Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films’ Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Nanohydrogels
2.3. Preparation of Carboxymethylcellulose Films
2.4. Water Sensitivity
2.5. Water Vapor Permeability (WVP)
2.6. Mechanical Properties
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.8. Opacity and Color
2.9. Release Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Water Affinity
3.2. Water Vapour Permeability (WVP)
3.3. Mechanical Properties
3.4. Color and Opacity
3.5. Fourier Transform Infrared (FTIR) Spectroscopy
3.6. Release Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Prog. Org. Coat. 2020, 138, 105383. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 594–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020, 590. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, U.M.; Khalid, G.M.; Selmin, F.; Minghetti, P.; Cilurzo, F. Trends in the production methods of orodispersible films. Int. J. Pharm. 2020, 576. [Google Scholar] [CrossRef] [PubMed]
- González-Reza, R.M.; García-Betanzos, C.I.; Sánchez-Valdes, L.I.; Quintanar-Guerrero, D.; Cornejo-Villegas, M.A.; Zambrano-Zaragoza, M.L. The functionalization of nanostructures and their potential applications in edible coatings. Coatings 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lu, J.U.N.; Jiang, B.; Guo, J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment (Review). Oncol. Lett. 2020, 3059–3070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, L.; Amrutanand, T.; Agrawal, Y. Alginate-chitosan coated lecithin core shell nanoparticles for curcumin: Effect of surface charge on release properties and biological activities. Indian J. Pharm. Educ. Res. 2017, 51, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Bourbon, A.I.; Cerqueira, M.A.; Vicente, A.A. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. J. Food Eng. 2016, 180, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; Reungsang, A.; Ngo, T. Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers 2021, 13, 963. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z.; Zhi, X.; Du, B. Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS Omega 2020. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Food Hydrocolloids Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Bojorges, H.; Ríos-Corripio, M.A.; Hernandéz-Cázares, A.S.; Hidalgo-Contreras, J.V.; Contreras-Oliva, A. Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Sci. Nutr. 2020, 4308–4319. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Magalhães, S.; Alves, L.; Antunes, F.; Miguel, M.; Lindman, B.; Medronho, B. Cellulose-based edible films for probiotic entrapment. Food Hydrocoll. 2019, 88, 68–74. [Google Scholar] [CrossRef]
- Bourbon, A.I.; Pinheiro, A.C.; Cerqueira, M.A.; Vicente, A.A. In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocoll. 2018, 84, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, C.; Gallegos, I.; Ihl, M.; Bifani, V. Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. J. Food Eng. 2012, 109, 424–429. [Google Scholar] [CrossRef]
- Alves, D.; Cerqueira, M.A.; Pastrana, L.M.; Sillankorva, S. Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Res. Int. 2020, 128, 108791. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.A.; Costa, M.J.; Fuciños, C.; Pastrana, L.M.; Vicente, A.A. Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical–chemical Characterization. Food Bioprocess Technol. 2013, 7, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll. 2018, 81. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. Innov. Food Sci. Emerg. Technol. 2021, 69. [Google Scholar] [CrossRef]
- Berens, A.R.; Hopfenberg, H.B. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978, 19, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Rhim, J.W. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Cherpinski, A.; Jari, S.T.; Maria, V.; Peresin, S.; Lahtinen, P.; Lagaron, J.M. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018. [Google Scholar] [CrossRef]
- Simsek, M.; Eke, B.; Demir, H. Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. Int. J. Biol. Macromol. 2020, 163, 2172–2179. [Google Scholar] [CrossRef]
- Mariano, M.; Kissi, N.E.; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of some Properties and Challenges. J. Polym. Sci. Part B Polym. Phys. 2014, 791–806. [Google Scholar] [CrossRef]
- Martins, J.T.; Bourbon, A.I.; Pinheiro, A.C.; Souza, B.W.S.; Cerqueira, M.A.; Vicente, A.A. Biocomposite Films Based on κ-Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. Food Bioprocess Technol. 2013, 6, 2081–2092. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int. J. Biol. Macromol. 2018, 106, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelin, M.; Marques, A.M.; Pastrana, L.M.; Teixeira, A. Carboxymethyl cellulose-based films : Effect of organosolv lignin incorporation on physicochemical and antioxidant properties. J. Food Eng. 2020, 285. [Google Scholar] [CrossRef]
- Yai, H. Antimicrobial activity and the properties of edible hydroxypropyl methylcellulose based films incorporated with encapsulated clove (Eugenia caryophyllata Thunb.) oil. Int. Food Res. J. 2011, 18, 1531–1541. [Google Scholar]
- Li, K.; Yin, S.; Yang, X.; Tang, C.; Wei, Z. Fabrication and Characterization of Novel Antimicrobial Films Derived from Thymol-Loaded Zein − Sodium Caseinate (SC) Nanoparticles. J. Agric. Food Chem. 2012, 60, 11592–11600. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.N.; de Matos Fonseca, J.; Feldhaus, H.K.; Soares, L.S.; Valencia, G.A.; Maduro de Campos, C.E.; Di Luccio, M.; Monteiro, A.R. Physical and morphological properties of hydroxypropyl methylcellulose films with curcumin polymorphs. Food Hydrocoll. 2019, 97, 105217. [Google Scholar] [CrossRef]
- Kolev, T.M.; Velcheva, E.A.; Stamboliyska, B.A.; Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 2005, 102, 1069–1079. [Google Scholar] [CrossRef]
- Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Gonçalves, O.; Leimann, F.; Rebecca, E.; Silva-Buzanello, R.; Filho, L.; Araújo, P.; Cuman, R.; Bersani-Amado, C. Curcumin encapsulated in poly-L-lactic acid improves its anti-inflammatory efficacy in vivo. Adv. Med. Plant Res. 2014, 2, 62–73. [Google Scholar]
- Pinheiro, A.C.; Bourbon, A.I.; Quintas, M.A.C.; Coimbra, M.A.; Vicente, A.A. Κ-Carrageenan/Chitosan Nanolayered Coating for Controlled Release of a Model Bioactive Compound. Innov. Food Sci. Emerg. Technol. 2012, 16, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, A.C.; Bourbon, A.I.; Vicente, A.A.; Quintas, M.A.C. Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices—Diffusion of protein-based compounds from chitosan films. J. Food Eng. 2013, 116, 633–638. [Google Scholar] [CrossRef] [Green Version]
Film Samples | Thickness ×10−2 (mm) | Moisture
Content (%) | Solubility (%) | Contact Angle (°) | WVP × 10−10 (g·Pa−1·s−1·m−1) | TS (MPa) | EB (%) |
---|---|---|---|---|---|---|---|
CMC-based films | 7.91 a (±1.23) | 16.80 a (±1.74) | 66.26 a (±4.17) | 45.39 a (±3.70) | 2.73 a (±0.08) | 16.46 a (±2.83) | 3.54 a (±1.48) |
CMC-based films with free curcumin | 6.99 a (±0.60) | 13.18 b (±0.93) | 46.12 b (±3.11) | 49.93 b (±2.45) | 2.22 b (±0.15) | 11.23 b (±1.31) | 4.19 a (±1.05) |
CMC-based films with curcumin-loaded nanohydrogels | 2.91 b (±0.39) | 14.14 b (±2.68) | 59.85 a (±9.78) | 51.57 b (±2.52) | 1.04 c (±0.08) | 9.87 b (±1.18) | 3.34 a (±0.84) |
Film Samples | Opacity | L* | a* | b* |
---|---|---|---|---|
CMC-films | 5.01 a (±0.98) | 95.34 a (±1.52) | −0.69 a (±0.95) | 3.50 a (±0.71) |
CMC-films with free curcumin | 8.45 b (±1.38) | 96.85 b (±0.56) | −0.36 a (±0.12) | 4.20 a (±0.65) |
CMC-films with curcumin-loaded nanohydrogels | 9.30 b (±0.14) | 96.56 b (±0.13) | −2.33 b (±0.29) | 10.36 b (±1.19) |
RMSE | R2 | MF | KF | MR | KR | |
---|---|---|---|---|---|---|
CMC-films with free curcumin | 0.265 | 0.925 | 3.645 (27.85%) | 9.579 (32.14%) | 8.649 (47.35%) | 5.124 (20.18%) |
CMC-films with curcumin-loaded nanohydrogels | 0.321 | 0.945 | 6.077 (57.35%) | 14.845 (36.58%) | 14.069 (19.87%) | 16.941 (27.24%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourbon, A.I.; Costa, M.J.; Maciel, L.C.; Pastrana, L.; Vicente, A.A.; Cerqueira, M.A. Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films’ Properties. Foods 2021, 10, 1512. https://doi.org/10.3390/foods10071512
Bourbon AI, Costa MJ, Maciel LC, Pastrana L, Vicente AA, Cerqueira MA. Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films’ Properties. Foods. 2021; 10(7):1512. https://doi.org/10.3390/foods10071512
Chicago/Turabian StyleBourbon, Ana I., Maria J. Costa, Luís C. Maciel, Lorenzo Pastrana, António A. Vicente, and Miguel A. Cerqueira. 2021. "Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films’ Properties" Foods 10, no. 7: 1512. https://doi.org/10.3390/foods10071512
APA StyleBourbon, A. I., Costa, M. J., Maciel, L. C., Pastrana, L., Vicente, A. A., & Cerqueira, M. A. (2021). Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films’ Properties. Foods, 10(7), 1512. https://doi.org/10.3390/foods10071512