Clean Label Alternatives in Meat Products
Abstract
:1. Introduction
2. Clean-Label Ingredients in Meat Products
2.1. Antimicrobial
2.2. Antioxidants
2.3. Texturisers
2.4. Colours
3. Novel Technologies for the Development of Clean-Label Meat Products
4. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Cegiełka, A. “Clean Label” as one of the leading trends in the meat industry in the world and in poland—A review. Rocz. Panstw. Zakl. Hig. 2020, 71, 43–55. [Google Scholar] [CrossRef]
- Yong, H.; Kim, T.; Choi, H.; Jung, S.; Choi, Y. Technological strategy of clean label meat products. Food Life 2020, 1, 13–20. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “Clean Label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Velissariou, M. What Is Clean Label? Available online: http://blog.ift.org/what-is-clean-label (accessed on 3 June 2021).
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘Clean Label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Schwarz, N. If it’s difficult to pronounce, it must be risky: Fluency, familiarity, and risk perception. Psychol. Sci. 2009, 20, 135–138. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Lusk, J. What Is Natural Food Anyway? Available online: http://jaysonlusk.com/blog/2013/6/11/what-is-natural-food-anyway (accessed on 13 June 2021).
- Westbrook, G.; Angus, A. Top 10 Global Consumer Trends 2021; Euromonitor International: London, UK, 2021. Available online: https://go.euromonitor.com/white-paper-EC-2021-Top-10-Global-Consumer-Trends.html (accessed on 3 June 2021).
- Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food AdditivesText with EEA Relevance. Off. J. Eur. Union 2011, L295, 1–177.
- Font-i-Furnols, M.; Guerrero, L. Consumer Preference, Behavior and Perception about Meat and Meat Products: An Overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential Oils as Potential Antimicrobial Agents in Meat and Meat Products: A Review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Adams, M.R.; Moss, M.O. The Microbiology of Food Preservation. In Food Microbiology; Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Sen, N.P.; Baddoo, P.A. Trends in the levels of residual nitrite in canadian cured meat products over the past 25 years. J. Agric. Food Chem. 1997, 45, 4714–4718. [Google Scholar] [CrossRef]
- Krause, B.L.; Sebranek, J.G.; Rust, R.E.; Mendonca, A. Incubation of curing brines for the production of ready-to-eat, uncured, no-nitrite-or-nitrate-added, ground, cooked and sliced ham. Meat Sci. 2011, 89, 507–513. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to Nitrite in Processed Meat: Up to Date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Kim, T.-K.; Hwang, K.-E.; Song, D.-H.; Ham, Y.-K.; Kim, Y.-B.; Paik, H.-D.; Choi, Y.-S. Effects of natural nitrite source from swiss chard on quality characteristics of cured pork loin. Asian Australas. J. Anim. Sci. 2019, 32, 1933–1941. [Google Scholar] [CrossRef]
- Tauxe, R.V.; Doyle, M.P.; Kuchenmüller, T.; Schlundt, J.; Stein, C.E. Evolving public health approaches to the global challenge of foodborne infections. Int. J. Food Microbiol. 2010, 139, S16–S28. [Google Scholar] [CrossRef]
- Feiner, G. Meat Products Handbook. In Practical Science and Technology, 1st ed.; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Vally, H.; Misso, N.L. Adverse reactions to the sulphite additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16–23. [Google Scholar] [PubMed]
- Sindelar, J.J.; Milkowski, A.L. Sodium Nitrite in Processed Meat and Poultry Meats: A Review of Curing and Examining the Risk/Benefit of Its Use; White Paper Series; American Meat Science Association: Savoy, IL, USA, 2011; Volume 3. [Google Scholar]
- Parthasarathy, D.K.; Bryan, N.S. Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Sci. 2012, 92, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.I.; Kim, T.-K.; Choi, H.-D.; Jang, H.W.; Jung, S.; Choi, Y.-S. Clean label meat technology: Pre-converted nitrite as a natural curing. Food Sci. Anim. Resour. 2021, 41, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Aminzare, M.; Hashemi, M.; Hassanzadazar, H.; Hejazi, J. The Use of Herbal Extracts and Essential Oils as a Potential Antimicrobial in Meat and Meat Products; a Review. J. Hum. Environ. Health Promot. 2016, 1, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green Alternatives to Nitrates and Nitrites in Meat-Based Products—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaleque, M.A.; Keya, C.A.; Hasan, K.N.; Hoque, M.M.; Inatsu, Y.; Bari, M.L. Use of Cloves and Cinnamon Essential Oil to Inactivate Listeria Monocytogenes in Ground Beef at Freezing and Refrigeration Temperatures. LWT 2016, 74, 219–223. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Pierson, M.D. Effect of Sodium Nitrite and Origanum Oil on Growth and Toxin Production of Clostridium Botulinum in TYG Broth and Ground Pork. J. Food Prot. 1990, 53, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Grün, I.U.; Mustapha, A. Antimicrobial and Antioxidant Activities of Natural Extracts in Vitro and in Ground Beef. J. Food Prot. 2004, 67, 148–155. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N.; Mohebi, E. Effects of Z iziphora clinopodioides essential oil and nisin, both separately and in combination, to extend shelf life and control Escherichia Coli O157:H7 and Staphylococcus aureus in raw beef patty during refrigerated storage. J. Food Saf. 2016, 36, 227–236. [Google Scholar] [CrossRef]
- Colak, H.; Hampikyan, H.; Bingol, E.B.; Aksu, H. The Effect of Nisin and Bovine Lactoferrin on the microbiological quality of turkish-style meatball (TEKIRDAĞ KÖFTE). J. Food Saf. 2008, 28, 355–375. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Lucera, A.; Sinigaglia, M.; Corbo, M.R. Synergic Antimicrobial Activity of Lysozyme, Nisin, and EDTA against Listeria Monocytogenes in Ostrich Meat Patties. J. Food Sci. 2010, 75, M422–M429. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food By-Products as Potential Antioxidant and Antimicrobial Additives in Chill Stored Raw Lamb Patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, L.M.; Glass, K.A.; Sindelar, J.J. Identifying Ingredients That Delay Outgrowth of Listeria Monocytogenes in Natural, Organic, and Clean-Label Ready-to-Eat Meat and Poultry Products. J. Food Prot. 2013, 76, 1366–1376. [Google Scholar] [CrossRef]
- Min, B.J.; Han, I.Y.; Dawson, P.L. Antimicrobial Gelatin Films Reduce Listeria Monocytogenes on Turkey Bologna. Poult. Sci. 2010, 89, 1307–1314. [Google Scholar] [CrossRef]
- Bostan, K.; Mahan, F. Microbiological Quality and Shelf-Life of Sausage Treated with Chitosan. J. Fac. Vet. Med. Istanb. Univ. 2011, 37, 117–126. [Google Scholar]
- Soultos, N.; Tzikas, Z.; Abrahim, A.; Georgantelis, D.; Ambrosiadis, I. Chitosan Effects on Quality Properties of Greek Style Fresh Pork Sausages. Meat Sci. 2008, 80, 1150–1156. [Google Scholar] [CrossRef]
- Golden, M.; Wanless, B.; Glass, K. Comparison of Clean Label Antimicrobials with Nitrite on the Inhibition of Clostridium Perfringens during Extended Cooling of a Model Deli-Style Ham Product. In Proceedings of the IAFP 2019 Annual Meeting, IAFP, Louisville, KY, USA, 21–24 July 2019. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Munekata, P.E.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of Essential Oils as Antimicrobial Agents against Spoilage and Pathogenic Microorganisms in Meat Products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Tsigarida, E.; Skandamis, P.; Nychas, G.J. Behaviour of Listeria Monocytogenes and Autochthonous Flora on Meat Stored under Aerobic, Vacuum and Modified Atmosphere Packaging Conditions with or without the Presence of Oregano Essential Oil at 5 °C. J. Appl. Microbiol. 2000, 89, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, P.; Tsigarida, E.; Nychas, G.E. The Effect of Oregano Essential Oil on Survival/Death of Salmonella Typhimurium in Meat Stored at 5 C under Aerobic, VP/MAP Conditions. Food Microbiol. 2002, 19, 97–103. [Google Scholar] [CrossRef]
- Chouliara, E.; Karatapanis, A.; Savvaidis, I.N.; Kontominas, M.G. Combined Effect of Oregano Essential Oil and Modified Atmosphere Packaging on Shelf-Life Extension of Fresh Chicken Breast Meat, Stored at 4 °C. Food Microbiol. 2007, 24, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The Antimicrobial Effect of Oregano Essential Oil, Nisin and Their Combination against Salmonella Enteritidis in Minced Sheep Meat during Refrigerated Storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Barbosa, L.N.; Rall, V.L.M.; Fernandes, A.A.H.; Ushimaru, P.I.; da Silva Probst, I.; Fernandes, A. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat. Foodborne Pathog. Dis. 2009, 6, 725–728. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Lira-Moreno, C.Y.; Guerrero-Legarreta, I.; Wild-Padua, G.; Di Pierro, P.; García-Almendárez, B.E.; Regalado-González, C. Effect of Nanoemulsified and Microencapsulated Mexican Oregano (Lippia graveolens Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat. J. Food Sci. 2017, 82, 1423–1432. [Google Scholar] [CrossRef]
- Pegg, R.B.; Shahidi, F. Nitrite Curing of Meat: The Nnitrosamine Problem and Nitrite Alternatives; Food and Nutrition Press. Inc.: Trumbull, CT, USA, 2000. [Google Scholar]
- de Oliveira, T.L.C.; de Araújo Soares, R.; Ramos, E.M.; das Graças Cardoso, M.; Alves, E.; Piccoli, R.H. Antimicrobial Activity of Satureja Montana, L. Essential Oil against Clostridium Perfringens Type A Inoculated in Mortadella-Type Sausages Formulated with Different Levels of Sodium Nitrite. Int. J. Food Microbiol. 2011, 144, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Sulfite-Free Lamb Burger Meat: Antimicrobial and Antioxidant Properties of Green Tea and Carvacrol. J. Sci. Food Agric. 2019, 99, 464–472. [Google Scholar] [CrossRef]
- Cui, H.; Gabriel, A.A.; Nakano, H. Antimicrobial Efficacies of Plant Extracts and Sodium Nitrite against Clostridium Botulinum. Food Control 2010, 21, 1030–1036. [Google Scholar] [CrossRef]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Use of Natural Antimicrobials to Improve the Control of Listeria Monocytogenes in a Cured Cooked Meat Model System. Meat Sci. 2011, 88, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia Coli O157:H7 in minced beef during refrigerated storage. Meat Sci. 2008, 80, 159–166. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Koidis, A. Suitability, Efficiency and Microbiological Safety of Novel Physical Technologies for the Processing of Ready-to-eat Meals, Meats and Pumpable Products. Int. J. Food Sci. Technol. 2015, 50, 1283–1302. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Pokorný, J. Are Natural Antioxidants Better—and Safer—than Synthetic Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 629–642. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterisation of the Volatile Composition of Essential Oils of Some Lamiaceae Spices and the Antimicrobial and Antioxidant Activities of the Entire Oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical Use of Natural Antioxidants in Meat Products in the U.S.: A Review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lopez, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and Antibacterial Activities of Natural Extracts: Application in Beef Meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Yang, M.R.; Lee, O.H.; Kang, S.N. Antioxidant Activities of Hot Water Extracts from Various Spices. Int. J. Mol. Sci. 2011, 12, 4120–4131. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Domínguez, R.; Franco, D.; Bermúdez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of Natural Antioxidants in Spanish Salchichón Elaborated with Encapsulated N-3 Long Chain Fatty Acids in Konjac Glucomannan Matrix. Meat Sci. 2017, 124, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and By-Products as Source of Natural Antioxidants in Meat and Meat Products: A Review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of Hull, Bur and Leaf Chestnut Extracts on the Shelf-Life of Beef Patties Stored under MAP: Evaluation of Their Impact on Physicochemical Properties, Lipid Oxidation, Antioxidant, and Antimicrobial Potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D.; Carballo, J. Effect of the Inclusion of Chestnut in the Finishing Diet on Volatile Compounds during the Manufacture of Dry-Cured “Lacón” from Celta Pig Breed. Meat Sci. 2014, 96, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Fernández-Ginés, J.M.; Aleson-Carbonell, L.; Sendra, E.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Application of Functional Citrus By-Products to Meat Products. Trends Food Sci. Technol. 2004, 15, 176–185. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Naveena, B.M. Effect of Salt, Kinnow and Pomegranate Fruit by-Product Powders on Color and Oxidative Stability of Raw Ground Goat Meat during Refrigerated Storage. Meat Sci. 2010, 85, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Huang, H.; Huang, J.; Wang, Q.; Wei, Q. Lychee (Litchi chinensis Sonn.) Seed Water Extract as Potential Antioxidant and Anti-Obese Natural Additive in Meat Products. Food Control 2015, 50, 195–201. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries Extracts as Natural Antioxidants in Meat Products: A Review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Schullehner, J.; Hansen, B.; Thygesen, M.; Pedersen, C.B.; Sigsgaard, T. Nitrate in Drinking Water and Colorectal Cancer Risk: A Nationwide Population-based Cohort Study. Int. J. Cancer 2018, 143, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, J.G.; Jackson-Davis, A.L.; Myers, K.L.; Lavieri, N.A. Beyond Celery and Starter Culture: Advances in Natural/Organic Curing Processes in the United States. Meat Sci. 2012, 92, 267–273. [Google Scholar] [CrossRef]
- Jin, S.-K.; Choi, J.S.; Yang, H.-S.; Park, T.-S.; Yim, D.-G. Natural Curing Agents as Nitrite Alternatives and Their Effects on the Physicochemical, Microbiological Properties and Sensory Evaluation of Sausages during Storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of Varying Levels of Vegetable Juice Powder and Incubation Time on Color, Residual Nitrate and Nitrite, Pigment, PH, and Trained Sensory Attributes of Ready-to-Eat Uncured Ham. J. Food Sci. 2007, 72, 388–395. [Google Scholar] [CrossRef]
- Flores, M.; Toldrá, F. Chemistry, Safety, and Regulatory Considerations in the Use of Nitrite and Nitrate from Natural Origin in Meat Products—Invited Review. Meat Sci. 2021, 171, 108272. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.P.; Kerry, J.P.; Tiwari, B.K.; McDonnell, C.K. Novel Processing Technologies and Ingredient Strategies for the Reduction of Phosphate Additives in Processed Meat. Trends Food Sci. Technol. 2019, 94, 43–53. [Google Scholar] [CrossRef]
- Savica, V.; Maiolino, G.; Calò, L.A. To Reconsider (Limit) the Use of Phosphate Based Food and Beverages Additives. A Real Need for Health Preservation. Clin. Nutr. 2016, 35, 240. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Fernandez, M.J.F.; Fürst, P.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Re-Evaluation of Phosphoric Acid–Phosphates—Di-, Tri- and Polyphosphates (E 338–341, E 343, E 450–452) as Food Additives and the Safety of Proposed Extension of Use. EFSA J. 2019, 17, e05674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk-Kerimoğlu, B.; Serdaroğlu, M. Powder/Gelled Inulin and Sodium Carbonate as Novel Phosphate Replacers in Restructured Chicken Steaks. J. Food Process. Preserv. 2019, 43, e14243. [Google Scholar] [CrossRef]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Evaluation of Citrus Fiber as a Natural Replacer of Sodium Phosphate in Alternatively-Cured All-Pork Bologna Sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef]
- Magalhaes, I.M.C.; de Souza Paglarini, C.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo Fiber Improves the Functional Properties of Reduced Salt and Phosphate-Free Bologna Sausage. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Roidoung, S.; Ponta, N.; Intisan, R. Mango Peel Ingredient as Salt and Phosphate Replacement in Chicken Breast Marinade. Int. J. Food Stud. 2020, 9, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Câmara, A.K.F.I.; Vidal, V.A.S.; Santos, M.; Bernardinelli, O.D.; Sabadini, E.; Pollonio, M.A.R. Reducing Phosphate in Emulsified Meat Products by Adding Chia (Salvia hispanica L.) Mucilage in Powder or Gel Format: A Clean Label Technological Strategy. Meat Sci. 2020, 163, 108085. [Google Scholar] [CrossRef]
- Lee, H.; Choe, J.; Yong, H.I.; Lee, H.J.; Kim, H.-J.; Jo, C. Combination of Sea Tangle Powder and High-Pressure Treatment as an Alternative to Phosphate in Emulsion-Type Sausage. J. Food Process. Preserv. 2018, 42, e13712. [Google Scholar] [CrossRef]
- Choe, J.; Lee, J.; Jo, K.; Jo, C.; Song, M.; Jung, S. Application of Winter Mushroom Powder as an Alternative to Phosphates in Emulsion-Type Sausages. Meat Sci. 2018, 143, 114–118. [Google Scholar] [CrossRef]
- Casco, G.; Veluz, G.A.; Alvarado, C.Z. SavorPhos as an All-Natural Phosphate Replacer in Water- and Oil-Based Marinades for Rotisserie Birds and Boneless-Skinless Breast. Poult. Sci. 2013, 92, 3236–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado, S.; Saguer, E.; Toldrà, M.; Parés, D.; Carretero, C. Porcine Plasma as Polyphosphate and Caseinate Replacer in Frankfurters. Meat Sci. 2012, 90, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Lowder, A.C.; Goad, C.L.; Lou, X.; Morgan, J.B.; DeWitt, C.A.M. Evaluation of a Dehydrated Beef Protein to Replace Sodium-Based Phosphates in Injected Beef Strip Loins. Meat Sci. 2011, 89, 491–499. [Google Scholar] [CrossRef]
- Resconi, V.C.; Keenan, D.F.; Gough, S.; Doran, L.; Allen, P.; Kerry, J.P.; Hamill, R.M. Response Surface Methodology Analysis of Rice Starch and Fructo-Oligosaccharides as Substitutes for Phosphate and Dextrose in Whole Muscle Cooked Hams. LWT Food Sci. Technol. 2015, 64, 946–958. [Google Scholar] [CrossRef]
- Cho, M.G.; Bae, S.M.; Jeong, J.Y. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products. Korean J. Food Sci. Anim. Resour. 2017, 37, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Colmenero, F.; Delgado-Pando, G. Fibre-enriched meat products. In Fibre-Rich and Wholegrain Foods: Improving Quality; Delcour, J.A., Poutanen, K., Eds.; Woodhead Publishing: New Delhi, India, 2013; Volume 237, pp. 329–347. ISBN 978-0-85709-578-7. [Google Scholar]
- Munoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia Seed (Salvia hispanica): An Ancient Grain and a New Functional Food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Jarvis, N.; Clement, A.R.; O’Bryan, C.A.; Babu, D.; Crandall, P.G.; Owens, C.M.; Meullenet, J.-F.; Ricke, S.C. Dried Plum Products as a Substitute for Phosphate in Chicken Marinade. J. Food Sci. 2012, 77, S253–S257. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. The Consumer’s Perception of Artificial Food Additives: Influences on Acceptance, Risk and Benefit Perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Nigg, J.T.; Lewis, K.; Edinger, T.; Falk, M. Meta-Analysis of Attention-Deficit/Hyperactivity Disorder or Attention-Deficit/Hyperactivity Disorder Symptoms, Restriction Diet, and Synthetic Food Color Additives. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 86–97.e8. [Google Scholar] [CrossRef] [Green Version]
- Hygreeva, D.; Pandey, M.C. Novel Approaches in Improving the Quality and Safety Aspects of Processed Meat Products through High Pressure Processing Technology—A Review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-Pressure Processing of Meat: Molecular Impacts and Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Speroni, F.; Szerman, N.; Vaudagna, S.R. High Hydrostatic Pressure Processing of Beef Patties: Effects of Pressure Level and Sodium Tripolyphosphate and Sodium Chloride Concentrations on Thermal and Aggregative Properties of Proteins. Innov. Food Sci. Emerg. Technol. 2014, 23, 10–17. [Google Scholar] [CrossRef]
- Szerman, N.; Ferrari, R.; Sancho, A.M.; Vaudagna, S. Response Surface Methodology Study on the Effects of Sodium Chloride and Sodium Tripolyphosphate Concentrations, Pressure Level and Holding Time on Beef Patties Properties. LWT 2019, 109, 93–100. [Google Scholar] [CrossRef]
- Maksimenko, A.; Kikuchi, R.; Tsutsuura, S.; Nishiumi, T. Effect of High Hydrostatic Pressure and Reducing Sodium Chloride and Phosphate on Physicochemical Properties of Beef Gels. High Press. Res. 2019, 39, 385–397. [Google Scholar] [CrossRef]
- Rakotondramavo, A.; Rabesona, H.; Brou, C.; de Lamballerie, M.; Pottier, L. Ham Processing: Effects of Tumbling, Cooking and High Pressure on Proteins. Eur. Food Res. Technol. 2019, 245, 273–284. [Google Scholar] [CrossRef]
- Mizi, L.; Cofrades, S.; Bou, R.; Pintado, T.; Lopez-Caballero, M.E.; Zaidi, F.; Jimenez-Colmenero, F. Antimicrobial and Antioxidant Effects of Combined High Pressure Processing and Sage in Beef Burgers during Prolonged Chilled Storage. Innov. Food Sci. Emerg. Technol. 2019, 51, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and Meat Quality: A Review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Rudy, M.; Kucharyk, S.; Duma-Kocan, P.; Stanisławczyk, R.; Gil, M. Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. Sustainability 2020, 12, 5948. [Google Scholar] [CrossRef]
- Pinton, M.B.; Correa, L.P.; Facchi, M.M.X.; Heck, R.T.; Leães, Y.S.V.; Cichoski, A.J.; Lorenzo, J.M.; dos Santos, M.; Pollonio, M.A.R.; Campagnol, P.C.B. Ultrasound: A New Approach to Reduce Phosphate Content of Meat Emulsions. Meat Sci. 2019, 152, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, H.; Cao, C.; Kong, B.; Xia, X.; Liu, Q. Application of Temperature-Controlled Ultrasound Treatment and Its Potential to Reduce Phosphate Content in Frankfurter-Type Sausages by 50%. Ultrason. Sonochem. 2021, 71, 105379. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound Applications in Poultry Meat Processing: A Systematic Review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef] [Green Version]
- Kuswandi, B. Jumina 12—Active and intelligent packaging, safety, and quality controls. In Fresh-Cut Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 243–294. ISBN 978-0-12-816184-5. [Google Scholar]
- Zhao, Y.; Teixeira, J.S.; Saldaña, M.D.A.; Gänzle, M.G. Antimicrobial Activity of Bioactive Starch Packaging Films against Listeria Monocytogenes and Reconstituted Meat Microbiota on Ham. Int. J. Food Microbiol. 2019, 305, 108253. [Google Scholar] [CrossRef]
- Noor, S.; Bhat, Z.F.; Kumar, S.; Mudiyanselage, R.J. Preservative Effect of Asparagus Racemosus: A Novel Additive for Bioactive Edible Films for Improved Lipid Oxidative Stability and Storage Quality of Meat Products. Meat Sci. 2018, 139, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Young, E.; Mirosa, M.; Bremer, P. A Systematic Review of Consumer Perceptions of Smart Packaging Technologies for Food. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
E-Number | Additive Names | Max Dosage (mg/kg) | Permitted Products |
---|---|---|---|
E120 | Cochineal, carminic acid, carmines | 100 | Sausages, pates, terrines, breakfast sausages (min 6% cereal) and burger meat (4% vegetables or cereal) |
200 | Chorizo, salchichón | ||
quantum satis | pasturmas | ||
E129 | Allura Red AG | 25 | Luncheon meat, breakfast sausages (min 6% cereal) and burger meat (4% vegetables or cereal) |
E124 | Ponceau 4R, Cochineal Red A | 250 | Chorizo, salchichón |
200 | Sobrasada | ||
E150a–d | Caramels | quantum satis | Sausages, pates, terrines, breakfast sausages (min 6% cereal) and burger meat (4% vegetables or cereal) |
E160a | Carotenes | 20 | Sausages, pates, terrines |
E160c | Paprika extract, capsanthin, capsorubin | 10 | Sausages, pates, terrines |
E162 | Beetroot Red, betanin | quantum satis | Sausages, pates, terrines |
E200–203 | Sorbic acid-sorbates | 1000 | Pates, aspic |
E210–213 | Benzoic acid-benzoates | 500 | aspic |
E214–219 | p-hydroxybenzoates | 1000 | pates |
E220–228 | Sulphur dioxide-sulphites | 450 | breakfast sausages, burger meat (4% vegetables or cereal), salsicha fresca, longaniza fresca, butifarra fresca |
E249–250 | Nitrites | 150 | Non-sterilised meat products |
100 | Sterilised meat products (F0 > 3.00) | ||
E251–E252 | Nitrates | 150 | Non heat treated meat products |
E300–301 | Ascorbic acid, sodium ascorbate | quantum satis | Foie gras, foie gras entier, blocs de foie gras/Libamáj, libamáj egészben, libamáj tömbben |
E310–320 | Gallates, TBHQ and BHA | 200 | Dehydrated meat |
E315–316 | Erythorbic acid, sodium erythorbate | 500 | Cured meat products and preserved meat products |
E338–452 | Phosphoric acid-phosphates-di-, tri- and polyphosphates | 5000 | Except foie gras, foie gras entier, blocs de foie gras, Libamáj, libamáj egészben, libamáj tömbben |
E385 | Calcium disodium ethylene diamine tetra-acetate (Calcium disodium EDTA) | 250 | Libamáj, libamáj egészben, libamáj tömbben |
E392 | Extracts of rosemary | 150 | Dehydrated meat, heat treated and non-heat treated meat products excluding dried sausage |
100 | Dried sausage | ||
E427 | Cassia gum | 1500 | Heat treated meat products |
E473–474 | Sucrose esters of fatty acids-sucroglycerides | 5000 | Heat treated meat products except foie gras, foie gras entier, blocs de foie gras, Libamáj, libamáj egészben, libamáj tömbben |
E481–482 | Stearoyl-2-lactylates | 4000 | Minced and diced canned meat products |
E959 | Neohesperidine DC | 5 | As flavour enhancer only, except for foie gras, foie gras entier, blocs de foie gras, Libamáj, libamáj egészben, libamáj tömbben |
Antimicrobial | Dosage | Product | Target | Main Effects | References |
---|---|---|---|---|---|
Clove (Syzygium aromaticum) EO | 5 and 10% | Ground beef | L. monocytogenes | L. monocytogenes population completely inactivated after 3 days of storage at 0, 8 and −18 °C (10% clove oil) and inhibited with 5% clove oil | [26] |
Cinnamon (Cinnamomum cassia) EO | 2.5 and 5.0% | L. monocytogenes counts reduced by 3.5–4.0 Log CFU/g after 7 days at 0 and 8 °C and after 60 days at −18 °C (5% cinnamon oil) | |||
Oregano oil and Sodium nitrite | 400 pm and 50–100 ppm | Minced pork | C. botulinum | The synergistic effect of oregano oil and NaNO2 inhibited the growth of C. botulinum | [27] |
Cinnamon EO and Grape seed extract | 0.02–0.04% and 0.08–0.16% individually and in combination | Lyoner-type sausages | Lactic acid bacteria (LAB), Total viable count (TVC), Psychrotrophic count, mould and yeast count, and C. perfringens | Combination of cinnamon oil with grape extract 0.04 and 0.08%, respectively, reduced the final population of all counted microorganisms after 40 days, at 4 °C The combined effect of cinnamon oil with grape extract 0.04 and 0.16% reduced C. perfringens by 1.72 Log CFU/g at the end of storage | [24] |
Grape seed extract, Pine bark extract, and Rosemary extract | 1% for each extract applied separately | Ground beef | E. coli O157:H7, L. monocytogenes and S. Typhimurium | After 9 days of storage at 4 °C, E. coli O157:H7 reduced by 0.62, 0.66 and 0.18 Log CFU/g; L. monocytogenes by 1.01, 1.34 and 0.89 Log CFU/g; and S. Typhimurium by 1.11, 1.33 and 1.06 Log CFU/g, respectively, by 1% grape seed, 1% pine bark and 1% rosemary extract, compared with the control samples | [28] |
Ziziphora clinopodioides EO and Nisin | 0.1–0.2% and 250–500 IU/g individually and in combination | Raw beef patty | TVC, psychrotrophic and Enterobacteriaceae count and Staphylococcus aureus and E. coli O157:H7 | All treatments affected the growth of TVC, psychrotrophic and Enterobacteriaceae count, as well as S. aureus and E. coli O157:H7 Treatment with 0.2% EO+ 500 IU/g nisin presented the highest effect on microorganisms during storage for 9 days, at 4 °C E. coli O157:H7 and S. aureus counts were under the detection limit after 7 days, at 4 °C | [29] |
Nisin and Lactoferrin | 0, 100 and 200 µg/g individually and in combination | Turkish style meatball | TVC, LAB, Total psychrophilic bacteria, Pseudomonas spp., sulfite-reducing anaerobic bacteria, yeast and mould, and coliforms, E. coli, Total staphylococcae count, and S. aureus | All groups of microorganisms significantly reduced after treatment with nisin and lactoferrin alone or in combination after 12 days of storage at 4 °C Nisin (100 μg/g) and lactoferrin (200 μg/g) reduced the coliform (> 5-Log CFU/g) and E. coli population to undetectable level after 3 days, at 4 °C Nisin (200 μg/g) and lactoferrin (100 μg/g) effectively reduced S. aureus by 3.50 Log CFU/g | [30] |
Lysozyme Nisin and Disodium ethylenediaminetetraacetic acid (EDTA) | 250 ppm, 250 ppm and 20 mM in combination | Ostrich Meat Patties | TVC, LAB, Pseudomonas spp., Enterobacteriaceae and L. monocytogenes | L. monocytogenes population decreased below the detection limit of 2.00 Log CFU/g and LAB counts reduced about 2.00 Log CFU/g after treatment on patties packaged in air and vacuum and stored at 3 °C for 8 days | [31] |
Tomato, red grape, olive and pomegranate by-product extracts | 1000 mg/kg | Lamb meat patties | Mesophilic bacteria, Psychrotrophic counts, LAB, Enterobacteriaceae, and L. monocytogenes and Salmonella spp. | Microbial counts on lamb patties packed in MAP and stored at 2 °C (7-day storage) after treatment with by-product extracts were significantly lower than control samples Results showed the absence of L. monocytogenes and Salmonella spp. | [32] |
Ingredient | Meat Product | Effects in Meat Products | Reference |
---|---|---|---|
Inulin (powder or gelled) | restructured chicken steaks | Maintain sensory scores.Better juiciness scores with gelled form. Oxidative and microbiological stability during frozen storage. | [83] |
Citrus fibre | Cured bologna sausages | Similar emulsion stability and yield. Good behaviour during chilled storage. | [84] |
Bamboo fibre | Bologna sausages | Sensorially accepted | [85] |
Mango peel | Chicken marinade breast | Similar cooking/thawing yield | [86] |
Chia mucilage (powder and gelled) | Bologna sausages | Reduced chewy and firm. With 2% of mucilage better emulsion stability and sensory acceptability | [87] |
Sea tangle | emulsion type sausage | Similar cooking loss, overall acceptability | [88] |
Winter mushroom powder | emulsion type sausage | No negative effects in colour and sensory parameters with <2% | [89] |
Dried Plum Products | Chicken marinade fillets | similar sensory characteristics and yield | |
SavorPhosp (commercial blend) | Rotisserie chickens and chicken breasts | Yield improved. No negative effects on technological and sensory properties | [90] |
Porcine blood plasma | Frankfurter sausages | Similar water holding capacity, cooking loss and texture. Modified flavour. | [91] |
Dehydrated beef protein | Beef strip loin steaks | Similar sensory characteristics, colour and microbial stability. Lower oxidation stability and tenderness. | [92] |
Fructo-oligosaccharides (FOS) | Cooked hams | Higher cooking loss, satisfactory technological quality. | [93] |
Calcium powders from egg and oyster | Cooked meat products | Similar yield and texture properties lighter colour. | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean Label Alternatives in Meat Products. Foods 2021, 10, 1615. https://doi.org/10.3390/foods10071615
Delgado-Pando G, Ekonomou SI, Stratakos AC, Pintado T. Clean Label Alternatives in Meat Products. Foods. 2021; 10(7):1615. https://doi.org/10.3390/foods10071615
Chicago/Turabian StyleDelgado-Pando, Gonzalo, Sotirios I. Ekonomou, Alexandros C. Stratakos, and Tatiana Pintado. 2021. "Clean Label Alternatives in Meat Products" Foods 10, no. 7: 1615. https://doi.org/10.3390/foods10071615
APA StyleDelgado-Pando, G., Ekonomou, S. I., Stratakos, A. C., & Pintado, T. (2021). Clean Label Alternatives in Meat Products. Foods, 10(7), 1615. https://doi.org/10.3390/foods10071615