Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sample Preparation
2.3. Volatile Analysis
2.4. Weather Data Collection
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Volatile Compounds and Effect of Harvest Maturity on Volatile Profiles
3.2. Refrigeration and Blanching Treatment Reduce Volatile Compounds
3.2.1. Refrigeration Treatment
3.2.2. Blanching Treatment
3.2.3. Comparison of Volatile Profiles between Chilling and Heating Treated Tomatoes
3.3. Response of the Flavor Synthesis Pathways to Refrigeration or Blanching Treatments
3.3.1. Fatty Acid Pathway
3.3.2. Amino Acid Pathway
3.3.3. Carotenoid Pathway
3.3.4. Phenylalanine Pathway
3.4. Active Odorants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, W.; Lucier, G. Vegetable and Pulses Outlook: April 2021; VGS-366; United States Dpartment of Agriculture, Economic Research Service: Washington, DC, USA, 2021. Available online: https://www.ers.usda.gov/webdocs/outlooks/100969/vgs-366.pdf?v=6983.5 (accessed on 2 June 2021).
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R. Quantitative and sensory aspects of flavor of tomato and other vegertables and fruits. In Flavor Science: Sensible Principles and Techniques; American Chemical Society: Washington, DC, USA, 1993; pp. 259–286. [Google Scholar]
- Rambla, J.L.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2014, 65, 4613–4623. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Baldwin, E.A.; Bai, J. Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations. Food Bioprocess Technol. 2015, 9, 203–216. [Google Scholar] [CrossRef]
- Sanz, C.; Olias, J.M.; Perez, A. Aroma biochemistry of fruits and vegetables. In Proceedings-Phytochemical Society of Europe; Oxford University Press Inc.: New York, NY, USA, 1996; pp. 125–156. [Google Scholar]
- Tieman, D.; Zhu, G.; Resende, M.F.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Baldwin, E.; Plotto, A.; Narciso, J.; Bai, J. Effect of 1-methylcyclopropene on tomato flavour components, shelf life and decay as influenced by harvest maturity and storage temperature. J. Sci. Food Agric. 2011, 91, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Spricigo, P.C.; Freitas, T.P.; Purgatto, E.; Ferreira, M.D.; Correa, D.S.; Bai, J.; Brecht, J.K. Visually imperceptible mechanical damage of harvested tomatoes changes ethylene production, color, enzyme activity, and volatile compounds profile. Postharvest Biol. Technol. 2021, 176, 111503. [Google Scholar] [CrossRef]
- Baldwin, E.; Nisperos-Carriedo, M.; Moshonas, M. Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. J. Am. Soc. Hortic. Sci. 1991, 116, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Klee, H.J.; Giovannoni, J.J. Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annu. Rev. Genet. 2011, 45, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Algazi, M. Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. J. Am. Soc. Hort. Sci. 1977, 102, 724–731. [Google Scholar]
- Xu, S.; Li, J.; Baldwin, E.A.; Plotto, A.; Rosskopf, E.; Hong, J.C.; Bai, J. Electronic tongue discrimination of four tomato cultivars harvested at six maturities and exposed to blanching and refrigeration treatments. Postharvest Biol. Technol. 2018, 136, 42–49. [Google Scholar] [CrossRef]
- ScoTT, J. Interrelationship of sensory descriptors and chemical composition as affected by harvest maturity and season on fresh tomato flavor. Proc. Fla. Stațg Horț. Soc. I 2000, 13, 289–294. [Google Scholar]
- Baldwin, E.A.; Scott, J.W.; Bai, J. Sensory and chemical flavor analyses of tomato genotypes grown in Florida during three different growing seasons in multiple years. J. Am. Soc. Hortic. Sci. 2015, 140, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Loayza, F.E.; Brecht, J.K.; Simonne, A.H.; Plotto, A.; Baldwin, E.A.; Bai, J.; Lon-Kan, E. A brief hot-water treatment alleviates chilling injury symptoms in fresh tomatoes. J. Sci. Food Agric. 2021, 101, 54–64. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.A.; Zhao, W.; Plotto, A.; Sun, X.; Wang, Z.; Brecht, J.K.; Bai, J.; Yu, Z. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT Food Sci. Technol. 2015, 62, 115–121. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Imahori, Y.; Kostenyuk, I.; Burns, J.; Brecht, J.K. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biol. Technol. 2011, 60, 111–120. [Google Scholar] [CrossRef]
- Castro, S.M.; Saraiva, J.A.; Lopes-da-Silva, J.A.; Delgadillo, I.; Van Loey, A.; Smout, C.; Hendrickx, M. Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chem. 2008, 107, 1436–1449. [Google Scholar] [CrossRef]
- Maxin, P.; Weber, R.; Lindhard Pedersen, H.; Williams, M. Hot-water dipping of apples to control Penicillium expansum, Neonectria galligena and Botrytis cinerea: Effects of temperature on spore germination and fruit rots. Eur. J. Hortic. Sci. 2012, 77, 1. [Google Scholar]
- Spadoni, A.; Guidarelli, M.; Phillips, J.; Mari, M.; Wisniewski, M. Transcriptional profiling of apple fruit in response to heat treatment: Involvement of a defense response during Penicillium expansum infection. Postharvest Biol. Technol. 2015, 101, 37–48. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Fortuny, R.C.S.; Mattheis, J.P.; Stanley, R.; Perera, C.; Brecht, J.K. Effect of Pretreatment of IntactGala’Apple with Ethanol Vapor, Heat, or 1-Methylcyclopropene on Quality and Shelf Life of Fresh-cut Slices. J. Am. Soc. Hortic. Sci. 2004, 129, 583–593. [Google Scholar] [CrossRef]
- Lurie, S. Postharvest heat treatments. Postharvest Biol. Technol. 1998, 14, 257–269. [Google Scholar] [CrossRef]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Flath, R.A.; Stern, D.J. Quantitative studies on origins of fresh tomato aroma volatiles. J. Agric. Food Chem. 1988, 36, 1247–1250. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.A.; Plotto, A.; Luo, W.; Raithore, S.; Yu, Z.; Bai, J. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature. Postharvest Biol. Technol. 2015, 108, 28–38. [Google Scholar] [CrossRef]
- Du, X.; Song, M.; Baldwin, E.; Rouseff, R. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars. Food Chem. 2015, 171, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Petro-Turza, M. Flavor of tomato and tomato products. Food Rev. Int. 1986, 2, 309–351. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Scott, J.W.; Shewmaker, C.K.; Schuch, W. Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components. HortScience 2000, 35, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Grimm, C.C. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J. Agric. Food Chem. 2001, 49, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Thorne, S.; Alvarez, J.S.S. The effect of irregular storage temperatures on firmness and surface colour in tomatoes. J. Sci. Food Agric. 1982, 33, 671–676. [Google Scholar] [CrossRef]
- Schrader, L.E. Scientific basis of a unique formulation for reducing sunburn of fruits. HortScience 2011, 46, 6–11. [Google Scholar] [CrossRef]
- Bai, J.; Hagenmaier, R.D.; Baldwin, E.A. Volatile response of four apple varieties with different coatings during marketing at room temperature. J. Agric. Food Chem. 2002, 50, 7660–7668. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar] [CrossRef]
- Canoles, M.; Soto, M.; Beaudry, R. Hydroperoxide lyase activity necessary for normal aroma volatile biosynthesis of tomato fruit, impacting sensory perception and preference. HortScience 2005, 40, 1130E–1131E. [Google Scholar] [CrossRef]
- Mathieu, S.; Cin, V.D.; Fei, Z.; Li, H.; Bliss, P.; Taylor, M.G.; Klee, H.J.; Tieman, D.M. Flavour compounds in tomato fruits: Identification of loci and potential pathways affecting volatile composition. J. Exp. Bot. 2009, 60, 325–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Renard, C.M.; Ginies, C.; Gouble, B.; Bureau, S.; Causse, M. Home conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration–Is there a compromise for better aroma preservation? Food Chem. 2013, 139, 825–836. [Google Scholar] [CrossRef]
- Yang, X.; Song, J.; Fillmore, S.; Pang, X.; Zhang, Z. Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biol. Technol. 2011, 62, 246–257. [Google Scholar] [CrossRef]
- Simkin, A.J.; Schwartz, S.H.; Auldridge, M.; Taylor, M.G.; Klee, H.J. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J. 2004, 40, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Taylor, M.; Schauer, N.; Fernie, A.R.; Hanson, A.D.; Klee, H.J. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 2006, 103, 8287–8292. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Chen, J.; Tang, N.; Gao, Y.; Hong, M.; Wei, W.; Cao, H.; Jian, W.; Li, N.; Deng, W. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biol. Technol. 2018, 135, 57–67. [Google Scholar] [CrossRef]
- Grosch, W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem. Senses 2001, 26, 533–545. [Google Scholar] [CrossRef]
- Genovese, A.; Lamorte, S.A.; Gambuti, A.; Moio, L. Aroma of Aglianico and Uva di Troia grapes by aromatic series. Food Res. Int. 2013, 53, 15–23. [Google Scholar] [CrossRef]
- Acree, T.; Heinrich, A. Flavornet and Human Odor Space, Gas Chromatography-Olfactometry (GCO) of Natural Products. Accessed at the website. Cornell University. 2004. Available online: http://www.flavornet.org/flavornet.html (accessed on 14 April 2021).
- Van Gemert, L. Odour Thresholds-Compilations of Odour Thresholds in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2003. [Google Scholar]
Treatment (Combination of Harvest Maturity and Temperature Treatment) | ANOVA (Harvest Maturity × Treatment) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | RI Z | Rn y | Rh | Rc | Ln | Lh | Lc | Pn | Ph | Pc | Tn | Th | Tc | Bn | Bh | Bc | Mn | Mh | Mc | ||
ALDEHYDES | |||||||||||||||||||||
1 | Methacrolein | 584 | 0.020 d x | 0.027 d | 0.100 ab | 0.027 d | 0.020 d | 0.100 a | 0.033 d | 0.053 cd | 0.087 bc | 0.091 bc | 0.085 bc | 0.116 ab | 0.091 bc | 0.093 bc | 0.103 ab | 0.117 ab | 0.082 bc | 0.117 ab | ** |
2 | Butanal | 590 | 0.009 g | 0.009 g | 0.024 ab | 0.008 g | 0.009 g | 0.019 b–d | 0.015 c–e | 0.016 c–e | 0.02 bc | 0.018 cd | 0.018 cd | 0.015 d–f | 0.016 c–e | 0.017 c–e | 0.019 b–d | 0.01 fg | 0.012 e–g | 0.026 a | ** |
3 | 3-Methylbutanal # | 638 | 0.113 hi | 0.198 fg | 0.091 i | 0.138 g–i | 0.164 gh | 0.176 gh | 0.295 de | 0.329 de | 0.18 gh | 0.408 bc | 0.558 a | 0.203 fg | 0.602 a | 0.625 a | 0.267 ef | 0.460 b | 0.619 a | 0.344 cd | ** |
4 | 2-Methylbutanal # | 646 | 0.08 gh | 0.146 fg | 0.152 fg | 0.038 h | 0.106 gh | 0.264 de | 0.391 c | 0.447 bc | 0.305 d | 0.483 ab | 0.539 a | 0.212 ef | 0.534 a | 0.495 ab | 0.304 d | 0.395 c | 0.421 bc | 0.405 c | ** |
5 | 2-Methyl-2-butenal | 719 | 0.028 de | 0.041 d | - w | 0.010 e | 0.036 d | - | 0.076 c | 0.089 bc | - | 0.104 b | 0.089 bc | - | 0.125 a | 0.130 a | - | 0.084 bc | 0.099 b | - | ** |
6 | Tiglic aldehyde | 1101 | 0.111 e | 0.164 e | - | 0.041 f | 0.143 e | - | 0.303 d | 0.357 cd | - | 0.414 b | 0.357 cd | - | 0.499 a | 0.520 a | - | 0.336 d | 0.394 bc | - | ** |
7 | trans-Penten-1-al | 1131 | 0.136 c | 0.107 cd | 0.023 f | 0.210 b | 0.140 c | 0.092 d | 0.137 c | 0.081 de | 0.084 de | 0.221 b | 0.211 b | 0.230 b | 0.242 b | 0.098 cd | 0.079 de | 0.312 a | 0.100 cd | 0.042 ef | ** |
8 | cis-3-Hexenal # | 771 | 23.833 bc | 12.681 f | 4.485 g | 28.839 b | 16.613 d–f | 11.931 f | 27.966 b | 16.269 d–f | 13.428 ef | 28.782 b | 21.748 cd | 26.528 bc | 26.017 bc | 17.851 de | 17.993 de | 37.889 a | 18.179 de | 11.427 f | ** |
9 | Hexanal # | 774 | 1.113 d | 0.784 ef | 0.892 d–f | 1.045 de | 0.813 ef | 1.075 de | 1.711 bc | 1.017 de | 1.013 de | 1.973 ab | 1.553 c | 1.079 de | 1.896 ab | 0.965 d–f | 0.774 ef | 2.045 a | 0.964 d–f | 0.670 f | ** |
10 | trans-2-Hexenal # | 828 | 2.056 de | 1.339 gh | 0.503 i | 2.446 cd | 1.588 e–h | 1.540 e–h | 3.340 b | 1.853 e–g | 1.766 e–g | 3.535 b | 2.691 c | 2.625 c | 3.852 b | 1.999 d–f | 1.450 f–h | 4.413 a | 1.936 d–f | 1.142 h | ** |
11 | Heptanal | 875 | 0.008 c | 0.009 c | 0.011 c | 0.007 cd | 0.003 d | 0.015 bc | 0.014 bc | 0.010 c | 0.010 c | 0.017 b | 0.014 bc | 0.014 bc | 0.016 b | 0.008 c | 0.010 c | 0.025 a | 0.010 c | 0.009 c | ** |
12 | trans, trans-2, 4-Hexadienal | 887 | - | - | - | - | - | - | - | - | - | - | 0.613 a | - | - | - | - | - | - | - | ** |
13 | Benzaldehyde | 945 | 0.010 bc | 0.006 de | 0.002 ef | 0.010 bc | 0.003 d–f | 0.007 cd | 0.011 b | 0.004 d–f | 0.002 ef | 0.015 a | 0.01 bc | 0.006 de | 0.011 b | 0.001 f | 0.002 ef | 0.018 a | 0.003 d–f | 0.002 ef | ** |
14 | Octanal | 969 | 0.001 b | 0.002 b | 0.001 b | 0.001 b | - | 0.002 b | - | 0.001 b | 0.004 a | - | 0.001 b | 0.001 b | - | - | 0.001 b | 0.001 b | - | - | ** |
15 | 2-phenylacetaldehyde | 1049 | 0.366 i | 0.375 i | 0.887 c–h | 0.444 g–i | 0.296 i | 0.93 b–f | 1.334 a–c | 0.674 e–i | 0.499 f–i | 1.125 b–e | 1.31 ab | 1.148 b–d | 0.859 c–h | 0.504 f–i | 0.865 c–g | 1.742 a | 0.844 d–h | 0.437 hi | ** |
16 | 2-Octenal | 1074 | 0.032 ab | 0.038 a | - | 0.037 a | 0.003 c | - | 0.034 a | - | - | - | 0.014 bc | - | - | - | - | 0.034 a | - | - | ** |
17 | Nonanal | 1059 | - | - | - | 0.001 a | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ** |
18 | Neral # | 1180 | 0.006 | - | 0.004 | - | 0.005 | - | 0.009 | 0.005 | - | - | - | - | - | - | - | 0.010 | - | - | NS |
HYDROCARBONS | |||||||||||||||||||||
1 | α-Pinene | 910 | - | 0.001 | - | - | - | - | - | - | 0.001 | - | - | 0.001 | - | - | 0.001 | - | - | 0.001 | NS |
2 | Cymene | 994 | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - | 0.001 | - | - | 0.001 | NS |
3 | Limonene | 998 | 0.024 e–g | 0.005 g | 0.068 d | 0.009 fg | 0.012 fg | 0.077 d | 0.007 fg | 0.011 fg | 0.06 de | 0.050 d–f | 0.116 c | 0.342 a | 0.062 de | 0.044 d–g | 0.330 a | 0.084 cd | 0.123 c | 0.281 b | ** |
4 | Terpinolene | 1048 | - | - | - | - | - | - | - | - | - | - | - | 0.001 a | - | - | 0.001 a | - | - | - | ** |
ALCOHOLS | |||||||||||||||||||||
1 | 2-Methylpropanol | 612 | 0.006 f | 0.018 de | - | - | 0.014 ef | 0.019 c–e | 0.017 de | 0.022 c–e | 0.067 a | 0.033 b–d | 0.020 c–e | 0.009 ef | 0.035 bc | 0.048 b | 0.014 ef | 0.005 ef | 0.062 a | 0.076 a | ** |
2 | 1-Penten-3-ol | 1157 | 0.055 d | 0.031 e | 0.028 e | 0.085 b | 0.067 b–d | 0.067 b–d | 0.034 e | 0.030 e | 0.054 d | 0.085 b | 0.073 b–d | 0.083 bc | 0.086 b | 0.057 d | - | 0.109 a | 0.065 cd | - | ** |
3 | 3-Methylbutanol # | 707 | 0.365 de | 0.656 cd | 0.068 g | 0.329 d–f | 0.379 de | 0.222 ef | 0.315 d–f | 0.443 d | 0.183 fg | 0.604 d | 0.767 c | 0.296 d–f | 0.927 b | 1.189 a | 0.368 de | 0.770 c | 1.106 a | 0.350 de | ** |
4 | 2-Methylbutanol # | 711 | 0.190 g–i | 0.270 gh | 0.067 i | 0.144 hi | 0.244 gh | 0.417 ef | 0.292 fg | 0.424 ef | 0.613 bc | 0.508 c–e | 0.489 c–e | 0.313 fg | 0.599 b–d | 0.703 ab | 0.567 b–d | 0.464 de | 0.606 b–d | 0.761 a | ** |
5 | 1-Pentanol | 775 | 0.066 b | 0.091 a | 0.021 ef | 0.049 bc | 0.051 bc | 0.026 d–f | 0.009 fg | 0.044 cd | 0.025 def | 0.052 bc | 0.042 c–e | 0.026 d–f | 0.057 bc | 0.041 c–e | 0.016 f | 0.052 bc | 0.022 ef | - | ** |
6 | 4-Methylpentanol | 809 | - | 0.003 b | 0.005 b | 0.002 b | 0.003 b | - | - | - | - | - | - | - | 0.009 b | 0.039 a | - | 0.009 b | 0.031 a | - | ** |
7 | 3-Methylpentanol | 817 | 0.015 d–f | 0.013 f | 0.011 f | 0.015 d–f | 0.013 ef | 0.023 bc | 0.014 ef | 0.015 d–f | 0.023 bc | 0.018 c–e | 0.020 b–d | 0.013 ef | 0.030 a | 0.023 bc | 0.013 ef | 0.025 ab | 0.019 c–e | 0.019 c–e | ** |
KETONES | |||||||||||||||||||||
1 | Acetone | 533 | 0.423 f | 0.453 f | 3.090 ab | 2.004 d | 1.363 e | 2.939 a–c | 1.096 e | 0.727 ef | 2.335 cd | 1.998 d | 1.988 d | 3.106 a | 2.569 a–d | 2.389 cd | 2.45 b–d | 2.447 a–d | 1.285 e | 2.171 d | ** |
2 | 2-Butanone | 591 | 0.002 b | 0.013 a | - | - | - | 0.003 b | - | - | - | - | - | - | - | - | - | - | - | - | ** |
3 | 1-Penten-3-one # | 665 | 0.197 b–d | 0.124 ef | 0.071 f | 0.253 ab | 0.232 a–c | 0.172 c–e | 0.139 de | 0.147 de | 0.129 ef | 0.244 ab | 0.203 a–d | 0.230 a–c | 0.265 a | 0.175 c–e | 0.008 g | 0.255 ab | 0.146 de | 0.005 g | ** |
4 | 6-Methyl-5-hepten-2-one # | 950 | 0.084 i | 0.078 i | 0.279 a–e | 0.107 hi | 0.082 i | 0.329 a | 0.204 e–g | 0.161 gh | 0.248 c–f | 0.254 b–f | 0.205 e–g | 0.304 a–c | 0.216 d–g | 0.197 fg | 0.287 a–d | 0.317 ab | 0.190 fg | 0.247 c–f | ** |
5 | Geranyl acetone # | 1367 | 0.345 ef | 0.084 h | 0.295 e–g | 0.233 fg | 0.203 g | 0.332 ef | 0.553 c | 0.201 g | 0.307 e–g | 0.676 ab | 0.401 de | 0.491 cd | 0.753 a | 0.271 fg | 0.408 de | 0.592 bc | 0.232 fg | 0.227 fg | ** |
OXYGEN-CONTAINING HETEROCYCLIC COMPOUNDS | |||||||||||||||||||||
1 | 2-Methylfuran | 602 | 0.006 f | 0.011 ef | 0.062 a | 0.005 f | 0.009 ef | 0.064 a | 0.010 ef | 0.014 d–f | 0.030 b | 0.013 d–f | 0.016 de | 0.024 bc | 0.008 ef | 0.011 ef | 0.024 bc | 0.014 d–f | 0.007 f | 0.020 cd | ** |
2 | 2-Ethyl furan | 676 | 0.014 b–d | 0.010 d–f | 0.010 c–f | 0.016 b | 0.011 b–f | 0.015 b–d | 0.014 b–e | 0.008 f | 0.010 c–f | 0.023 a | 0.021 a | 0.015 bc | 0.023 a | 0.014 b–e | 0.009 ef | 0.027 a | 0.014 b–e | 0.006 f | ** |
3 | 2-Pentyl-furan | 996 | 0.054 d–f | 0.056 d–f | 0.267 b | 0.057 d–f | 0.034 ef | 0.256 b | 0.088 d | 0.080 d | 0.074 de | 0.064 de | 0.045 d–f | 0.298 b | 0.145 c | 0.016 f | 0.395 a | 0.133 c | 0.080 d | 0.401 a | ** |
ESTERS | |||||||||||||||||||||
1 | Butyl acetate | 774 | 0.001 c | 0.003 bc | 0.004 ab | 0.002 c | 0.002 c | 0.003 c | 0.005 a | 0.004 ab | 0.001 c | 0.003 bc | 0.005 ab | 0.001 a | 0.003 bc | 0.003 bc | - | 0.003 bc | 0.004 ab | 0.001 c | ** |
2 | 2-Methylbutyl acetate | 847 | - | - | - | - | - | - | - | 0.001 a | - | - | 0.001 a | - | - | 0.001 a | - | 0.001 a | 0.001 a | - | ** |
3 | Methyl salicylate # | 1156 | 0.003 | 0.009 | - | 0.011 | 0.013 | - | 0.004 | 0.001 c | 0.002 | 0.005 | 0.003 | - | - | - | - | - | - | - | NS |
SULFUR- AND NITROGEN-CONTAINING HETEROCYCLIC COMPOUNDS | |||||||||||||||||||||
1 | 2-Isobutylthiazole # | 1002 | 0.002 de | 0.003 b–e | - | 0.001 e | 0.001 e | 0.002 c–e | 0.004 a–c | 0.004 a–c | 0.003 b–e | 0.004 a–c | 0.006 a | 0.005 a | 0.004 a–c | 0.002 de | 0.004 a–c | 0.003 b–e | 0.001 e | 0.003 b–e | ** |
SULFUR COMPOUNDS | |||||||||||||||||||||
1 | Disulfide, dimethyl | 752 | 0.001 b | 0.001 b | 0.001 b | 0.001 b | 0.001 b | 0.001 b | 0.001 b | - | - | - | - | 0.004 a | - | - | - | - | - | - | ** |
TOTAL VOLATILES | 29.78 ef | 17.86 j | 11.52 k | 36.63 cd | 22.68 hi | 21.12 ij | 38.48 b–d | 23.54 ghi | 21.56 ij | 41.82 b | 34.23 de | 37.74 b–d | 40.55 bc | 28.53 fg | 26.76 f–h | 51.44 a | 29.42 f–g | 19.19 ij | ** |
Compounds | Odor Threshold in Water (mg L−1) Z | Odor Description Y | Treatment (Combination of Harvest Maturity and Temperature Treatment) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rn x | Rh | Rc | Ln | Lh | Lc | Pn | Ph | Pc | Tn | Th | Tc | Bn | Bh | Bc | Mn | Mh | Mc | ||||
ALDEHYDES | |||||||||||||||||||||
1 | Butanal | 0.0090 | Pungent, green | 1.0 | 1.0 | 2.7 | 0.9 | 1.0 | 2.1 | 1.7 | 1.8 | 2.2 | 2.0 | 2.0 | 1.7 | 1.8 | 1.9 | 2.1 | 1.1 | 1.3 | 2.9 |
2 | 3-Methylbutanal | 0.0002 | Malt | 753.3 | 1320.0 | 606.7 | 920.0 | 1093.3 | 1173.3 | 1966.7 | 2193.3 | 1200.0 | 2720.0 | 3720.0 | 1353.3 | 4013.3 | 4166.7 | 1780.0 | 3066.7 | 4126.7 | 2293.3 |
3 | 2-Methylbutanal | 0.0030 | Cocoa, almond, malt | 27.0 | 48.7 | 50.7 | 12.7 | 35.3 | 88.0 | 130.3 | 149.0 | 101.7 | 161.0 | 179.7 | 70.7 | 178.0 | 165.0 | 101.3 | 131.7 | 140.3 | 135.0 |
4 | trans-Pentenal-1-al | 0.0892 | Strawberry, fruit, tomato | 1.5 | 1.2 | 0.3 | 2.4 | 1.6 | 1.0 | 1.5 | 0.9 | 0.9 | 2.5 | 2.4 | 2.6 | 2.7 | 1.1 | 0.9 | 3.5 | 1.1 | 0.5 |
5 | cis-3-Hexenal | 0.0003 | Leafy, green | 95,332.0 | 50,724.0 | 17,940.0 | 115,356.0 | 66,452.0 | 47,724.0 | 111,864.0 | 65,076.0 | 53,712.0 | 115,128.0 | 86,992.0 | 106,112.0 | 104,068.0 | 71,404.0 | 71,972.0 | 151,556.0 | 72,716.0 | 45,708.0 |
6 | Hexanal | 0.0045 | Grass, tallow, fat | 247.3 | 174.2 | 198.2 | 232.2 | 180.7 | 238.9 | 380.2 | 226.0 | 225.1 | 438.4 | 345.1 | 239.8 | 421.3 | 214.4 | 172.0 | 454.4 | 214.2 | 148.9 |
7 | trans-2-Hexenal | 0.0170 | Green, leafy | 120.9 | 78.8 | 29.6 | 143.9 | 93.4 | 90.6 | 196.5 | 109.0 | 103.9 | 207.9 | 158.3 | 154.4 | 226.6 | 117.6 | 85.3 | 259.6 | 113.9 | 67.2 |
8 | Heptanal | 0.0030 | Fat, citrus, rancid | 2.7 | 3.0 | 3.7 | 2.3 | 1.0 | 5.0 | 4.7 | 3.3 | 3.3 | 5.7 | 4.7 | 4.7 | 5.3 | 2.7 | 3.3 | 8.3 | 3.3 | 3.0 |
9 | Octanal | 0.0007 | Fat, soap, lemon, green | 1.4 | 2.9 | 1.4 | 1.4 | 0.0 | 2.9 | 0.0 | 1.4 | 5.7 | 0.0 | 1.4 | 1.4 | 0.0 | #VALUE! | 1.4 | 1.4 | 0.0 | 0.0 |
10 | 2-phenylacetaldehyde | 0.0063 | Hawthome, sweet, honey | 58.1 | 59.5 | 140.8 | 70.5 | 47.0 | 147.6 | 211.7 | 107.0 | 79.2 | 178.6 | 207.9 | 182.2 | 136.3 | 80.0 | 137.3 | 276.5 | 134.0 | 69.4 |
11 | 2-Octenal | 0.0030 | Green, nut, fat | 10.7 | 12.7 | 0.0 | 12.3 | 1.0 | 0.0 | 11.3 | 0.0 | 0.0 | 0.0 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 |
HYDROCARBONS | |||||||||||||||||||||
1 | Limonene | 0.0100 | Lemon, orange | 2.4 | 0.5 | 6.8 | 0.9 | 1.2 | 7.7 | 3.4 | 0.0 | 0.0 | 5.0 | 11.6 | 34.2 | 6.2 | 4.4 | 33.0 | 8.4 | 12.3 | 28.1 |
ALCOHOLS | |||||||||||||||||||||
1 | 3-Methylbutanol | 0.2500 | Whiskey, malt, burnt | 1.5 | 2.6 | 0.3 | 1.3 | 1.5 | 0.9 | 0.1 | 0.0 | 0.0 | 2.4 | 3.1 | 1.2 | 3.7 | 4.8 | 1.5 | 3.1 | 4.4 | 1.4 |
2 | 2-Methylbutanol | 0.2500 | Malt, wine, onion | 0.8 | 1.1 | 0.3 | 0.6 | 1.0 | 1.7 | 0.1 | 0.0 | 0.0 | 2.0 | 2.0 | 1.3 | 2.4 | 2.8 | 2.3 | 1.9 | 2.4 | 3.0 |
KETONES | |||||||||||||||||||||
1 | 1-Penten-3-one | 0.0015 | Fruity, floral, green | 131.3 | 82.7 | 47.3 | 168.7 | 154.7 | 114.7 | 22.7 | 0.0 | 0.0 | 162.7 | 135.3 | 153.3 | 176.7 | 116.7 | 5.3 | 170.0 | 97.3 | 3.3 |
2 | 6-Methyl-5-hepten-2-one | 0.0500 | Fruity, floral | 1.7 | 1.6 | 5.6 | 2.1 | 1.6 | 6.6 | 0.7 | 0.0 | 0.0 | 5.1 | 4.1 | 6.1 | 4.3 | 3.9 | 5.7 | 6.3 | 3.8 | 4.9 |
3 | Geranyl acetone | 0.0600 | Sweet, floral, estery | 5.8 | 1.4 | 4.9 | 3.9 | 3.4 | 5.5 | 0.6 | 0.0 | 0.0 | 11.3 | 6.7 | 8.2 | 12.6 | 4.5 | 6.8 | 9.9 | 3.9 | 3.8 |
OXYGEN-CONTAINING HETEROCYCLIC COMPOUNDS | |||||||||||||||||||||
1 | 2-Pentyl- furan | 0.0058 | 9.3 | 9.7 | 46.0 | 9.8 | 5.9 | 44.1 | 5.9 | 0.0 | 0.0 | 11.0 | 7.8 | 51.4 | 25.0 | 2.8 | 68.1 | 22.9 | 13.8 | 69.1 | |
SULFUR- AND NITROGEN-CONTAINING HETEROCYCLIC COMPOUNDS | |||||||||||||||||||||
1 | 2-Isobutylthiazole | 0.0035 | Tomato leafy, green | 0.6 | 0.9 | 0.0 | 0.3 | 0.3 | 0.6 | 9.7 | 0.0 | 0.0 | 1.1 | 1.7 | 1.4 | 1.1 | 0.6 | 1.1 | 0.9 | 0.3 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Li, Q.; Yan, J.; Baldwin, E.; Plotto, A.; Rosskopf, E.; Hong, J.C.; Zuo, J.; Bai, J.; Li, J. Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes. Foods 2021, 10, 1727. https://doi.org/10.3390/foods10081727
Xi Y, Li Q, Yan J, Baldwin E, Plotto A, Rosskopf E, Hong JC, Zuo J, Bai J, Li J. Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes. Foods. 2021; 10(8):1727. https://doi.org/10.3390/foods10081727
Chicago/Turabian StyleXi, Yu, Qing Li, Jiaqi Yan, Elizabeth Baldwin, Anne Plotto, Erin Rosskopf, Jason C. Hong, Jinhua Zuo, Jinhe Bai, and Jian Li. 2021. "Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes" Foods 10, no. 8: 1727. https://doi.org/10.3390/foods10081727
APA StyleXi, Y., Li, Q., Yan, J., Baldwin, E., Plotto, A., Rosskopf, E., Hong, J. C., Zuo, J., Bai, J., & Li, J. (2021). Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes. Foods, 10(8), 1727. https://doi.org/10.3390/foods10081727