Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Methods
2.3.1. Insoluble, Soluble, and Low Molecular Weight Soluble Dietary Fiber
Determination of the Monosaccharide Composition of Insoluble and Soluble Dietary Fiber
Methylation Analysis of Insoluble and Soluble Dietary Fiber Polysaccharides
2.3.2. Determination of Lignin Contents, Characterization of Lignin Monomers
2.3.3. Determination of Protein and Amino Acid Composition
2.3.4. Determination of Fat and Fatty Acid Composition
2.3.5. Determination of Ash and Element Composition
2.3.6. Determination of Acrylamide, Furfuryl Alcohol, 5-Hydroxymethylfurfural, and Caffeine
2.3.7. Determination of Moisture Content
3. Results and Discussion
3.1. Total, Insoluble, Soluble, and Low Molecular Weight Soluble Dietary Fiber Contents
3.1.1. Monosaccharide Composition of Insoluble and Soluble Dietary Fiber Polysaccharides
3.1.2. Methylation Analysis of Insoluble and Soluble Dietary Fiber Polysaccharides
3.2. Lignin as Insoluble Dietary Fiber Constituent
3.3. Protein and Amino Acid Composition
3.4. Fat and Fatty Acid Composition
3.5. Ash Contents and Mineral Composition
3.6. Acrylamide, HMF, Furfural Alcohol, and Caffeine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hameed, A.; Hussain, S.A.; Suleria, H.A.R. “Coffee bean-related” agroecological factors affecting the coffee. In Co-Evolution of Secondary Metabolites; Merillon, J.M., Ramawat, K., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Higdon, J.V.; Frei, B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; García, N.A.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Escobar, F.V.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. 2019, 51, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Saenger, M.; Hartge, E.U.; Werther, J.; Ogada, T.; Siagi, Z. Combustion of coffee husks. Renew. Energy 2001, 23, 103–121. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Garcia-Serna, E.; Martinez-Saez, N.; Mesias, M.; Morales, F.J.; del Castillo, D. Use of coffee silverskin and stevia to improve the formulation of biscuits. Pol. J. Food Nutr. Sci. 2014, 64, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Bertolino, M.; Barbosa-Pereira, L.; Ghirardello, D.; Botta, C.; Rolle, L.; Guglielmetti, A.; Borotto Dalla Vecchia, S.; Zeppa, G. Coffee silverskin as nutraceutical ingredient in yogurt: Its effect on functional properties and its bioaccessibility. J. Sci. Food Agric. 2019, 99, 4267–4275. [Google Scholar] [CrossRef]
- Rodrigues, F.; Palmeira-de-Oliveira, A.; das Neves, J.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Coffee silverskin: A possible valuable cosmetic ingredient. Pharm. Biol. 2015, 53, 386–394. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess. Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef]
- Napolitano, A.; Fogliano, V.; Tafuri, A.; Ritieni, A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agric. Food Chem. 2007, 55, 10499–10504. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- McDougall, G.J.; Morrison, I.M.; Stewart, D.; Hillman, J.R. Plant cell walls as dietary fibre: Range, structure, processing and function. J. Sci. Food Agric. 1996, 70, 133–150. [Google Scholar] [CrossRef]
- Panusa, A.; Petrucci, R.; Lavecchia, R.; Zuorro, A. UHPLC-PDA-ESI-TOF/MS metabolic profiling and antioxidant capacity of arabica and robusta coffee silverskin: Antioxidants vs phytotoxins. Food Res. Int. 2017, 99, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Tores de la Cruz, S.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; del Castillo, M.D. An Assessment of the bioactivity of coffee silverskin melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresciani, L.; Calani, L.; Bruni, R.; Brighenti, F.; Del Rio, D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 2014, 61, 196–201. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Toschi, T.G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez-Estrada, M.T. Coffee silverskin: Characterization, possible uses, and safety aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef]
- IARC working group on the evaluation of carcinogenic risks to humans. Some naturally occurring substances, food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 26–32. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Furfuryl alcohol. IARC Monogr. Eval. Carcinog. Risks Hum. 2019, 119, 83–113. [Google Scholar]
- IARC working group on the evaluation of carcinogenic risks to humans. Acrylamide. IARC Monogr. Eval. Carcinog. Risks Hum. 1994, 60, 389–433. [Google Scholar]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant / pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Mesías, M.; Navarro, M.; Martínez-Saez, N.; Ullate, M.; del Castillo, M.D.; Morales, F.J. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res. Int. 2014, 62, 1120–1126. [Google Scholar] [CrossRef] [Green Version]
- McCleary, B.V.; Sloane, N.; Draga, A. Determination of total dietary fibre and available carbohydrates A rapid integrated procedure that simulates in vivo digestion. Starch 2015, 67, 860–883. [Google Scholar] [CrossRef]
- Bunzel, M.; Ralph, J.; Marita, J.M.; Hatfield, R.D.; Steinhart, H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agric. 2001, 81, 653–660. [Google Scholar] [CrossRef]
- Saeman, J.F.; Bubl, J.L.; Harris, E.E. Quantitative saccharification of wood and cellulose. Ind. Eng. Chem. 1945, 17, 35–37. [Google Scholar] [CrossRef]
- De Ruiter, G.A.; Schols, H.A.; Voragen, A.G.J.; Rombouts, F.M. Carbohydrate analysis of water-soluble uronic acid containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other Methods. Anal. Biochem. 1992, 207, 176–185. [Google Scholar] [CrossRef]
- Wefers, D.; Bunzel, M. Characterization of dietary fiber polysaccharides from dehulled, common buckwheat (Fagopyrum esculentum) seeds. Cereal Chem. 2015, 92, 598–603. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
- Gniechwitz, D.; Reichardt, N.; Blaut, M.; Steinhart, H.; Bunzel, M. Dietary fiber from coffee beverage: Degradation by human fecal microbiota. J. Agric. Food Chem. 2007, 55, 6989–6996. [Google Scholar] [CrossRef]
- Sweet, D.P.; Shapiro, R.H.; Albersheim, P. Quantitative Analysis by various G.L.C response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 1975, 40, 217–225. [Google Scholar] [CrossRef]
- Schäfer, J.; Sattler, M.; Iqbal, Y.; Lewandowski, I.; Bunzel, M. Characterization of miscanthus cell wall polymers. GCB Bioenergy 2019, 11, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Iiyama, K.; Wallis, A.F.A. Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J. Sci. Food Agric. 1990, 51, 145–161. [Google Scholar] [CrossRef]
- Yue, F.; Lu, F.; Sun, R.C.; Ralph, J. Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J. Agric. Food Chem. 2012, 60, 922–928. [Google Scholar] [CrossRef]
- Urbat, F.; Müller, P.; Hildebrand, A.; Wefers, D.; Bunzel, M. Comparison and optimization of different protein nitrogen quantitation and residual protein characterization methods in dietary fiber preparations. Front. Nutr. 2019, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Schwarz, S.; Teipel, J.; Hegmanns, M.; Kuballa, T.; Walch, S.G.; Breitling-Utzmann, C.M. Potential antagonistic effects of acrylamide mitigation during coffee roasting on furfuryl alcohol, furan and 5-hydroxymethylfurfural. Toxics 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Okaru, A.O.; Scharinger, A.; Rajcic de Rezende, T.; Teipel, J.; Kuballa, T.; Walch, S.G.; Lachenmeier, D.W. Validation of a quantitative proton nuclear magnetic resonance spectroscopic screening method for coffee quality and authenticity (NMR coffee screener). Foods. 2020, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Official Collection of Test Methods According to §64 LFGB: ASU L 46.00-3: Examination of Foodstuffs: Examination of Coffee and Coffee Products; Determination of Caffeine Content by HPLC Reference Method. 2013. Available online: https://www.beuth.de/en/technical-rule/bvl-l-46-00-3/193412160 (accessed on 21 July 2021).
- Oosterveld, A.; Harmsen, J.S.; Voragen, A.G.J.; Schols, H.A. Extraction and characterization of polysaccharides from green and roasted Coffea arabica beans. Carbohydr. Polym. 2003, 52, 285–296. [Google Scholar] [CrossRef]
- Bradbury, G.W.; Halliday, D.J. Chemical structures of green coffee bean polysaccharides. J. Agric. Food Chem. 1990, 38, 389–392. [Google Scholar] [CrossRef]
- Nunes, F.M.; Coimbra, M.A. Chemical characterization of the high molecular weight material extracted with hot water from green and roasted arabica coffee. J. Agric. Food Chem. 2001, 49, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.M.; Reis, A.; Silva, A.M.S.; Domingues, M.R.M.; Coimbra, M.A. Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains as structural features of coffee arabinogalactans. Phytochemistry 2008, 69, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- Gniechwitz, D.; Brueckel, B.; Reichardt, N.; Blaut, M.; Steinhart, H.; Bunzel, M. Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures. J. Agric. Food Chem. 2007, 55, 11027–11034. [Google Scholar] [CrossRef] [PubMed]
- Bunzel, M.; Schüßler, A.; Saha, G.T. Chemical characterization of Klason lignin preparations from plant-based foods. J. Agric. Food Chem. 2011, 59, 12506–12513. [Google Scholar] [CrossRef]
- Bunzel, M.; Seiler, A.; Steinhart, H. Characterization of dietary fiber lignins from fruits and vegetables using the DFRC method. J. Agric. Food Chem. 2005, 53, 9553–9559. [Google Scholar] [CrossRef]
- Valiente, C.; Esteban, R.M.; Molla, E.; Lopez-Andreu, F.J. Roasting effects on dietary fiber composition of cocoa beans. J. Food Sci. 1994, 59, 123–124. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Machado, S.; Costa, A.S.G.; Pimentel, B.F.; Beatriz, M.; Oliveira, P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef]
- Ashu, R.; Chandravanshi, B.S. Concentration levels of metals in commercially available Ethiopian roasted coffee powders and their infusions. Bull. Chem. Soc. Ethiop. 2011, 25, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pohl, P.; Stelmach, E.; Welna, M.; Szymczycha-Madeja, A. Determination of the elemental composition of coffee using instrumental methods. Food Anal. Method 2013, 6, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Gogoasa, I.; Pirvu, A.; Alda, L.M.; Velciov, A.; Rada, M.; Bordean, D.M.; Moigradean, D.; Simion, A.; Gergen, I. The mineral content of different coffee brands. J. Hortic. For. Biotechnol. 2013, 17, 68–71. [Google Scholar]
- Al-Dalain, S.Y.; Haddad, M.A.; Parisi, S.; Atallah Al-Tarawneh, M.; Qaralleh, H. Determination of macroelements, transition elements, and anionic contents of commercial roasted ground coffee available in jordanian markets. Beverages 2020, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Dy, V.; McQuilty, R.; Zhu, G.; Heath, A.C.; Montgomery, G.W.; Martin, N.G. Genetic effects on toxic and essential elements in humans: Arsenic, cadmium, copper, lead, mercury, selenium, and zinc in erythrocytes. Environ. Health Persp. 2010, 118, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.; Agudo, A.; Åkesson, A.; Carrington, C.; Egan, S.K.; Rao, M.V.; Schlatter, J. Safety evaluation of certain food additives and contaminants: Cadmium. In WHO Food Additives Series: 64; WHO Press: Geneva, Switzerland, 2011; Volume 118, pp. 775–782. [Google Scholar]
- Martorell, I.; Perelló, G.; Martí-Cid, R.; Llobet, J.M.; Castell, V.; Domingo, J. Human exposure to arsenic, cadmium, mercury and lead from foods in Catalonia, Spain: Temporal trend. Biol. Trace Elem. Res. 2011, 142, 302–322. [Google Scholar] [CrossRef]
- Santos, E.E.; Lauria, D.C.; Porto da Silveira, C.L. Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci. Total Environ. 2004, 327, 69–79. [Google Scholar] [CrossRef]
- Soares, C.M.D.; Alves, R.C.; Oliveira, M.B. Acrylamide in coffee: Influence of processing. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 575–582. [Google Scholar]
- European Commission. Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. EU 2017, L304, 24–44. [Google Scholar]
- NTP. NTP technical report on the toxicology and carcinogenesis studies of 5-(hydroxymethyl)-2-furfural (CAS No. 67-47-0) in F344/N rats and B6C3F1 mice (gavage studies). Natl. Toxicol. Program Tech. Rep. Ser. 2010, 554, 1–180. [Google Scholar]
- Alves, R.C.; Costa, A.S.G.; Jerez, M.; Casal, S.; Sineiro, J.; Núñez, M.J.; Oliveira, B. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors. J. Agric. Food Chem. 2010, 58, 12221–12229. [Google Scholar] [CrossRef] [PubMed]
- Haber, L.T.; Dourson, M.L.; Allen, B.C.; Hertzberg, R.C.; Parker, A.; Vincent, M.J.; Maier, A.; Boobis, A.R. Benchmark dose (BMD) modeling: Current practice, issues, and challenges. Crit. Rev. Toxicol. 2018, 48, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Ruge, W.; Kuballa, T.; Ilse, M.; Winkelann, O.; Diehl, B.; Thomas, F.; Lachenmeier, D.W. Rapid approach to identify the presence of arabica and robusta species in coffee using 1H NMR spectroscopy. Food. Chem. 2015, 182, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Ivana Hecimovic, I.; Belšcak-Cvitanovic, A.; Horzic, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar]
Validation Parameter | Furfuryl Alcohol | HMF |
---|---|---|
Detection limit (mg/kg) | 11.6 | 6.3 |
Quantification limit (mg/kg) | 39.4 | 22.9 |
Recovery (%) | 93–97 | 101–107 |
Precision (%) | 5.8–6.1 | 6.9–8.3 |
Linearity range (mg/kg) | 7.5–5625 | 7.5–5625 |
Constituent | Arabica CS | Canephora CS | CS Pellets |
---|---|---|---|
Dietary Fiber (g/100 g) | 67.0 ± 1.0 | 62.0 ± 0.4 | 59.1 ± 0.02 |
Insoluble (g/100 g) | 56.0 ± 0.4 | 53.2 ± 0.3 | 46.0 ± 0.2 |
Soluble (g/100 g) | 11.0 ± 1.7 | 8.8 ± 0.5 | 13.1 ± 0.2 |
Fat (g/100 g) | 1.57 ± 0.03 | 1.50 ± 0.02 | 1.82 ± 0.04 |
Ash (g/100 g) | 8.15 ± 0.08 | 9.50 ± 0.14 | 11.24 ± 0.01 |
Protein (g/100 g) | 18.1 ± 0.2 | 22.2 ± 0.5 | 17.8 ± 0.1 |
Caffeine (g/100 g) | 0.80 ± 0.002 | 0.86 ± 0.03 | 0.76 ± 0.01 |
Acrylamide (µg/kg) | 152 | 161 | 24.0 |
HMF | pos. (<LOQ) | pos. (<LOQ) | pos. (<LOQ) |
Furfuryl alcohol | n.d. | n.d. | n.d. |
Moisture content (%) | 6.15 ± 0.12 | 6.57 ± 0.06 | 7.64 ± 0.02 |
IDF [%] | SDF [%] | |||||
---|---|---|---|---|---|---|
Glycosidic Linkage | Arabica CS | Canephora CS | CS Pellets | Arabica CS | Canephora CS | CS Pellets |
t-Arabinofuranose | 4.6 ± 0.04 | 3.6 ± 0.2 | 5.2 ± 0.5 | 22.6 ± 1.1 | 16.8 ± 0.03 | 23.0 ± 0.3 |
1,5-Arabinofuranose | 14.8 ± 1.2 | 11.8 ± 2.2 | 14.6 ± 0.02 | |||
t-Galactopyranose | 7.0 ± 0.8 | 7.0 ± 1.0 | 7.5 ± 1.2 | |||
1,4-Galactopyranose | 3.7 ± 0.7 | 5.3 ± 0.6 | 6.5 ± 0.9 | |||
1,6-Galactopyranose | 5.4 ± 0.3 | 6.1 ± 0.3 | 6.0 ± 0.2 | |||
1,3,6-Galactopyranose | 2.4 ± 0.4 | 3.5 ± 0.2 | n.d. | |||
t-Glucopyranose | 1.7 ± 0.3 | 2.9 ± 0.5 | n.d. | |||
1,4-Glucopyranose | 60.5 ± 1.3 | 68.5 ± 0.3 | 57.7 ± 5.4 | 7.0 ± 0.4 | 10.6 ± 0.8 | 6.2 ± 0.1 |
t-Mannopyranose | 2.8 ± 0.3 | 2.9 ± 0.5 | n.d. | |||
1,2-Rhamnopyranose | 14.9 ± 2.2 | 11.9 ± 0.6 | 12.2 ± 0.8 | |||
1,2,4-Rhamnopyranose | 6.5 ± 0.5 | 8.0 ± 2.1 | 10.3 ± 1.0 | |||
t-Xylopyranose | 16.9 ± 1.8 | 14.2 ± 2.0 | 21.2 ± 3.9 | 11.2 ± 3.7 | 13.3 ± 2.4 | 13.8 ± 2.3 |
1,4-Xylopyranose | 17.9 ± 0.5 | 13.7 ± 1.9 | 15.9 ± 1.0 | n.d. | n.d. | n.d. |
Arabica CS (%) | Canephora CS (%) | CS Pellets (%) | |
---|---|---|---|
Glutamic acid | 13.79 ± 0.16 | 13.60 ± 0.22 | 14.68 ± 0.07 |
Aspartic acid | 9.86 ± 0.46 | 9.79 ± 0.16 | 9.73 ± 0.10 |
Leucine | 9.79 ± 0.02 | 9.18 ± 0.11 | 9.31 ± 0.02 |
Valine | 7.46 ± 0.01 | 7.06 ± 0.08 | 7.22 ± 0.03 |
Phenylalanine | 6.89 ± 0.02 | 6.87 ± 0.01 | 6.60 ± 0.03 |
Glycine | 6.87 ± 0.04 | 6.30 ± 0.31 | 6.64 ± 0.07 |
Isoleucine | 6.95 ± 0.01 | 6.76 ± 0.09 | 6.61 ± 0.03 |
Proline | 6.65 ± 0.08 | 6.88 ± 0.10 | 6.70 ± 0.09 |
Alanine | 5.64 ± 0.06 | 5.72 ± 0.12 | 5.69 ± 0.05 |
Serine | 5.18 ± 0.03 | 4.45 ± 0.07 | 4.95 ± 0.03 |
Hydroxyproline | 4.86 ± 0.07 | 3.59 ± 0.06 | 3.89 ± 0.01 |
Threonine | 4.62 ± 0.02 | 4.22 ± 0.04 | 4.42 ± 0.01 |
Histidine | 4.47 ± 0.01 | 4.11 ± 0.17 | 4.48 ± 0.05 |
Lysine | 3.95 ± 0.05 | 3.49 ± 0.10 | 3.28 ± 0.09 |
Tyrosine | 3.01 ± 0.02 | 3.38 ± 0.43 | 3.68 ± 0.24 |
Arginine | pos. (<LOQ) | 2.59 ± 0.09 | pos. (<LOQ) |
Cysteine | pos. (<LOQ) | pos. (<LOQ) | pos. (<LOQ) |
Methionine | pos. (<LOQ) | pos. (<LOQ) | pos. (<LOQ) |
Elements | Arabica CS (mg/kg) | Canephora CS (mg/kg) | CS Pellets (mg/kg) |
---|---|---|---|
Calcium Ca | >10,000 * | >10,000 * | ~10,000 * |
Potassium K | ~10,000 * | ~20,000 * | >22,000 * |
Magnesium Mg | >2000 * | >4000 * | >5000 * |
Iron Fe | ~1000 * | >600 * | ~500 * |
Silicium Si | 650 | 560 | 580 * |
Aluminium Al | 215 | 155 | 425 * |
Sodium Na | 200 | 360 | 83 |
Manganese Mn | 145 | 43 | ~65 * |
Barium Ba | ~130 | 73 | ~65 * |
Copper Cu | 98 | 185 | 70 |
Strontium Sr | 68 | 38 | 68 * |
Boron B | 33 | 30 | 23 |
Titanium Ti | 30 | 20 | 60 |
Zink Zn | 25 | 33 | 12 |
Rubidium Rb | 10 | 18 | ~42 * |
Tin Sn | 7.5 | 13 | 0.10 |
Chromium Cr | 4.0 | 2.9 | 2.5 |
Nickel Ni | 1.9 | 2.3 | 0.95 |
Lead Pb | 0.75 | 0.65 | 0.16 |
Cobalt Co | 0.60 | 0.95 | 0.85 |
Vanadium V | 0.45 | 0.30 | 1.1 |
Zirconium Zr | 0.31 | 0.18 | 0.38 |
Molybdenum Mo | 0.26 | 0.21 | 0.13 |
Cerium Ce | 0.21 | 0.18 | 0.85 |
Lanthanum La | 0.15 | 0.15 | 0.45 |
Scandium Sc | 0.18 | 0.15 | 0.33 |
Yttrium Y | 0.16 | 0.10 | 0.17 |
Neodymium Nd | 0.11 | 0.10 | 0.31 |
Caesium Cs | 0.085 | 0.035 | 0.17 |
Gallium Ga | 0.075 | n.d. | 0.18 |
Cadmium Cd | 0.075 | 0.10 | n.d. |
Silver Ag | n.d. | 0.065 | n.d. |
Niobium Nb | n.d. | n.d. | 0.12 |
Praseodymium Pr | n.d. | n.d. | 0.10–0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. https://doi.org/10.3390/foods10081705
Gottstein V, Bernhardt M, Dilger E, Keller J, Breitling-Utzmann CM, Schwarz S, Kuballa T, Lachenmeier DW, Bunzel M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods. 2021; 10(8):1705. https://doi.org/10.3390/foods10081705
Chicago/Turabian StyleGottstein, Vera, Mara Bernhardt, Elena Dilger, Judith Keller, Carmen M. Breitling-Utzmann, Steffen Schwarz, Thomas Kuballa, Dirk W. Lachenmeier, and Mirko Bunzel. 2021. "Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants" Foods 10, no. 8: 1705. https://doi.org/10.3390/foods10081705
APA StyleGottstein, V., Bernhardt, M., Dilger, E., Keller, J., Breitling-Utzmann, C. M., Schwarz, S., Kuballa, T., Lachenmeier, D. W., & Bunzel, M. (2021). Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods, 10(8), 1705. https://doi.org/10.3390/foods10081705