropathic pain: Preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin. Investig. Drugs 2020, 29, 259–271. [Google Scholar] [CrossRef] [PubMed]
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Fish | Epinephelus sexfasciatu, Lutjianus argentimaculatus, Rastrelliger kanagurta, Pristipomodes typus | N/A | Gelatin | N/A | [75] |
Bivalve | Dosidicus gigas | Tunics | Gelatin | Antioxidant | [76] |
Bivalve and fish | Dosidicus giga, Thunnus spp., Hypoglossus spp. | Inner and outer tunics | Gelatin | Antioxidant | [77] |
Fish | Gadus macrocephalus | Skin | Gelatin | Antioxidant | [78] |
Fish | Lateolabrax japonicus | Skin | Collagen | N/A | [82] |
Fish | Oncorhynchus keta | Skin | Gelatin | Antioxidant | [79] |
Jellyfish | Nemopilema nomurai | Body | Collagen | Antioxidant | [83] |
Taxa | Species | Tissue | Product | Biological Activity/ Nutraceutical Application | Reference |
---|---|---|---|---|---|
Fish | Johnius belengerii, Thunnus thynnus | Skeletons | Phosphopeptide | Potential calcium-binding activity/food supply | [87] |
Bivalve | N/A | Shell | Calcium | Food supplement | [88] |
Bivalve | N/A | Shell | Calcium, iron, zinc and phosphorus | Food supplement | [89] |
Fish | Gadus chalcogrammus | Skin | Peptides | Iron-chelating/food supply | [94] |
Brown alga | Laminaria japonica | NA | Minerals | Antioxidant | [98] |
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Fish | Johnius belengeri | Skin | Peptides | Antioxidant | [108] |
Fish | Rachycentron canadum | Skin | Gelatin derivate | Antioxidant | [109] |
Fish | Gadus morhua | Backbones | Protein hydrolysates | Antioxidant | [110] |
Fish | Sardinella aurita | Heads and/or entrails | Protein hydrolysates | Antioxidant | [111,112] |
Fish | Theragra chalcogramma | Skin | Peptides | Antioxidant | [113] |
Fish | Nemipterus japonicus | Muscles | Hydrolysates and peptide fractions | Antioxidant | [114] |
Fish | Exocoetus volitans | Muscles | Hydrolysates and peptide fractions | Antioxidant and anti-tumor | [114] |
Fish | Parastromateus niger | Viscera | Peptides | Antioxidant | [115] |
Fish | Magalaspis cordyla | Viscera | Peptides | Antioxidant | [116] |
Fish | Magalaspis cordyla | Skin | Peptides | Antioxidant | [117] |
Fish | Otolithes ruber | Skin | Peptides | Antioxidant | [118] |
Bivalve | Sepia officinalis | Skin and viscera | Protein hydrolysates | Antioxidant | [119] |
Fish | Oncorhynchus keta | Skin | Peptides | Anti-hypertensive | [121] |
Jellyfish | Aurelia sp., Cotylorhiza tuberculate, Rhizostoma pulmo | Body | Hydrolyzed peptides | Antioxidant | [122] |
Jellyfish | Rhopilema esculentus, Kishinouye | Gonads | Protein hydrolysates | Antioxidant | [123,124] |
Red alga | Porphyra spp. | Leaf | Peptides | Anti-diabetic | [125] |
Red alga | Porphyra yezoensis | Leaf | Peptides | Anti-thrombotic | [126] |
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Cephalopod | Todarodes pacificus | Viscera residues | Lecithin | Emulsifying properties | [135,136] |
Crustacean | Jasus edwardsii | Liver | PUFA | Anti-inflammatory, anti-hypertensive, anti-diabetic | [138] |
Crustacean | Pandalus borealis | Head, shell and tail | EPA and DHA | Anti-inflammatory, anti-hypertensive, anti-diabetic | [139] |
Fish | Rastrelliger kanagurta | Ground skin | EPA and DHA | Anti-inflammatory, anti-hypertensive, anti-diabetic | [140] |
Fish | Thunnus tonggol | Head | DHA, omega-3 and -6 FAs | Anti-inflammatory, anti-hypertensive, anti-diabetic | [141] |
Fish | Salmo salar | Belly part, trimmed muscle, frame bone and skin | Oil | Free radical scavenging | [142] |
Bivalve | Perna canaliculus | Body | PUFA/Lyprinol® | Anti-inflammatory and anti-arthritis | [143,144] |
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Crustacean | Litopenaeus vannamei | Shell | Astaxanthin | Antioxidant | [158] |
Brown alga | Undaria pinnatifida | Leaf | Fucoxanthin | Antioxidant | [159] |
Brown alga | Sargassum wightii | Leaf | Fucoxanthin | Antioxidant and ACE inhibition | [161] |
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Mollusc | Rapana venosa | Eggs | Chitin and chitosan | Antioxidant, anti-microbial, anti-viral and anti-hypertension | [168] |
Crustacean | Eriphia verrucosa | Exoskeleton | Chitin and chitosan | Antioxidant, anti-microbial, anti-viral and anti-hypertension | [168] |
Fish | Lutjanus sp. | Scales | Chitin and chitosan | Antioxidant, anti-microbial, anti-viral and anti-hypertension | [169] |
Mollusc | Several species of chiton | Shell | Chitin and chitosan | Antioxidant, anti-microbial, anti-viral and anti-hypertension | [170] |
Cephalopod | Sepia prashadi | Cuttlebone | Chitin and chitosan | Antioxidant, anti-microbial, anti-viral and anti-hypertension | [171] |
Red alga | Gracilaria caudata, Gracilaria debilis | Leaf | Sulfated polysaccharides | Antioxidant | [172,173] |
Bivalve | Perna canaliculus | Body | Glycosaminoglycans/ Biolane™ | Anti-inflammatory | [178] |
Bivalve | Perna canaliculus | Body | Glycosaminoglycans/ GlycOmega-PLUS™ | Anti-arthritic | [179] |
Brown alga | Sargassum angustifolium | Leaf | Alginate | Antioxidant | [181] |
Brown alga | Sargassum angustifolium | Leaf | Fucoidan | Antioxidant, anti-inflammatory, anti-allergic, anti-tumor, anti-obesity, anti-viral | [183] |
Brown alga | Sargassum polycystum | Leaf | Fucoidan | Antioxidant | [184] |
Brown alga | Sargassum wightii | Leaf | Fucoidan | Anti-diabetic | [185] |
Taxa | Species | Tissue | Product | Biological Activity | Reference |
---|---|---|---|---|---|
Brown alga | Laminaria digitata, Undaria pinnatifida | Leaf | 2,5-dihydroxybenzoic acid | Anti-diabetic (α-amylase inhibition) | [187] |
Brown alga | Sargassum vachellianum | Leaf | Polyphenol-rich extract | Free radical scavenging, antimicrobial activity and anti-UV | [188] |
Brown alga | Ecklonia cava | Leaf | Dieckol | Sleep-enhancing | [189] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutalipassi, M.; Esposito, R.; Ruocco, N.; Viel, T.; Costantini, M.; Zupo, V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021, 10, 1495. https://doi.org/10.3390/foods10071495
Mutalipassi M, Esposito R, Ruocco N, Viel T, Costantini M, Zupo V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods. 2021; 10(7):1495. https://doi.org/10.3390/foods10071495
Chicago/Turabian StyleMutalipassi, Mirko, Roberta Esposito, Nadia Ruocco, Thomas Viel, Maria Costantini, and Valerio Zupo. 2021. "Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards" Foods 10, no. 7: 1495. https://doi.org/10.3390/foods10071495
APA StyleMutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., & Zupo, V. (2021). Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods, 10(7), 1495. https://doi.org/10.3390/foods10071495