Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Cocoa Bean Shell
2.3. Extraction of Bioactive Compounds
2.4. Fractionation and Purification of Bioactive Compounds Present in CBS by SPE
2.5. HPLC-PDA-ESI-MS/MS
2.6. Identification and Quantification of Chemical Compounds in CBS
2.7. Total Phenolics, Total Flavonoids, and Total Tannins
2.8. Antioxidant Capacity
2.9. Chemometrics and Statistical Analysis
3. Results and Discussion
3.1. Chemical Profile of CBS Characterized by HPLC-PDA-MS/MS
3.1.1. Methylxanthines
3.1.2. Phenolic Acids
3.1.3. Flavan-3-ols and Their Glycosides
3.1.4. Procyanidins
3.1.5. Flavonols and Their Glycosides
3.1.6. N-Phenylpropenoyl-L-Amino Acids
3.1.7. Others
3.2. Quantitative Distribution of Bioactive Compounds in CBS and Antioxidant Capacity
Compound | Sur del Lago_T | Caucagua_T | Merida_1_T | Cuyagua_T | Ocumare_1_T | Canoabo_C | Merida_2_C | Merida_3_C | Carenero_C | Ocumare_2_C | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenolic acids | ||||||||||||||||||||||||||||||
Protocatechuic acid | 69.63 | ± | 9.38 | 53.95 | ± | 10.31 | 103.1 | ± | 14.44 | 113.8 | ± | 15.94 | 84.13 | ± | 17.41 | 111.4 | ± | 21.98 | 43.65 | ± | 9.61 | 46.88 | ± | 7.39 | 29.91 | ± | 4.16 | 12.07 | ± | 0.36 |
Σ | 69.63 | 53.95 | 103.1 | 113.8 | 84.13 | 111.4 | 43.65 | 46.88 | 29.91 | 12.07 | ||||||||||||||||||||
Flavan-3-ols | ||||||||||||||||||||||||||||||
Catechin | 17.04 | ± | 4.72 | 16.27 | ± | 3.42 | 48.31 | ± | 4.76 | 46.87 | ± | 9.88 | 32.43 | ± | 1.40 | 22.05 | ± | 5.04 | 10.73 | ± | 2.37 | 11.08 | ± | 2.41 | 6.04 | ± | 1.37 | 5.04 | ± | 1.09 |
Epicatechin | 170.9 | ± | 40.2 | 102.3 | ± | 29.04 | 298.0 | ± | 22.53 | 234.2 | ± | 7.87 | 200.8 | ± | 13.59 | 140.7 | ± | 32.69 | 65.61 | ± | 15.6 | 61.00 | ± | 13.5 | 30.59 | ± | 7.11 | 31.23 | ± | 7.40 |
Σ | 187.9 | 118.5 | 346.3 | 281.1 | 233.2 | 162.7 | 76.34 | 72.07 | 36.64 | 36.27 | ||||||||||||||||||||
Catechin-3-O-glycosides | ||||||||||||||||||||||||||||||
Catechin-3-O-glucoside_1 | 77.67 | ± | 23.5 | 84.64 | ± | 33.01 | 22.70 | ± | 1.23 | 90.02 | ± | 15.74 | 32.17 | ± | 3.92 | 17.70 | ± | 7.70 | 17.85 | ± | 5.33 | 17.68 | ± | 8.45 | 22.51 | ± | 7.67 | 33.79 | ± | 5.13 |
Catechin-3-O-glucoside_2 | 1.95 | ± | 0.67 | 1.75 | ± | 0.77 | 1.49 | ± | 0.09 | 6.96 | ± | 2.98 | 8.05 | ± | 3.51 | n.d. | 5.61 | ± | 1.73 | 2.44 | ± | 0.14 | 1.22 | ± | 0.50 | 0.90 | ± | 0.16 | ||
Σ | 79.62 | 86.39 | 24.19 | 96.98 | 40.22 | 17.70 | 23.46 | 20.12 | 23.73 | 34.69 | ||||||||||||||||||||
Procyanidins B-type (PCB) | ||||||||||||||||||||||||||||||
PCB_1 | 36.63 | ± | 11.2 | 20.88 | ± | 5.33 | 48.47 | ± | 1.28 | 45.91 | ± | 8.97 | 42.15 | ± | 2.65 | 37.78 | ± | 15.82 | 34.94 | ± | 13.5 | 25.81 | ± | 5.72 | 16.29 | ± | 7.90 | 6.29 | ± | 1.63 |
PCB_2 | 12.57 | ± | 5.62 | 21.27 | ± | 3.28 | 25.56 | ± | 2.47 | 25.23 | ± | 1.63 | 17.02 | ± | 3.96 | 11.92 | ± | 4.41 | 42.36 | ± | 3.63 | 11.69 | ± | 0.84 | 8.73 | ± | 2.39 | 1.33 | ± | 0.18 |
PCB_3 | 5.06 | ± | 1.05 | 2.29 | ± | 0.58 | 4.92 | ± | 0.25 | 6.11 | ± | 0.70 | 3.42 | ± | 0.46 | 3.72 | ± | 1.30 | 4.47 | ± | 0.49 | 2.37 | ± | 0.49 | 2.14 | ± | 0.75 | 0.56 | ± | 0.15 |
PCB_4 | 5.03 | ± | 0.38 | 5.48 | ± | 2.24 | 5.40 | ± | 2.04 | 8.54 | ± | 5.53 | 10.81 | ± | 2.70 | 3.97 | ± | 0.92 | 2.61 | ± | 0.99 | 1.13 | ± | 0.51 | 0.85 | ± | 0.17 | 1.18 | ± | 0.20 |
Σ | 59.30 | 49.91 | 84.36 | 85.78 | 73.40 | 57.38 | 84.37 | 41.00 | 28.02 | 9.36 | ||||||||||||||||||||
Procyanidins B-type (PCB) trimers | ||||||||||||||||||||||||||||||
PCB trimer_1 | 4.68 | ± | 1.58 | 7.22 | ± | 1.89 | 9.32 | ± | 1.37 | 14.27 | ± | 1.15 | 13.95 | ± | 0.76 | 6.06 | ± | 0.79 | 8.44 | ± | 2.62 | 7.05 | ± | 2.75 | 4.36 | ± | 1.77 | 3.02 | ± | 1.35 |
PCB trimer_2 | 78.93 | ± | 21.9 | 45.92 | ± | 12.72 | 130.5 | ± | 15.03 | 99.60 | ± | 6.92 | 79.64 | ± | 4.88 | 59.52 | ± | 11.26 | 49.22 | ± | 7.87 | 40.67 | ± | 10.3 | 38.43 | ± | 13.4 | 46.11 | ± | 8.21 |
PCB trimer_3 | 4.19 | ± | 3.12 | n.d. | n.d. | n.d. | n.d. | 2.18 | ± | 0.67 | 16.64 | ± | 8.75 | 22.65 | ± | 8.20 | 13.98 | ± | 5.02 | 5.43 | ± | 3.62 | ||||||||
PCB trimer_4 | 58.78 | ± | 14.0 | 21.07 | ± | 6.01 | 78.01 | ± | 47.46 | 47.46 | ± | 6.41 | 38.17 | ± | 2.68 | 39.53 | ± | 8.58 | 2.96 | ± | 4.28 | 3.30 | ± | 3.14 | 0.74 | ± | 0.79 | 0.40 | ± | 0.44 |
PCB trimer_5 | 8.09 | ± | 2.34 | 10.46 | ± | 2.38 | 3.67 | ± | 0.54 | 2.95 | ± | 0.98 | 4.81 | ± | 0.63 | 4.75 | ± | 1.25 | 7.60 | ± | 3.90 | 1.85 | ± | 0.77 | 1.27 | ± | 0.22 | 1.28 | ± | 0.24 |
PCB trimer_6 | 49.33 | ± | 9.95 | 18.16 | ± | 5.37 | 51.95 | ± | 11.43 | 30.70 | ± | 5.70 | 22.95 | ± | 2.43 | 28.59 | ± | 6.41 | 32.50 | ± | 9.52 | 33.03 | ± | 12.5 | 17.95 | ± | 2.82 | 15.81 | ± | 3.08 |
PCB trimer_7 | 8.10 | ± | 1.68 | n.d. | 41.51 | ± | 5.18 | 18.78 | ± | 4.43 | 22.13 | ± | 1.08 | 6.42 | ± | 1.41 | 2.89 | ± | 0.22 | 1.37 | ± | 0.38 | 1.37 | ± | 0.56 | 0.99 | ± | 0.40 | ||
PCB trimer_8 | 21.49 | ± | 3.52 | 11.91 | ± | 3.86 | 31.49 | ± | 3.99 | 20.02 | ± | 3.55 | 22.33 | ± | 4.01 | 17.89 | ± | 1.72 | 12.66 | ± | 5.26 | 13.60 | ± | 3.70 | 10.40 | ± | 2.54 | 4.62 | ± | 0.56 |
Σ | 233.6 | 114.7 | 346.5 | 233.8 | 204.0 | 165.0 | 132.9 | 123.5 | 88.49 | 77.66 | ||||||||||||||||||||
Procyanidins A-type (PCA) glycosides | ||||||||||||||||||||||||||||||
PCA pentoside_1 | 1.32 | ± | 0.51 | 2.32 | ± | 0.50 | 1.89 | ± | 0.13 | 2.00 | ± | 0.38 | 1.94 | ± | 0.48 | 1.69 | ± | 0.15 | 0.88 | ± | 0.12 | 0.84 | ± | 0.45 | 0.42 | ± | 0.02 | 0.59 | ± | 0.18 |
PCA pentoside_2 | 13.61 | ± | 2.16 | 16.06 | ± | 4.03 | 27.66 | ± | 4.66 | 19.58 | ± | 6.14 | 24.55 | ± | 3.32 | 14.45 | ± | 2.73 | 19.88 | ± | 5.29 | 28.54 | ± | 13.0 | 16.74 | ± | 5.36 | 8.64 | ± | 2.39 |
PCA pentoside_3 | 14.74 | ± | 1.39 | 8.43 | ± | 3.46 | 39.06 | ± | 2.48 | 18.95 | ± | 3.48 | 17.96 | ± | 1.49 | 22.79 | ± | 2.62 | 52.78 | ± | 13.7 | 71.61 | ± | 14.6 | 47.32 | ± | 7.71 | 15.03 | ± | 3.71 |
PCA hexoside_1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 22.42 | ± | 4.00 | 14.46 | ± | 3.66 | 11.43 | ± | 2.16 | 1.03 | ± | 0.05 | ||||||||||||
PCA hexoside_2 | 18.86 | ± | 2.24 | 11.71 | ± | 5.30 | 37.11 | ± | 3.75 | 21.35 | ± | 3.91 | 24.76 | ± | 2.37 | 22.98 | ± | 3.67 | 13.15 | ± | 2.84 | 9.61 | ± | 1.77 | 13.32 | ± | 1.35 | 3.76 | ± | 0.61 |
PCA trimer arabinoside | 24.03 | ± | 1.65 | 12.85 | ± | 3.40 | 24.56 | ± | 2.53 | 17.73 | ± | 3.08 | 16.76 | ± | 2.38 | 15.38 | ± | 2.94 | 15.29 | ± | 3.63 | 16.91 | ± | 5.76 | 12.09 | ± | 5.86 | 5.78 | ± | 1.17 |
Σ | 72.56 | 51.36 | 130.3 | 79.61 | 85.97 | 77.29 | 124.4 | 142.0 | 101.3 | 34.84 | ||||||||||||||||||||
Flavonol-3-O-glycosides | ||||||||||||||||||||||||||||||
Quercetin-3-O-glucoside | 5.86 | ± | 1.16 | 9.06 | ± | 2.50 | 21.92 | ± | 1.05 | 16.70 | ± | 2.27 | 21.38 | ± | 2.90 | 10.88 | ± | 2.22 | 4.98 | ± | 1.03 | 5.05 | ± | 1.16 | 1.45 | ± | 0.36 | 1.36 | ± | 0.34 |
Quercetin-3-O-arabinoside | 11.62 | ± | 1.59 | 14.87 | ± | 3.80 | 45.47 | ± | 1.29 | 27.82 | ± | 1.13 | 35.65 | ± | 2.67 | 26.50 | ± | 1.67 | 7.34 | ± | 1.26 | 14.48 | ± | 2.77 | 6.54 | ± | 0.98 | 3.32 | ± | 0.56 |
Kaempferol-3-O-rutinoside | n.d. | 1.29 | ± | 0.36 | 8.31 | ± | 0.46 | n.d. | n.d. | n.d. | 4.08 | ± | 0.89 | 2.85 | ± | 0.80 | 1.64 | ± | 0.51 | 0.21 | ± | 0.07 | ||||||||
Σ | 17.47 | 25.21 | 75.69 | 44.52 | 57.03 | 37.37 | 16.40 | 22.38 | 9.63 | 4.89 | ||||||||||||||||||||
Flavonols | ||||||||||||||||||||||||||||||
Quercetin | 1.76 | ± | 0.61 | 1.94 | ± | 0.34 | 2.88 | ± | 0.49 | 2.59 | ± | 0.18 | 4.51 | ± | 0.49 | 1.92 | ± | 0.34 | 0.91 | ± | 0.07 | 0.98 | ± | 0.03 | 0.83 | ± | 0.02 | 0.75 | ± | 0.01 |
Σ | 1.76 | 1.94 | 2.88 | 2.59 | 4.51 | 1.92 | 0.91 | 0.98 | 0.83 | 0.75 | ||||||||||||||||||||
N-Phenylpropenoyl-L-amino acids | ||||||||||||||||||||||||||||||
N-Coumaroyl-L-aspartate_1 | 8.62 | ± | 1.13 | 2.51 | ± | 0.74 | 14.90 | ± | 3.11 | 10.48 | ± | 1.70 | 7.90 | ± | 2.17 | 13.65 | ± | 2.98 | 6.50 | ± | 2.37 | 14.60 | ± | 6.48 | 7.73 | ± | 2.59 | 2.40 | ± | 0.24 |
N-Caffeoyl-L-aspartate | 5.32 | ± | 3.29 | 16.22 | ± | 3.48 | 97.25 | ± | 5.43 | 104.3 | ± | 7.41 | 111.5 | ± | 4.36 | 25.95 | ± | 7.28 | 69.57 | ± | 18.4 | 69.68 | ± | 2.72 | 28.34 | ± | 2.06 | 15.46 | ± | 4.23 |
N-Coumaroyl-L-aspartate_2 | 7.63 | ± | 3.47 | 13.61 | ± | 3.94 | 64.23 | ± | 5.18 | 65.90 | ± | 9.64 | 79.32 | ± | 2.41 | 28.10 | ± | 5.94 | 1.13 | ± | 0.07 | 1.45 | ± | 0.20 | 3.92 | ± | 0.89 | 0.58 | ± | 0.05 |
N-Coumaroyl-L-glutamate | 0.63 | ± | 0.14 | 0.59 | ± | 0.12 | 1.18 | ± | 0.01 | 1.25 | ± | 0.56 | 1.23 | ± | 0.18 | 1.17 | ± | 0.18 | 0.72 | ± | 0.07 | 0.36 | ± | 0.09 | 0.22 | ± | 0.05 | 0.13 | ± | 0.02 |
N-Feruloyl-L-aspartate | 1.93 | ± | 0.66 | 2.46 | ± | 0.64 | 5.71 | ± | 0.73 | 5.88 | ± | 0.72 | 6.26 | ± | 0.62 | 3.58 | ± | 0.38 | 2.15 | ± | 0.32 | 2.81 | ± | 0.52 | 1.95 | ± | 0.72 | 0.91 | ± | 0.36 |
N-Coumaroyl-L-tyrosine | 9.45 | ± | 1.11 | 6.32 | ± | 2.04 | 23.11 | ± | 1.02 | 8.99 | ± | 0.60 | 11.71 | ± | 0.40 | 17.80 | ± | 0.73 | 13.65 | ± | 5.11 | 8.97 | ± | 1.33 | 6.72 | ± | 0.58 | 7.09 | ± | 0.19 |
Σ | 33.58 | 41.70 | 206.37 | 196.76 | 217.88 | 90.24 | 93.71 | 97.88 | 48.87 | 26.57 | ||||||||||||||||||||
Others | ||||||||||||||||||||||||||||||
C11H21O9S_1 | 10.18 | ± | 1.82 | 3.36 | ± | 1.35 | 10.66 | ± | 0.39 | 16.98 | ± | 9.45 | 21.23 | ± | 3.34 | 8.14 | ± | 5.76 | 13.45 | ± | 3.40 | 12.23 | ± | 2.38 | 9.20 | ± | 2.79 | 3.14 | ± | 0.47 |
C11H21O9S_2 | 13.90 | ± | 5.38 | 23.67 | ± | 7.20 | 18.51 | ± | 3.86 | 33.54 | ± | 5.27 | 41.82 | ± | 2.08 | 14.63 | ± | 5.10 | 43.67 | ± | 16.8 | 12.55 | ± | 4.21 | 22.35 | ± | 7.62 | 6.54 | ± | 2.71 |
Hydroxyjasmonic acid sulfate | 13.18 | ± | 1.10 | 21.87 | ± | 9.46 | 18.53 | ± | 3.84 | 27.60 | ± | 7.87 | 35.49 | ± | 11.95 | 20.76 | ± | 12.01 | 14.41 | ± | 7.20 | 11.63 | ± | 5.38 | 2.88 | ± | 0.98 | 1.01 | ± | 0.30 |
Sweroside | 4.89 | ± | 1.06 | 6.01 | ± | 2.91 | 11.75 | ± | 1.83 | 22.12 | ± | 12.44 | 15.83 | ± | 3.72 | 5.78 | ± | 1.75 | 7.18 | ± | 1.49 | 2.15 | ± | 0.39 | 1.17 | ± | 0.25 | 1.23 | ± | 0.40 |
Σ | 42.15 | 54.92 | 59.45 | 100.23 | 114.38 | 49.30 | 78.72 | 38.56 | 35.60 | 11.93 | ||||||||||||||||||||
Σ Total Flavonoids | 634.76 | 422.89 | 934.50 | 779.81 | 641.30 | 481.96 | 442.38 | 399.67 | 279.03 | 193.56 | ||||||||||||||||||||
Σ Total Tannins | 365.46 | 216.01 | 561.13 | 399.17 | 363.36 | 299.62 | 341.67 | 306.50 | 217.83 | 121.86 | ||||||||||||||||||||
Σ TOTAL mg/kg CBS | 797.59 | 598.68 | 1379.07 | 1235.18 | 1114.72 | 770.24 | 674.86 | 605.38 | 403.04 | 249.01 | ||||||||||||||||||||
Methylxanthines | ||||||||||||||||||||||||||||||
Theobromine | 4.66 | ± | 0.74 | 5.58 | ± | 0.45 | 6.12 | ± | 0.41 | 6.29 | ± | 0.66 | 5.18 | ± | 0.43 | 6.53 | ± | 0.76 | 9.95 | ± | 0.61 | 9.93 | ± | 0.12 | 9.80 | ± | 0.38 | 8.99 | ± | 0.30 |
Caffeine | 0.84 | ± | 0.23 | 1.77 | ± | 0.29 | 2.52 | ± | 0.10 | 2.44 | ± | 0.77 | 2.70 | ± | 0.11 | 3.67 | ± | 0.64 | 5.15 | ± | 0.65 | 5.80 | ± | 0.18 | 5.15 | ± | 0.26 | 4.58 | ± | 0.09 |
Σ | 5.50 | 7.34 | 8.64 | 8.74 | 7.88 | 10.19 | 15.10 | 15.73 | 14.95 | 13.56 | ||||||||||||||||||||
TOTAL g/kg CBS | 5.50 | 7.34 | 8.64 | 8.74 | 7.88 | 10.19 | 15.10 | 15.73 | 14.95 | 13.56 | ||||||||||||||||||||
Spectrophotometric assays | ||||||||||||||||||||||||||||||
TPC (g GAE/kg of CBS) | 7.52 | ± | 1.42 | 9.13 | ± | 0.30 | 7.41 | ± | 0.35 | 6.45 | ± | 0.43 | 7.34 | ± | 0.74 | 6.36 | ± | 0.47 | 7.38 | ± | 0.11 | 7.82 | ± | 0.12 | 5.88 | ± | 0.35 | 7.72 | ± | 0.39 |
TFC (g CE/kg of CBS) | 2.53 | ± | 0.78 | 3.14 | ± | 0.15 | 3.65 | ± | 0.23 | 3.30 | ± | 0.94 | 3.29 | ± | 0.53 | 2.20 | ± | 0.21 | 2.56 | ± | 0.18 | 3.40 | ± | 0.25 | 1.89 | ± | 0.22 | 2.51 | ± | 0.18 |
TTC (g CE/kg of CBS) | 1.40 | ± | 0.45 | 1.59 | ± | 0.06 | 1.75 | ± | 0.16 | 1.31 | ± | 0.12 | 1.30 | ± | 0.15 | 0.93 | ± | 0.17 | 1.05 | ± | 0.05 | 1.34 | ± | 0.08 | 0.85 | ± | 0.08 | 1.22 | ± | 0.05 |
RSA (mmol TE/kg of CBS) | 23.22 | ± | 5.09 | 26.33 | ± | 0.99 | 23.64 | ± | 1.54 | 23.35 | ± | 3.87 | 23.57 | ± | 1.64 | 21.69 | ± | 2.74 | 24.26 | ± | 0.74 | 24.26 | ± | 0.31 | 17.33 | ± | 1.48 | 22.92 | ± | 0.86 |
3.3. Classification of CBSs Based on Chemical Compounds Determined by HPLC-PDA-MS/MS
3.4. Classification of CBSs Based on Spectrophotometric Analysis Data Set
3.5. Correlation between HPLC-PDA-MS/MS and Spectrophotometric Assays Data Sets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martín, M.Á.; Ramos, S. Health beneficial effects of cocoa phenolic compounds: A mini-review. Curr. Opin. Food Sci. 2017, 14, 20–25. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, Q.R.; Gattward, J.N.; Almoosawi, S.; Parada Costa Silva, M.D.G.C.; Dantas, P.A.D.S.; De Araujo, Q.R., Jr. Cocoa and Human Health: From Head to Foot—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Borges, G.; Nagai, C.; Jackson, M.C.; Yokota, T.; Crozier, A.; Ashihara, H. Profiles of phenolic compounds and purine alkaloids during the development of seeds of Theobroma cacao cv. J. Agric. Food Chem. 2013, 61, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dorenkott, M.R.; Griffin, L.E.; Goodrich, K.M.; Thompson-Witrick, K.A.; Fundaro, G.; Ye, L.; Neilson, A.P. Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J. Agric. Food Chem. 2014, 62, 2216–2227. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pinilla, E.; Oñatibia-Astibia, A.; Franco, R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharm. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.; Bareuther, S.; Hofmann, T. Sensory-guided decomposition of roasted cocoa nibs (Theobroma cacao) and structure determination of taste-active polyphenols. J. Agric. Food Chem. 2005, 53, 5407–5418. [Google Scholar] [CrossRef]
- Stark, T.; Hofmann, T. Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-L-amino acids from cocoa (Theobroma cacao). J. Agric. Food Chem. 2005, 53, 5419–5428. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [Green Version]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Orden, D.; Stévigny, C.; Zeppa, G.; Bertolino, M. Physical properties and consumer evaluation of cocoa bean shell-functionalized biscuits adapted for diabetic consumers by the replacement of sucrose with tagatose. Foods 2020, 9, 814. [Google Scholar] [CrossRef]
- Rinaldi, M.; Littardi, P.; Paciulli, M.; Caligiani, A.; Chiavaro, E. Effect of cocoa bean shells granulometries on qualitative properties of gluten-free bread during storage. Eur. Food Res. Technol. 2020, 246, 1583–1590. [Google Scholar] [CrossRef]
- Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Sottero, B.; Danzero, A.C.; Poli, G.; Zeppa, G.; Biasi, F. Protective Effect of Cocoa Bean Shell against Intestinal Damage: An Example of Byproduct Valorization. Antioxidants 2021, 10, 280. [Google Scholar] [CrossRef]
- Cantele, C.; Rojo-Poveda, O.; Bertolino, M.; Ghirardello, D.; Cardenia, V.; Barbosa-Pereira, L.; Zeppa, G. In vitro bioaccessibility and functional properties of phenolic compounds from enriched beverages based on cocoa bean shell. Foods 2020, 9, 715. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Pereira, L.; Rojo-Poveda, O.; Ferrocino, I.; Giordano, M.; Zeppa, G. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics. Food Res. Int. 2019, 123, 684–696. [Google Scholar] [CrossRef] [Green Version]
- Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Finglas, P. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Damm, I.; Enger, E.; Chrubasik-Hausmann, S.; Schieber, A.; Zimmermann, B.F. Fast and comprehensive analysis of secondary metabolites in cocoa products using ultra high-performance liquid chromatography directly after pressurized liquid extraction. J. Sep. Sci. 2016, 39, 3113–3122. [Google Scholar] [CrossRef]
- Patras, M.A.; Milev, B.P.; Vrancken, G.; Kuhnert, N. Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC-MSn. Food Res. Int. 2014, 63, 353–359. [Google Scholar] [CrossRef]
- D’Souza, R.N.; Grimbs, S.; Behrends, B.; Bernaert, H.; Ullrich, M.S.; Kuhnert, N. Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Res. Int. 2017, 99, 550–559. [Google Scholar] [CrossRef]
- Pedan, V.; Weber, C.; Do, T.; Fischer, N.; Reich, E.; Rohn, S. HPTLC fingerprint profile analysis of cocoa proanthocyanidins depending on origin and genotype. Food Chem. 2018, 267, 277–287. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Gaspari, A.; Graziani, G.; Santini, A.; Ritieni, A. Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res. Int. 2018, 111, 229–236. [Google Scholar] [CrossRef]
- Barnaba, C.; Nardin, T.; Pierotti, A.; Malacarne, M.; Larcher, R. Targeted and untargeted characterisation of free and glycosylated simple phenols in cocoa beans using high resolution-tandem mass spectrometry (Q-Orbitrap). J. Chromatogr. A 2017, 1480, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Acierno, V.; Alewijn, M.; Zomer, P.; van Ruth, S.M. Making cocoa origin traceable: Fingerprints of chocolates using flow infusion-electro spray ionization-mass spectrometry. Food Control. 2018, 85, 245–252. [Google Scholar] [CrossRef]
- de la Luz Cádiz-Gurrea, M.; de Las Nieves, I.F.; Saez, L.M.A.; Fernández-Arroyo, S.; Legeai-Mallet, L.; Bouaziz, M.; Segura-Carretero, A. Bioactive compounds from Theobroma cacao: Effect of isolation and safety evaluation. Plant. Foods Hum. Nutr. 2019, 74, 40–46. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.; Lozano-Sanchez, J.; Contreras-Gámez, M.; Legeai-Mallet, L.; Fernández-Arroyo, S.; Segura-Carretero, A. Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. J. Funct. Foods 2014, 10, 485–498. [Google Scholar] [CrossRef]
- Carrillo, L.C.; Londoño-Londoño, J.; Gil, A. Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Cambrai, A.; Marchioni, E.; Julien-David, D.; Marcic, C. Discrimination of cocoa bean origin by chocolate polyphenol chromatographic analysis and chemometrics. Food Anal. Method 2017, 10, 1991–2000. [Google Scholar] [CrossRef]
- Hori, K.; Kiriyama, T.; Tsumura, K. A liquid chromatography time-of-flight mass spectrometry-based metabolomics approach for the discrimination of cocoa beans from different growing regions. Food Anal. Method 2016, 9, 738–743. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.D.L.L.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Guerrero-Muñoz, N.; Villegas-Aguilar, M.D.C.; Pimentel-Moral, S.; Ramos-Escudero, F.; Segura-Carretero, A. LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa By-Products for Commercial Applications. Molecules 2020, 25, 3177. [Google Scholar] [CrossRef]
- International Cocoa Organization (ICCO). Available online: https://www.icco.org/wp-content/uploads/FFP-REP-7-Report-of-the-Meeting-English.pdf (accessed on 20 April 2021).
- Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 9 July 2021).
- Bordiga, M.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Mazza, G.; Arlorio, M. Evaluation of the effect of processing on cocoa polyphenols: Antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. Int. J. Food Sci. Technol. 2015, 50, 840–848. [Google Scholar] [CrossRef]
- Oracz, J.; Nebesny, E.; Żyżelewicz, D. Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. Eur. Food Res. Technol. 2015, 241, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food authentication: State of the art and prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess. Tech. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Tomas-Barberán, F.A.; Cienfuegos-Jovellanos, E.; Marín, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerdá, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J. Agric. Food Chem. 2007, 55, 3926–3935. [Google Scholar] [CrossRef]
- Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Testa, G.; Sottero, B.; Poli, G.; Zeppa, G.; Biasi, F. A dietary mixture of oxysterols induces in vitro intestinal inflammation through TLR2/4 activation: The protective effect of cocoa bean shells. Antioxidants 2019, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Calderon, A.I.; Wright, B.J.; Hurst, W.J.; Van Breemen, R.B. Screening antioxidants using LC-MS: Case study with cocoa. J. Agric. Food Chem. 2009, 57, 5693–5699. [Google Scholar] [CrossRef] [Green Version]
- De Taeye, C.; Caullet, G.; Eyamo Evina, V.J.; Collin, S. Procyanidin A2 and its degradation products in raw, fermented, and roasted cocoa. J. Agric. Food Chem. 2017, 65, 1715–1723. [Google Scholar] [CrossRef]
- del Rosario Brunetto, M.; Gutiérrez, L.; Delgado, Y.; Gallignani, M.; Zambrano, A.; Gómez, Á.; Ramos, G.; Romero, C. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem. 2007, 100, 459–467. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Morales-Sillero, A.; Fernández-Bolaños, J.; Bermúdez-Oria, A.; Morales, A.A.; Rodríguez-Gutiérrez, G. Cocoa bean husk: Industrial source of antioxidant phenolic extract. J. Sci. Food Agri. 2019, 99, 325–333. [Google Scholar] [CrossRef]
- Iaia, N.; Rossin, D.; Sottero, B.; Venezia, I.; Poli, G.; Biasi, F. Efficacy of theobromine in preventing intestinal CaCo-2 cell damage induced by oxysterols. Arch. Biochem. Biophys. 2020, 694, 108591. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmax | Molecular Formula | Ionization Mode | [M-H] (m/z) | MS/MS (m/z) | Tentative Identification | Confirmation/ Ref. § | CBS Fractions | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||||||||
1 | 4.73 | 259, 293 | C7H6O4 | [M-H]−1 | 153 | 109 | Protocatechuic acid | [22,30], Std* | - | ✓ | ✓ | - |
2 | 6.4 | 272 | C7H8N4O2 | [M-H]+1 | 181 | 167, 138, 137 | Theobromine | [3,21], Std* | ✓ | - | - | - |
3 | 6.8 | 279, 309 | C13H13NO6 | [M-H]−1 | 278 | 163 | N-Coumaroyl-L-aspartate_1 | [7,37] | - | ✓ | - | - |
4 | 7.2 | 279 | C21H24O11 | [M-H]−1 | 451 | 289, 245 | Catechin-3-O-glucoside_1 | [19] | - | ✓ | - | - |
5 | 8.13 | 275 | C11H21O9S | [M-H]−1 | 329 | 241 | C11H21O9S_1 | [19] | - | ✓ | - | - |
6 | 8.24 | 282, 320 | C13H13NO7 | [M-H]−1 | 294 | 276, 179, 132 | N-Caffeoyl-L-aspartate | [7,20,26,37] | - | ✓ | ✓ | ✓ |
7 | 8.63 | 278 | C15H14O6 | [M-H]−1 | 289 | 245, 205, 203, 137, 125 | Catechin | [20,22] Std* | - | - | ✓ | - |
8 | 8.84 | 278 | C11H21O9S | [M-H]−1 | 329 | 241 | C11H21O9S_2 | [19] | - | - | ✓ | ✓ |
9 | 9.5 | 279 | C21H24O11 | [M-H]−1 | 451 | 289, 245 | Catechin-3-O-glucoside_2 | [19] | - | ✓ | - | - |
10 | 9.58 | 293 | C16H22O9 | [M-H]−1 | 357 | - | Sweroside | [26] | - | - | ✓ | - |
11 | 9.7 | 280 | C45H38O18 | [M-H]−1 | 865 | 577, 425, 289 | Procyanidin B-type trimer_1 | [26] | - | - | - | ✓ |
12 | 10.6 | 284, 306 | C13H13NO6 | [M-H]−1 | 278 | 234, 163, 132 | N-Coumaroyl-L-aspartate_2 | [7,20,26,37] | - | ✓ | ✓ | ✓ |
13 | 11.08 | 278 | C45H38O18 | [M-H]−1 | 865 | 577, 425, 407, 289 | Procyanidin B-type trimer_2 | [26] | - | - | - | ✓ |
14 | 11.1 | 280 | C30H26O12 | [M-H]−1 | 577 | 425, 407, 289 | Procyanidin B-type_1 | [26] | - | ✓ | ✓ | ✓ |
15 | 11.37 | 280 | C30H26O12 | [M-H]−1 | 577 | 425, 407, 289 | Procyanidin B-type_2 | [26] | - | ✓ | - | - |
16 | 11.5 | 278 | C15H14O6 | [M-H]−1 | 289 | 245, 205, 203, 137, 125 | Epicatechin | [20,22], Std* | - | - | ✓ | - |
17 | 11.87 | 286 | C14H15NO6 | [M-H]−1 | 292 | 274, 248, 230, 202, 163, 145, 128, 119 | N-Coumaroyl-L-glutamate | [20,26] | - | - | ✓ | - |
18 | 12.1 | 275 | C12H18O7S | [M-H]−1 | 305 | 225 | Hydroxyjasmonic acid sulfate | [20] | - | - | ✓ | - |
19 | 12.2 | 272 | C8H10N4O2 | [M-H]+1 | 195 | 181, 151, 138 | Caffeine | [3,21], Std* | ✓ | - | - | - |
20 | 12.25 | 286, 318 | C14H15NO7 | [M-H]−1 | 308 | 276, 264, 246, 193, 149, 134 | N-Feruloyl-L-aspartate | [7,20,26] | - | - | ✓ | ✓ |
21 | 12.78 | 279 | C45H38O18 | [M-H]−1 | 865 | 577, 407, 289 | Procyanidin B-type trimer_3 | [26] | - | - | - | ✓ |
22 | 12.84 | 280 | C30H26O12 | [M-H]−1 | 577 | 425, 289 | Procyanidin B-type_3 | [26] | - | ✓ | ✓ | - |
23 | 12.9 | 280 | C35H32O16 | [M-H]−1 | 707 | - | Procyanidin A-type pentoside_1 | [19] | - | - | ✓ | - |
24 | 13 | 278 | C45H38O18 | [M-H]−1 | 865 | 577, 425, 407, 289 | Procyanidin B-type trimer_4 | [26] | - | - | - | ✓ |
25 | 13.22 | 280 | C45H38O18 | [M-H]−1 | 865 | 577, 289 | Procyanidin B-type trimer_5 | [26] | - | - | ✓ | - |
26 | 13.5 | 280 | C30H26O12 | [M-H]−1 | 577 | 289 | Procyanidin B-type_4 | [26] | - | - | ✓ | - |
27 | 13.61 | 279 | C45H38O18 | [M-H]−1 | 865 | 577, 289 | Procyanidin B-type trimer_6 | [26] | - | - | - | ✓ |
28 | 13.86 | 280 | C36H34O17 | [M-H]−1 | 737 | 611, 449 | Procyanidin A-type hexoside _1 | [19] | - | - | ✓ | - |
29 | 14.6 | 279 | C45H38O18 | [M-H]−1 | 865 | 577, 289 | Procyanidin B-type trimer_7 | [26] | - | - | - | ✓ |
30 | 14.9 | 280 | C35H32O16 | [M-H]−1 | 707 | 449 | Procyanidin A-type pentoside_2 | [19] | - | - | ✓ | ✓ |
31 | 15.82 | 279 | C45H38O18 | [M-H]−1 | 865 | 577, 425, 407, 289 | Procyanidin B-type trimer_8 | [26] | - | - | - | ✓ |
32 | 16.03 | 279 | C50H44O22 | [M-H]−1 | 995 | 865, 407 | Procyanidin A-type trimer arabinoside | [20] | - | - | - | ✓ |
33 | 17.2 | 278 | C36H34O17 | [M-H]−1 | 737 | 611, 539, 449, 289 | Procyanidin A-type hexoside_2 | [19] | - | - | ✓ | ✓ |
34 | 17.5 | 283 | C18H17NO5 | [M-H]−1 | 326 | 282, 206, 163, 145, 134, 119 | N-Coumaroyl-L-tyrosine (Deoxyclovamide) | [7,20,26,37] | - | - | ✓ | ✓ |
35 | 17.7 | 278 | C35H32O16 | [M-H]−1 | 707 | 581, 539, 449, 287 | Procyanidin A-type pentoside_3 | [19] | - | - | ✓ | ✓ |
36 | 18.2 | 255, 354 | C21H20O12 | [M-H]−1 | 463 | 301 | Quercetin-3-O-glucoside | [19], Std* | - | - | ✓ | - |
37 | 18.5 | 266, 346 | C27H30O15 | [M-H]−1 | 593 | 285 | Kaempferol-3-O-rutinoside | [20,22] | - | - | ✓ | - |
38 | 19.4 | 255, 355 | C20H18O17 | [M-H]−1 | 433 | 301 | Quercetin-3-O-arabinoside | [19] | - | - | ✓ | - |
39 | 21.83 | 275, 365 | C15H10O7 | [M-H]−1 | 301 | - | Quercetin | [22,26], Std* | - | - | - | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa-Pereira, L.; Belviso, S.; Ferrocino, I.; Rojo-Poveda, O.; Zeppa, G. Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods 2021, 10, 1791. https://doi.org/10.3390/foods10081791
Barbosa-Pereira L, Belviso S, Ferrocino I, Rojo-Poveda O, Zeppa G. Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods. 2021; 10(8):1791. https://doi.org/10.3390/foods10081791
Chicago/Turabian StyleBarbosa-Pereira, Letricia, Simona Belviso, Ilario Ferrocino, Olga Rojo-Poveda, and Giuseppe Zeppa. 2021. "Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis" Foods 10, no. 8: 1791. https://doi.org/10.3390/foods10081791
APA StyleBarbosa-Pereira, L., Belviso, S., Ferrocino, I., Rojo-Poveda, O., & Zeppa, G. (2021). Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods, 10(8), 1791. https://doi.org/10.3390/foods10081791