Development and Characterization of Physical Modified Pearl Millet Starch-Based Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Starch Extraction
2.2.2. Starch Modification
Heat Moisture Treatment (HMT)
Microwave Treatment
Sonication Treatment
2.2.3. Physicochemical Characteristics
2.2.4. Thermal Characteristics
2.2.5. Pasting Characteristics
2.2.6. Rheological Characteristics
2.2.7. X-ray Diffraction (XRD)
2.2.8. Morphological Characteristics
2.2.9. Particle Size Distribution (PSD)
2.2.10. Film Formation
2.2.11. Characteristics of Film
2.2.12. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics
3.2. Thermal Characteristics
3.3. Pasting Characteristics
3.4. Rheological Characteristics
3.5. XRD Pattern
3.6. Morphological Characteristics
3.7. Particle Size Distributions
3.8. Properties of Starch Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agricultural Organization of the United Nations). The Statistical Division. 2018. Available online: http://faostat.fao.org/beta/en/#data/QC (accessed on 9 October 2020).
- Punia, S. Barley starch: Structure, properties and in vitro digestibility—A review. Int. J. Biol. Macromol. 2020, 155, 868–875. [Google Scholar] [CrossRef]
- Punia, S. Barley starch modifications: Physical, chemical and enzymatic—A review. Int. J. Biol. Macromol. 2020, 144, 578–585. [Google Scholar] [CrossRef]
- Ortega-Ojeda, F.E.; Eliasson, A.C. Gelatinisation and retrogradation behaviour of some starch mixtures. Starch/Stärke 2001, 53, 520–529. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chem. 2014, 143, 175–184. [Google Scholar] [CrossRef]
- Zavareze, E.R.; Dias, A.R.G. Impact of heat–moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–330. [Google Scholar] [CrossRef]
- Braşoveanu, M.; Nemţanu, M.R. Behaviour of starch exposed to microwave radiation treatment. Starch/Stärke 2014, 66, 3–14. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual modification of taro starch by microwave and other heat moisture treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.; Perera, A.; Meda, V.; Tyler, R.T. Effect of microwave treatment on starch digestibility and physico-chemical properties of three barley types. Food Bioproc. Technol. 2012, 5, 2266–2274. [Google Scholar] [CrossRef]
- Zuo, J.Y.; Knoerzer, K.; Mawson, R.; Kentish, S.; Ashok Kumar, M. The pasting properties of sonicated waxy rice starch suspensions. Ultrason. Sonochem. 2009, 16, 462–468. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Singh, N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007, 101, 1499–1507. [Google Scholar] [CrossRef]
- Collado, D.M. Food & Food Production Encyclopedia; John Wiley Inc.: New York, NY, USA, 2001; p. 142. [Google Scholar]
- Li, Y.; Hu, A.; Wang, X.; Zheng, J. Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave. Int. J. Biol. Macromol. 2019, 134, 308–315. [Google Scholar] [CrossRef]
- Majeed, T.; Wani, I.A.; Hussain, P.R. Effect of dual modification of sonication and γ-irradiation on physicochemical and functional properties of lentil (Lens culinaris L.) starch. Int. J. Biol. Macromol. 2017, 101, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C.; Kuzina, F.D.; Hlynka, I. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 1970, 47, 411–420. [Google Scholar]
- Leach, H.W.; Mc Cowen, L.D.; Schoch, T.J. Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem. 1959, 36, 534–544. [Google Scholar]
- Perera, C.; Hoover, K. Influence of hydroxypropylation on retrogradation properties of native, defatted and heat moisture treated potato starches. Food Chem. 1999, 64, 361–375. [Google Scholar] [CrossRef]
- Da Rosa Zavareze, E.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat–moisture treated potato starch film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Galus, S.; Mathieu, H.; Lenart, A.; Debeaufort, F. Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innov. Food Sci. Emerg. Technol. 2012, 16, 148–154. [Google Scholar] [CrossRef]
- Fan, H.; Ji, N.; Zhao, M.; Xiong, L.; Sun, Q. Characterization of starch films impregnated with starch nanoparticles prepared by 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chem. 2016, 192, 865–872. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; CUQ, J.L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- Han, J.H.; Floros, J.D. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast. Film Sheet. 1997, 13, 287–298. [Google Scholar] [CrossRef]
- Atrous, H.; Benbettaieb, N.; Chouaibi, M.; Attia, H.; Ghorbel, D. Changes in wheat and potato starches induced by gamma irradiation: A comparative macro and microscopic study. Int. J. Food Prop. 2017, 20, 1532–1546. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, K.S.; Siroha, A.K.; Punia, S.; Nehra, M. Effect of heat moisture treatment on rheological and in vitro digestibility properties of pearl millet starches. Carbohydr. Polym. Technol. Appl. 2020, 1, 100002. [Google Scholar]
- Chan, H.T.; Bhat, R.; Karim, A.A. Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chem. 2010, 120, 703–709. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Desam, G.P.; Li, J.; Chen, G.; Campanella, O.; Narsimhan, G. Prediction of swelling behavior of crosslinked maize starch suspensions. Carbohydr. Polym. 2018, 199, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Carmona-García, R.; Bello-Pérez, L.A.; Aguirre-Cruz, A.; Aparicio-Saguilán, A.; Hernández-Torres, J.; Alvarez-Ramirez, J. Effect of ultrasonic treatment on the morphological, physicochemical, functional, and rheological properties of starches with different granule size. Starch/Stärke 2016, 68, 972–979. [Google Scholar] [CrossRef]
- Pinto, V.Z.; Vanier, N.L.; Deon, V.G.; Moomand, K.; El Halal, S.L.M.; Zavareze, E.R.; Lim, L.T.; Dias, A.R.G. Effects of single and dual physical modifications on pinhão starch. Food Chem. 2015, 187, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; He, X.; Fu, X.; Luo, F.; Gao, Q. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch/Stärke 2006, 58, 468–474. [Google Scholar] [CrossRef]
- Waters, D.L.; Henry, R.J.; Reinke, R.F.; Fitzgerald, M.A. Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol. J. 2006, 4, 115–122. [Google Scholar] [CrossRef]
- Shiotsubo, T.; Takahashi, K. Differential thermal analysis of potato starch gelatinization. Agric. Biol. Chem. 1984, 48, 9–17. [Google Scholar] [CrossRef]
- Sharma, M.; Yadav, D.N.; Singh, A.K.; Tomar, S.K. Rheological and functional properties of heat moisture treated pearl millet starch. J. Food Sci. Technol. 2015, 52, 6502–6510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsafi, S.R.; Maghsoudlou, Y.; Rostamabadi, H.; Rostamabadi, M.M.; Hamedi, H.; Hosseini, S.M.H. Preparation of physically modified oat starch with different sonication treatments. Food Hydrocoll. 2019, 89, 311–320. [Google Scholar] [CrossRef]
- Luo, F.X.; Huang, Q.; Fu, X.; Zhang, L.X.; Yu, S.J. Preparation and characterisation of cross-linked waxy potato starch. Food Chem. 2009, 115, 563–568. [Google Scholar] [CrossRef]
- Loisel, C.; Maache-Rezzoug, Z.; Esneault, C.; Doublier, J.L. Effect of hydrothermal treatment on the physical and rheological properties of maize starches. J. Food Eng. 2006, 73, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Punia, S.; Siroha, A.K.; Sandhu, K.S.; Kaur, M. Rheological and pasting behavior of OSA modified mungbean starches and its utilization in cake formulation as fat replacer. Int. J. Biol. Macromol. 2019, 128, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.; Siroha, A.K.; Sandhu, K.S.; Kaur, M. Rheological behavior of wheat starch and barley resistant starch (type IV) blends and their starch noodles making potential. Int. J. Biol. Macromol. 2019, 130, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Siroha, A.K.; Sandhu, K.S.; Punia, S. Impact of octenyl succinic anhydride on rheological properties of sorghum starch. Qual. Assur. Saf. Crop. 2019, 11, 221–229. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Siroha, A.K. Relationships between physicochemical, thermal, rheological and in vitro digestibility properties of starches from pearl millet cultivars. LWT Food Sci. Technol. 2017, 83, 213–224. [Google Scholar] [CrossRef]
- Luo, Z.; Fu, X.; He, X.; Luo, F.; Gao, Q.; Yu, S. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch/Stärke 2008, 60, 646–653. [Google Scholar] [CrossRef]
- Klein, B.; Pinto, V.Z.; Vanier, N.L.; da Rosa Zavareze, E.; Colussi, R.; do Evangelho, J.A.; Gutkoski, L.C.; Dias, A.R.G. Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydr. Polym. 2013, 98, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Lewandowicz, G.; Jankowski, T.; Fornal, J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr. Polym. 2000, 42, 193–199. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, B.; Chen, L.; Li, X.; Zheng, B. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chem. 2019, 271, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Molavi, H.; Razavi, S.M.A.; Farhoosh, R. Impact of hydrothermal modifications on the physicochemical, morphology, crystallinity, pasting and thermal properties of acorn starch. Food Chem. 2018, 245, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, S.; Ali, T.M.; Sheikh, M.; Hasnain, A. Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int. J. Biol. Macromol. 2020, 155, 786–794. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Atikah, M.S.N.; Mohd Nurazzi, N.; Atiqah, A.; Ansari, M.N.M.; et al. Effect of sugar palm nano fibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019, 8, 4819–4830. [Google Scholar] [CrossRef]
Sample | Amylose Content (%) | Swelling Power (g/g) | Solubility (%) |
---|---|---|---|
Native | 18.2 ± 0.3 c | 15.86 ± 0.5 b | 25.2 ± 0.2 a |
HMT | 14.85 ± 0.2 b | 12.64 ± 0.4 a | 26.4 ± 0.3 b |
Microwave | 14.32 ± 0.4 a | 12.63 ± 0.6 a | 28.8 ± 0.2 c |
Sonication | 19.5 ± 0.3 d | 17.53 ± 0.4 c | 26.2 ± 0.1 b |
Sample | To (°C) | Tp (°C) | Tc (°C) | ∆Hgel (J/g) | PHI | R |
---|---|---|---|---|---|---|
Control | 62.92 ± 0.5 a | 67.95 ± 0.2 a | 73.78 ± 0.2 a | 10.8 ± 0.1 d | 2.15 ± 0.02 b | 10.06 ± 0.3 bc |
HMT | 76.16 ± 0.3 d | 81.05 ± 0.4 d | 84.50 ± 0.3 d | 7.9 ± 0.3 a | 1.75 ± 0.04 a | 9.78 ± 0.3 b |
MIC | 72.15 ± 0.4 c | 76.65 ± 0.3 c | 81.10 ± 0.3 c | 8.6 ± 0.2 b | 1.91 ± 0.05 ab | 9.0 ± 0.2 a |
Sonication | 63.40 ± 0.3 b | 68.35 ± 0.5 b | 74.11 ± 0.5 b | 9.2 ± 0.2 c | 1.86 ± 0.03 a | 9.9 ± 0.5 b |
Sample | PV (mPa·s) | BV (mPa·s) | TV (mPa·s) | SV (mPa·s) | FV (mPa·s) | PT (°C) |
---|---|---|---|---|---|---|
Native | 995 ± 20 c | 443 ± 6 c | 552 ± 10 d | 311 ± 8 c | 863 ± 11 d | 72.8 ± 0.2 a |
HMT | 536 ± 12 a | 74.0 ± 5 a | 462 ± 9 c | 274 ± 5 b | 736 ± 9 b | 75.2 ± 0.1 c |
Microwave | 630 ± 15 b | 209 ± 7 b | 421 ± 7 a | 266 ± 6 a | 687 ± 10 a | 77.0 ± 0.2 d |
Sonication | 1034 ± 11 d | 586 ± 8 d | 448 ± 9 b | 389 ± 8 d | 837 ± 12 c | 73.4 ± 0.1 b |
Sample | (G′) (Pa) | G′′ (Pa) | tanδ |
---|---|---|---|
Native | 1370 ± 15 c | 83 ± 5 a | 0.06 a |
HMT | 1338 ± 11 b | 94 ± 4 bc | 0.07 a |
Microwave | 1039 ± 12 a | 84 ± 6 a | 0.08 a |
Sonication | 1730 ± 16 d | 90 ± 5 b | 0.05 a |
Sample | D(3,2) (µm) | D(4,3) (µm) | Dv (10) (µm) | Dv (50) (µm) | Dv (90) (µm) |
---|---|---|---|---|---|
Native | 8.43 ± 0.01 b | 17.0 ± 0.03 b | 6.52 ± 0.01 ab | 13.9 ± 0.02 b | 29.1 ± 0.03 b |
HMT | 17.6 ± 0.02 d | 43.1 ± 0.05 d | 9.90 ± 0.02 c | 36.4 ± 0.04 d | 86.1 ± 0.05 d |
Microwave | 9.91 ± 0.02 c | 20.0 ± 0.02 c | 7.13 ± 0.02 b | 16.4 ± 0.02 c | 36.4 ± 0.03 c |
Sonication | 8.24 ± 0.01 a | 16.6 ± 0.03 a | 6.41 ± 0.03 a | 13.1 ± 0.03 a | 27.6 ± 0.02 a |
Sample | Moisture Content (%) | Thickness (mm) | Water Solubility (%) | Opacity (%) |
---|---|---|---|---|
Native | 27.11 ± 1.6 c | 0.105 ± 0.003 | 34.04 ± 2.1 a | 1.744 ± 00 a |
HMT | 23.54 ± 2.2 a | 0.101 ± 0.002 | 35.10 ± 1.8 b | 2.812 ± 00 d |
Microwave | 23.80 ± 2.0 ab | 0.099 ± 0.001 | 37.55 ± 2.8 c | 2.710 ± 00 c |
Sonication | 26.92 ± 1.5 b | 0.104 ± 0.002 | 35.40 ± 2.2 b | 2.191 ± 00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punia Bangar, S.; Nehra, M.; Siroha, A.K.; Petrů, M.; Ilyas, R.A.; Devi, U.; Devi, P. Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods 2021, 10, 1609. https://doi.org/10.3390/foods10071609
Punia Bangar S, Nehra M, Siroha AK, Petrů M, Ilyas RA, Devi U, Devi P. Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods. 2021; 10(7):1609. https://doi.org/10.3390/foods10071609
Chicago/Turabian StylePunia Bangar, Sneh, Manju Nehra, Anil Kumar Siroha, Michal Petrů, Rushdan Ahmad Ilyas, Urmila Devi, and Priyanka Devi. 2021. "Development and Characterization of Physical Modified Pearl Millet Starch-Based Films" Foods 10, no. 7: 1609. https://doi.org/10.3390/foods10071609
APA StylePunia Bangar, S., Nehra, M., Siroha, A. K., Petrů, M., Ilyas, R. A., Devi, U., & Devi, P. (2021). Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods, 10(7), 1609. https://doi.org/10.3390/foods10071609