Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Texture Properties Analysis (TPA)
2.4. Rheological Properties Analysis
2.5. Magnetic Resonance Imaging (MRI)
2.6. Overrun Analysis
2.7. Density Analysis
2.8. Spreadability Analysis
2.9. Color Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Texture Properties
3.2. Rheological Properties
3.3. Magnetic Resonance Imaging (MRI)
3.4. Overrun Evaluation
3.5. Density Results
3.6. Spreadability Results
3.7. Color Properties
3.8. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of stabilizers on the freezing process, and physicochemical and organoleptic properties of coconut milk-based ice cream. LWT 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean label: Why this ingredient but not that one? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- Fei, T.; Leyva-Gutierrez, F.M.A.; Wan, Z.; Wang, T. Gelation inhibiting additives and freezing impact rheological, thermal, and microstructural properties of yolk. LWT 2021, 144, 111160. [Google Scholar] [CrossRef]
- Bai, X.; Gao, J.; Yang, Y.; Zhu, W.; Fan, J. Effects of drying methods on the structure and emulsifying capacity of egg yolk lecithin. Int. J. Agric. Biol. Eng. 2020, 13, 238–244. [Google Scholar] [CrossRef]
- Gouda, M.; Ma, M.; Sheng, L.; Xiang, X. SPME-GC-MS & metal oxide E-Nose 18 sensors to validate the possible interactions between bio-active terpenes and egg yolk volatiles. Food Res. Int. 2019, 125, 108611. [Google Scholar] [CrossRef] [PubMed]
- Guo, E.; Kazantsev, D.; Mo, J.; Bent, J.; Van Dalen, G.; Schuetz, P.; Rockett, P.; StJohn, D.; Lee, P.D. Revealing the microstructural stability of a three-phase soft solid (ice cream) by 4D synchrotron X-ray tomography. J. Food Eng. 2018, 237, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Khan, M.A.; Majeed, H.; Safdar, W.; Shamoon, M.; Shoaib, M.; Haider, J.; Zhong, F. Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocoll. 2017, 66, 365–377. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef] [Green Version]
- Gouda, M.; Zhang, S.; Liu, Y.; Sheng, L.; Ma, M. Effects of four natural antioxidant phenyl terpenes on emulsifying and rheological properties of egg yolk. LWT Food Sci. Technol. 2017, 83, 59–67. [Google Scholar] [CrossRef]
- Gouda, M.; Chen, K.; Li, X.; Liu, Y.; He, Y. Detection of microalgae single-cell antioxidant and electrochemical potentials by gold microelectrode and Raman micro-spectroscopy combined with chemometrics. Sens. Actuators B Chem. 2021, 329, 129229. [Google Scholar] [CrossRef]
- Gouda, M.; Huang, Z.; Liu, Y.; He, Y.; Li, X. Physicochemical impact of bioactive terpenes on the microalgae biomass structural characteristics. Bioresour. Technol. 2021, 334, 125232. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Qu, Z.; Liu, M.; Zhu, M.; Zhang, X.; Wang, L.; Jia, F.; Zhan, X.; Wang, J. Further interpretation of the strengthening effect of curdlan on frozen cooked noodles quality during frozen storage: Studies on water state and properties. Food Chem. 2021, 346, 128908. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liang, G.; Li, X.; He, Z.; Zeng, M.; Gao, D.; Qin, F.; Goff, H.D.; Chen, J. Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream. Food Hydrocoll. 2019, 94, 279–286. [Google Scholar] [CrossRef]
- Kaleda, A.; Tsanev, R.; Klesment, T.; Vilu, R.; Laos, K. Ice cream structure modification by ice-binding proteins. Food Chem. 2018, 246, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Zu, L.; Ma, S.; Sheng, L.; Ma, M. Influence of bio-active terpenes on the characteristics and functional properties of egg yolk. Food Hydrocoll. 2018, 80, 222–230. [Google Scholar] [CrossRef]
- Javidi, F.; Razavi, S.M.A.; Behrouzian, F.; Alghooneh, A. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocoll. 2016, 52, 625–633. [Google Scholar] [CrossRef]
- Geng, S.; Wang, H.; Wang, X.; Ma, X.; Xiao, S.; Wang, J.; Tan, M. A non-invasive NMR and MRI method to analyze the rehydration of dried sea cucumber. Anal. Methods 2015, 7, 2413–2419. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Truong, T.; Prakash, S.; Bansal, N.; Bhandari, B. Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. Int. Dairy J. 2020, 109, 104789. [Google Scholar] [CrossRef]
- Pourashouri, P.; Shabanpour, B.; Razavi, S.H.; Jafari, S.M.; Shabani, A.; Aubourg, S.P. Oxidative stability of spray-dried microencapsulated fish oils with different wall materials. J. Aquat. Food Prod. Technol. 2014, 23, 567–578. [Google Scholar] [CrossRef]
- Fiol, C.; Prado, D.; Romero, C.; Laburu, N.; Mora, M.; Iñaki Alava, J. Introduction of a new family of ice creams. Int. J. Gastron. Food Sci. 2017, 7, 5–10. [Google Scholar] [CrossRef]
- Jardines, A.P.; Arjona-Román, J.L.; Severiano-Pérez, P.; Totosaus-Sánchez, A.; Fiszman, S.; Escalona-Buendía, H.B. Agave fructans as fat and sugar replacers in ice cream: Sensory, thermal and texture properties. Food Hydrocoll. 2020, 108, 106032. [Google Scholar] [CrossRef]
- Gabbi, D.K.; Bajwa, U.; Goraya, R.K. Physicochemical, melting and sensory properties of ice cream incorporating processed ginger (Zingiber officinale). Int. J. Dairy Technol. 2018, 71, 190–197. [Google Scholar] [CrossRef]
- Anjo, F.A.; Saraiva, B.R.; Da Silva, J.B.; Ribeiro, Y.C.; Bruschi, M.L.; Riegel-Vidotti, I.C.; Simas, F.F.; Matumoto-Pintro, P.T. Acacia mearnsii gum: A residue as an alternative gum Arabic for food stabilizer. Food Chem. 2021, 344, 128640. [Google Scholar] [CrossRef] [PubMed]
- Develioglu, I.A.; Ozel, B.; Sahin, S.; Oztop, M.H. NMR Relaxometry and magnetic resonance imaging as tools to determine the emulsifying characteristics of quince seed powder in emulsions and hydrogels. Int. J. Biol. Macromol. 2020, 164, 2051–2061. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Di, Q.F.; Gu, C.Y.; Ye, F.; Hua, S.; Yang, P.Q. Visualization study on fluid distribution and end effects in core flow experiments with low-field mri method. J. Hydrodyn. 2015, 27, 187–194. [Google Scholar] [CrossRef]
- Yan, L.; Yu, D.; Liu, R.; Jia, Y.; Zhang, M.; Wu, T.; Sui, W. Microstructure and meltdown properties of low-fat ice cream: Effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time. J. Food Eng. 2021, 291, 110291. [Google Scholar] [CrossRef]
- Soukoulis, C.; Rontogianni, E.; Tzia, C. Contribution of thermal, rheological and physical measurements to the determination of sensorially perceived quality of ice cream containing bulk sweeteners. J. Food Eng. 2010, 100, 634–641. [Google Scholar] [CrossRef]
- Bahramparvar, M.; Goff, H.D. Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. Dairy Sci. Technol. 2013, 93, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.A.; Hameed, A.M.; Refaey, M.M.; Sayqal, A.; Aly, A.A. Rheological, physio-chemical and organoleptic characteristics of ice cream enriched with Doum syrup and pomegranate peel. Arab. J. Chem. 2020, 13, 7346–7356. [Google Scholar] [CrossRef]
- Alfaifi, M.S.; Stathopoulos, C.E. Effect of egg yolk substitution by sweet whey protein concentrate (WPC), on physical properties of Gelato ice cream. Int. Food Res. J. 2010, 17, 787–793. [Google Scholar]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Harlina, P.W.; Ma, M.; Shahzad, R.; Gouda, M.M.; Qiu, N. Effect of clove extract on lipid oxidation, antioxidant activity, volatile compounds and fatty acid composition of salted duck eggs. J. Food Sci. Technol. 2018, 55, 4719–4734. [Google Scholar] [CrossRef]
- Marcet, I.; Collado, S.; Paredes, B.; Díaz, M. Rheological and textural properties in a bakery product as a function of the proportions of the egg yolk fractions: Discussion and modelling. Food Hydrocoll. 2016, 54, 119–129. [Google Scholar] [CrossRef]
Power Law Model | Herschel-Bulkley Model | ||||
---|---|---|---|---|---|
Treatments | Viscosity (Pa·s) | Rate Index | Yield Stress (Pa) | Viscosity (Pa·s) | Rate Index |
Control | 21.24 ± 0.15 b | 0.22 ± 0.04 a | 20.47 ± 6.08 ab | 1.27 ± 0.18 a | 0.76 ± 0.25 a |
TC | 14.86 ± 0.93 a | 0.31 ± 0.00 b | 16.56 ± 1.03 a | 1.76 ± 0.08 b | 0.90 ± 0.00 a |
THY | 27.92 ± 5.25 c | 0.24 ± 0.00 a | 30.88 ± 5.80 c | 2.36 ± 0.44 c | 0.90 ± 0.00 a |
MEN | 15.68 ± 1.24 a | 0.30 ± 0.01 b | 17.46 ± 1.37 a | 1.84 ± 0.00 b | 0.90 ± 0.00 a |
VAN | 24.10 ± 3.90 bc | 0.23 ± 0.02 a | 26.59 ± 4.17 bc | 1.89 ± 0.05 b | 0.90 ± 0.00 a |
Groups | Mixture Density (g/cm3) | Ice Cream Density (g/cm3) |
---|---|---|
Control | 0.94 ± 0.01 b | 0.81 ± 0.02 b |
TC | 0.92 ± 0.01 b | 0.81 ± 0.01 b |
THY | 0.97 ± 0.01 b | 0.84 ± 0.04 c |
MEN | 0.94 ± 0.06 b | 0.71 ± 0.00 a |
VAN | 0.84 ± 0.03 a | 0.77 ± 0.01 b |
Treatments | L* | a* | b* | ΔL* | Δa* | Δb* |
---|---|---|---|---|---|---|
Control | 80.24 ± 0.06 b | 1.90 ± 0.05 b | 25.44 ± 0.48 cd | 54.84 ± 0.06 c | 1.60 ± 0.05 b | 23.25 ± 0.54 cd |
TC | 80.40 ± 0.12 c | 1.56 ± 0.06 a | 25.83 ± 0.69 d | 54.99 ± 0.12 d | 1.26 ± 0.06 a | 23.68 ± 0.69 d |
THY | 79.50 ± 0.03 a | 2.20 ± 0.10 c | 24.40 ± 0.85 bc | 54.10 ± 0.03 a | 1.90 ± 0.10 b | 22.26 ± 0.84 bc |
MEN | 80.88 ± 0.10 d | 1.95 ± 0.08 b | 22.46 ± 0.76 a | 55.47 ± 0.10 e | 1.65 ± 0.08 b | 20.31 ± 0.76 ab |
VAN | 79.65 ± 0.08 a | 1.84 ± 0.06 b | 23.18 ± 0.59 ab | 54.25 ± 0.08 b | 1.54 ± 0.06 b | 21.03 ± 0.58 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, M.; Sheng, L.; Aadil, R.M.; Liu, Y.; Ma, M.; Li, X.; He, Y.; Munekata, P.E.S.; Lorenzo, J.M. Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties. Foods 2021, 10, 1686. https://doi.org/10.3390/foods10081686
Gouda M, Sheng L, Aadil RM, Liu Y, Ma M, Li X, He Y, Munekata PES, Lorenzo JM. Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties. Foods. 2021; 10(8):1686. https://doi.org/10.3390/foods10081686
Chicago/Turabian StyleGouda, Mostafa, Long Sheng, Rana Muhammad Aadil, Yuanyuan Liu, Meihu Ma, Xiaoli Li, Yong He, Paulo E. S. Munekata, and José M. Lorenzo. 2021. "Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties" Foods 10, no. 8: 1686. https://doi.org/10.3390/foods10081686
APA StyleGouda, M., Sheng, L., Aadil, R. M., Liu, Y., Ma, M., Li, X., He, Y., Munekata, P. E. S., & Lorenzo, J. M. (2021). Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties. Foods, 10(8), 1686. https://doi.org/10.3390/foods10081686