Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Chickens, and Diets
2.2. Sample Collection
2.3. Antioxidant Status in Serum and Muscle
2.4. Radical Scavenging Capacity
2.5. Meat Quality
2.6. Blood Metabolites
2.7. Statistical Analysis
3. Results
3.1. Antioxidant Factors
3.2. ABTS-Reducing Activity
3.3. Meat Color and Meat Quality
3.4. Growth Response, Carcass Traits, Immune Organ Ratio
3.5. Blood Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goo, D.; Kim, J.H.; Park, G.H.; Delos Reyes, J.B.; Kil, D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, M.S.; Donnelly, C.A.; Jones, T.A. Chicken welfare is influenced more by housing conditions than by stocking density. Nature 2004, 427, 342–344. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.W.; Choi, Y.S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods 2021, 10, 957. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Hosseindoust, A.; Oh, S.M.; Ko, H.S.; Jeon, S.M.; Ha, S.H.; Jang, A.; Son, J.S.; Kim, G.Y.; Kang, H.K.; Kim, J.S. Muscle Antioxidant Activity and Meat Quality Are Altered by Supplementation of Astaxanthin in Broilers Exposed to High Temperature. Antioxidants 2020, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; He, L.; Hou, X.; Wei, J.; Ma, X.; Gao, Z.; Yuan, Y.; Xiao, J.; Li, P.; Yue, T. Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols. Foods 2021, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Ore, A.; Akinloye, O.A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Zhu, Y.; Ren, X.; Zhang, Y.; Peng, Z.; Zhou, G. Formation and inhibition of lipid alkyl radicals in roasted meat. Foods 2020, 9, 572. [Google Scholar] [CrossRef]
- El-Bahr, S.M.; Shousha, S.; Alfattah, M.A.; Al-Sultan, S.; Khattab, W.; Sabeq, I.I.; Ahmed-Farid, O.; El-Garhy, O.; Albusadah, K.A.; Alhojaily, S.; et al. Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021, 10, 618. [Google Scholar] [CrossRef]
- Arnold, M.; Rajagukguk, Y.V.; Gramza-Michałowska, A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis—A Narrative Review. Foods 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Kopec, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Pudlo, A.; Korzeniowska, M.; Hikawczuk, T.; Skiba, T. Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants 2020, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hosseindoust, A.; Kim, M.; Kim, K.; Choi, Y.; Lee, S.; Lee, S.; Cho, H.; Kang, W.S.; Chae, B. Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biol. Trace. Elem. Res. 2020, 194, 536–544. [Google Scholar] [CrossRef]
- Lee, W.K.; Tokuoka, T.; Heo, K. Molecular evidence for the inclusion of the Korean endemic genus “Echinosophora” in Sophora (Fabaceae), and embryological features of the genus. J. Plant. Res. 2004, 117, 209–219. [Google Scholar] [CrossRef]
- Choi, E.J.; Kwon, H.C.; Sohn, Y.C.; Nam, C.W.; Park, H.B.; Kim, C.Y.; Yang, H.O. Four flavonoids from Echinosophora koreensis and their effects on alcohol metabolizing enzymes. Arch. Pharm. Res. 2009, 32, 851–855. [Google Scholar] [CrossRef]
- Iinuma, M.; Ohyama, M.; Tanaka, T.; Mizuno, M.; Hong, S.K. An isoflavanone from roots of Echinosophora koreensis. Phytochemistry 1991, 30, 3153–3154. [Google Scholar] [CrossRef]
- Shaw, C.Y.; Chen, C.H.; Hsu, C.C.; Chen, C.C.; Tsai, Y.C. Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother. Res. 2003, 17, 823–825. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672. [Google Scholar] [CrossRef]
- Sakthivel, K.M.; Vishnupriya, S.; Priya Dharshini, L.C.; Rasmi, R.R.; Ramesh, B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. J. Pharm. Pharmacol. 2021, rgab047. [Google Scholar] [CrossRef]
- Tanaka, Y.; Data, E.S.; Hirose, E.S.; Taniguchi, T.; Uritani, L. Biochemical changes in secondary metabolites in wounded and deteriorated cassava roots. Agric. Biol. Chem. 1983, 47, 693–700. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.H.; Kim, J.S.; Hosseindoust, A.; Choi, Y.H.; Kim, M.J.; Oh, S.M.; Ham, H.B.; Kumar, A.; Kim, K.Y.; Jang, A. Investigating meat quality of broiler chickens fed on heat processed diets containing corn distillers dried grains with solubles. Korean J. Food Sci. Anim. Res. 2018, 38, 629–635. [Google Scholar]
- Chen, S. Natural products triggering biological targets-a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr. Drug Targets 2011, 12, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Hur, S.J. Effect of Treatment with Peptide Extract from Beef Myofibrillar Protein on Oxidative Stress in the Brains of Spontaneously Hypertensive Rats. Foods 2019, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Yin, Q.; Li, J.; He, S. Oxidative Stress and Endoplasmic Reticulum Stress Are Involved in the Protective Effect of Alpha Lipoic Acid Against Heat Damage in Chicken Testes. Animals 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Jang, S.I.; Kim, Y.J.; Chung, H.T.; Yun, Y.G.; Kang, T.H.; Jeong, O.S.; Kim, Y.C. Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 2014, 75, 61–266. [Google Scholar] [CrossRef]
- Liu, S.L.; Deng, J.S.; Chiu, C.S.; Hou, W.C.; Huang, S.S.; Lin, W.C.; Liao, J.C.; Huang, G.J. Involvement of heme oxygenase-1 participates in anti-inflammatory and analgesic effects of aqueous extract of Hibiscus taiwanensis. Evid. Based Complement. Altern. Med. 2012, 2012, 132859. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.I.; Yun, K.W.; Seo, K.I.; Kim, M.J.; Lee, M.K. Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK–SREBP pathway in diet-induced obese mice. Metabolism 2014, 63, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xu, B.; Li, W.; Wei, F.; Kim, W.K.; Chen, C.; Sun, Q.; Fu, C.; Wang, G.; Li, S. Effects of alpha-lipoic acid on the behavior, serum indicators, and bone quality of broilers under stocking density stress. Poult. Sci. 2020, 99, 4653–4661. [Google Scholar] [CrossRef]
- Yi, B.; Hu, L.; Mei, W.; Zhou, K.; Wang, H.; Luo, Y.; Wei, X.; Dai, H. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajaei-Sharifabadi, H.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Noni (Morinda citrifolia) modulates the hypothalamic expression of stress-and metabolic-related genes in broilers exposed to acute heat stress. Front. Genet. 2017, 8, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.I.; Lee, M.K. Coordinated regulation of scopoletin at adipose tissue–liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol. Lett. 2015, 237, 210–218. [Google Scholar] [CrossRef]
- Von Eugen, K.; Nordquist, R.E.; Zeinstra, E.; van der Staay, F.J. Stocking density affects stress and anxious behavior in the laying hen chick during rearing. Animals 2019, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.J.; Wei, D.I.; Song, Z.; Jiao, H.C.; Lin, H. Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS ONE 2012, 7, e36663. [Google Scholar] [CrossRef]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Shini, S.; Shini, A.; Kaiser, P. Cytokine and chemokine gene expression profiles in heterophils from chickens treated with corticosterone. Stress. 2010, 13, 185–194. [Google Scholar] [CrossRef]
- Mohammed, A.; Mahmoud, M.; Murugesan, R.; Cheng, H.W. Effect of a Synbiotic Supplement on Fear Response and Memory Assessment of Broiler Chickens Subjected to Heat Stress. Animals 2021, 11, 427. [Google Scholar] [CrossRef]
- Dong, H.; Lin, H.; Jiao, H.C.; Song, Z.G.; Zhao, J.P.; Jiang, K.J. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 189–195. [Google Scholar] [CrossRef]
- Lin, H.; Decuypere, E.; Buyse, J. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 2. Short-term effect. Comp. Biochem. Physiol. Part B Mol. Biol. 2004, 139, 745–751. [Google Scholar] [CrossRef]
- Lin, H.; Gao, J.; Song, Z.G.; Jiao, H.C. Corticosterone administration induces oxidative injury in skeletal muscle of broiler chickens. Poult. Sci. 2009, 88, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; King, A. Effects of heat stress on broiler meat quality. World Poult. Sci. J. 2015, 71, 701–709. [Google Scholar] [CrossRef]
- Sato, H.; Takahashi, T.; Sumitani, K.; Takatsu, H.; Urano, S. Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J. Clin. Biochem. Nutr. 2010, 47, 224–232. [Google Scholar] [CrossRef] [Green Version]
Item | Sophora koreensis |
---|---|
Scopoletin (mg/kg) | 2090.5 |
Dry matter % | 93.12 |
Crude protein % | 12.82 |
Ether extract % | 1.72 |
Crude fiber % | 29.69 |
Ash % | 3.15 |
Calcium % | 1.12 |
Phosphorus % | 0.19 |
Amino Acids % | |
Arg | 3.21 |
His | 0.61 |
Ile | 9.58 |
Leu | 23.03 |
Lys | 11.16 |
Met | 5.57 |
Phe | 4.97 |
Thr | 3.03 |
Trp | 1.61 |
Val | 1.06 |
Fatty acids % | |
Palmitic acid | 0.43 |
Oleic acid | 1.06 |
Linoleic acid | 0.35 |
Linolenic acid | 0.59 |
Arachidonic acid | 5.18 |
Stocking Density (n/m2) | 14 | 16 | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Sophora koreensis (ppm) | 0 | 20 | 0 | 20 | SD | SK | SD × SK | |
Serum | ||||||||
MDA (nmol/mL) | 10.55 | 5.87 | 11.41 | 6.22 | 0.55 | 0.584 | <0.001 | 0.818 |
Catalase (nmol/min/mL) | 0.23 | 0.31 | 0.21 | 0.31 | 0.02 | 0.844 | 0.027 | 0.903 |
SOD (U/mL) | 44.73 | 61.63 | 49.33 | 63.38 | 0.77 | 0.053 | <0.001 | 0.369 |
TAC (mM) | 0.15 | 0.32 | 0.14 | 0.30 | 0.02 | 0.675 | <0.001 | 0.957 |
Leg muscle | ||||||||
MDA (nmol/mg) | 0.59 | 0.51 | 0.66 | 0.57 | 0.01 | 0.029 | 0.004 | 0.794 |
Catalase (nmol/min/mg) | 0.21 | 0.43 | 0.21 | 0.39 | 0.02 | 0.685 | <0.001 | 0.591 |
SOD (U/mg) | 39.97 | 68.78 | 32.30 | 50.85 | 1.53 | <0.001 | <0.001 | 0.109 |
TAC (mM) | 0.13 | 0.37 | 0.11 | 0.33 | 0.01 | 0.184 | <0.001 | 0.466 |
Stocking Density (n/m2) | 14 | 16 | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Sophora koreensis (ppm) | 0 | 20 | 0 | 20 | SD | SK | SD × SK | |
Meat color | ||||||||
Lightness (L *) | 53.03 | 52.92 | 52.81 | 52.88 | 0.32 | 0.837 | 0.977 | 0.882 |
Redness (a*) | 4.14 | 4.56 | 4.20 | 4.45 | 0.17 | 0.943 | 0.350 | 0.812 |
Yellowness (b*) | 8.18 | 8.49 | 8.37 | 8.61 | 0.21 | 0.727 | 0.525 | 0.937 |
Meat quality | ||||||||
Water holding capacity (%) | 44.95 | 48.27 | 40.91 | 47.75 | 0.62 | 0.081 | 0.001 | 0.172 |
Cooking loss (%) | 30.09 | 26.81 | 29.82 | 25.26 | 0.61 | 0.461 | 0.004 | 0.602 |
Shear force (n/cm2) | 23.63 | 24.91 | 22.95 | 24.12 | 0.39 | 0.360 | 0.110 | 0.965 |
pH | 5.68 | 5.80 | 5.81 | 5.58 | 0.02 | 0.132 | <0.001 | 0.089 |
Stocking Density (n/m2) | 14 | 16 | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Sophora koreensis (ppm) | 0 | 20 | 0 | 20 | SD | SK | SD × SK | |
Growth Performance | ||||||||
Final BW (g/bird) | 2319 | 2313 | 2149 | 2191 | 8.12 | 0.273 | <0.001 | 0.153 |
BW gain (g/bird) | 1408 | 1399 | 1231 | 1276 | 10.01 | 0.373 | <0.001 | 0.199 |
FI (g/bird) | 3949 | 3849 | 3458 | 3390 | 18.29 | 0.032 | <0.001 | 0.667 |
FCR (g/bird) | 2.81 | 2.75 | 2.82 | 2.66 | 0.02 | 0.037 | 0.356 | 0.276 |
Carcass traits (%) | ||||||||
Carcass yield | 71.05 | 71.56 | 69.41 | 69.82 | 0.20 | <0.001 | 0.269 | 0.907 |
Breast meat | 19.72 | 19.96 | 17.93 | 18.32 | 0.13 | <0.001 | 0.228 | 0.770 |
Drumsticks | 14.17 | 14.34 | 13.21 | 13.34 | 0.15 | 0.003 | 0.622 | 0.939 |
Abdominal fat | 1.84 | 1.42 | 1.66 | 1.35 | 0.02 | 0.009 | <0.001 | 0.211 |
Relative weights of organs (%) | ||||||||
Liver | 2.67 | 2.56 | 2.43 | 2.41 | 0.07 | 0.147 | 0.623 | 0.732 |
Spleen | 0.088 | 0.114 | 0.079 | 0.083 | 0.01 | <0.001 | <0.001 | 0.002 |
Bursa of Fabricius | 0.092 | 0.125 | 0.087 | 0.095 | 0.01 | <0.001 | <0.001 | <0.001 |
Spleen/bursa | 0.923 | 0.872 | 0.878 | 0.847 | 0.06 | 0.257 | 0.184 | 0.730 |
Thyroid | 0.629 | 0.655 | 0.728 | 0.503 | 0.03 | 0.697 | 0.153 | 0.078 |
Stocking Density (n/m2) | 14 | 16 | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Sophora koreensis (ppm) | 0 | 20 | 0 | 20 | SD | SK | SD × SK | |
Total cholesterol (mg/dL) | 106.3 | 115.6 | 102.7 | 105.8 | 1.49 | 0.036 | 0.050 | 0.302 |
Total protein (mg/dL) | 2.88 | 2.74 | 2.73 | 2.70 | 0.03 | 0.144 | 0.206 | 0.373 |
Triglyceride (mg/dL) | 55.89 | 54.09 | 51.37 | 54.20 | 1.62 | 0.503 | 0.875 | 0.482 |
Glucose (mg/dL) | 256.1 | 254.0 | 243.1 | 239.5 | 2.82 | 0.024 | 0.619 | 0.894 |
GPT (U/L) | 2.07 | 2.12 | 2.15 | 2.19 | 0.08 | 0.636 | 0.778 | 0.996 |
GOT (U/L) | 214.3 | 225.7 | 210.9 | 217.8 | 3.22 | 0.388 | 0.172 | 0.728 |
Albumin (mg/dL) | 1.12 | 1.03 | 1.10 | 1.09 | 0.01 | 0.568 | 0.097 | 0.150 |
Phosphate (μM/L) | 10.14 | 10.18 | 10.15 | 10.02 | 0.12 | 0.758 | 0.850 | 0.738 |
Calcium (μM/L) | 9.09 | 9.07 | 9.10 | 9.23 | 0.10 | 0.686 | 0.785 | 0.717 |
Corticosterone (ng/mL) | 53.37 | 48.42 | 61.51 | 51.06 | 1.05 | 0.019 | 0.002 | 0.206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.H.; Kang, H.K.; Hosseindoust, A.; Mun, J.Y.; Moturi, J.; Tajudeen, H.; Lee, H.; Cheong, E.J.; Kim, J.S. Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens. Foods 2021, 10, 1505. https://doi.org/10.3390/foods10071505
Ha SH, Kang HK, Hosseindoust A, Mun JY, Moturi J, Tajudeen H, Lee H, Cheong EJ, Kim JS. Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens. Foods. 2021; 10(7):1505. https://doi.org/10.3390/foods10071505
Chicago/Turabian StyleHa, Sang Hun, Hwan Ku Kang, Abdolreza Hosseindoust, Jun Young Mun, Joseph Moturi, Habeeb Tajudeen, Hwa Lee, Eun Ju Cheong, and Jin Soo Kim. 2021. "Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens" Foods 10, no. 7: 1505. https://doi.org/10.3390/foods10071505
APA StyleHa, S. H., Kang, H. K., Hosseindoust, A., Mun, J. Y., Moturi, J., Tajudeen, H., Lee, H., Cheong, E. J., & Kim, J. S. (2021). Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens. Foods, 10(7), 1505. https://doi.org/10.3390/foods10071505