Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Ingredient Sources
2.2. Feed Formulation and Analysis
2.3. Feeding Trial and Broiler Management
2.4. Blood Collection and Analysis
2.5. Slaughter, Internal Organs, and Carcass and Meat Quality Traits
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Hemato-Biochemical Parameters
3.2. Carcass Characteristics, Internal Organs, and Meat Quality
4. Discussion
4.1. Growth Performance and Hemato-Biochemical Parameters
4.2. Carcass Characteristics, Visceral Organs and Meat Quality Attributes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ahaotu, E.O.; De los Ríos, P.; Ibe, L.C.; Singh, R.R. Climate change in poultry production system—A review. Acta Sci. Agric. 2019, 3, 113–117. [Google Scholar]
- United States Department of Agriculture (USDA). Livestock and Poultry: World Markets and Trade. Foreign Agricultural Service, USA. 2020. Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf (accessed on 27 May 2020).
- OECD/FAO. OECD-FAO Agricultural Outlook; OECD Publishing: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Thema, K.; Mlambo, V.; Snyman, N.; Mnisi, C.M. Evaluating Alternatives to Zinc-Bacitracin Antibiotic Growth Promoter in Broilers: Physiological and Meat Quality Responses. Animals 2019, 9, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Psychol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Nhlane, L.T.; Mnisi, C.M.; Madibana, M.J.; Mlambo, V. Nutrient digestibility, growth performance and blood indices of bushveld chickens fed seaweed-containing diets. Animals 2020, 10, 1296. [Google Scholar] [CrossRef] [PubMed]
- Matshogo, T.B.; Mnisi, C.M.; Mlambo, V. Dietary green seaweed compromises overall feed conversion efficiency but not blood parameters and meat quality and stability in broiler chickens. Agriculture 2020, 10, 547. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes: Physiological and meat quality responses in broilers. Animals 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.A.H.; Jalai, M.A.R.; Ishmais, M.A.A. The influence of supplemental multi-enzyme feed additive on the performance, carcass characteristics and meat quality traits of broiler chickens. Int. J. Poult. Sci. 2010, 9, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Slominski, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas†, A.C. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Yaich, H.; Amira, A.B.; Abbes, F.; Bouaziz, M.; Besbes, S.; Richel, A.; Blecker, C.; Attia, H.; Garna, H. Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. Int. J. Biol. Macromol. 2017, 105, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Grau, R.; Hamm, R. About the water binding capacity of the mammalian muscle. II. Commun. Z. Lebensm. Unters. Brisk. 1957, 105, 446. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–570. [Google Scholar] [CrossRef]
- Lee, Y.S.; Owens, C.M.; Meullenet, J.F. The Meullenet-Owens Razor Shear (MORS) for predicting poultry meat tenderness: Its applications and optimization. J. Texture Stud. 2008, 39, 655–672. [Google Scholar] [CrossRef]
- SAS. Users Guide; Version 9.4; Statistical Analyses System Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. Formation of complexes between polyvinyl pyriolidones or polyethylene glycols and tannins and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.; Samara, E.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, e28. [Google Scholar] [CrossRef]
- Mnisi, C.M.; Mlambo, V.; Phatudi, K.; Matshogo, T.B. Exogenous carbohydrases do not improve the physiological and meat quality parameters of female Japanese quail fed canola-based diets. S. Afr. J. Anim. Sci. 2017, 47, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Mnisi, C.M.; Mlambo, V. Protease treatment of canola meal-containing Japanese quail diets: Effect on physiological parameters and meat quality traits. J. Appl. Anim. Res. 2018, 46, 1389–1394. [Google Scholar] [CrossRef] [Green Version]
- Sayyazadeh, H.; Rahimi, G.; Rezaei, M. Influence of enzyme supplementation of maize, wheat and barley-based diets on the performance of broiler chickens. Pak. J. Biol. Sci. 2006, 9, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J.; Bedford, M.R. The effects of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: Complimentary mode of action? World Poult. Sci. J. 2009, 65, 609–624. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Age related influence of cocktail on xylanase, amylase and protease or phytase individually or in combination in broilers. Poult. Sci. 2007, 86, 77–86. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, U.P.; Berrocosi, J.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effects of a combination of Xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers. Poult. Sci. 2019, 98, 5571–5581. [Google Scholar] [CrossRef] [PubMed]
- Madubuike, F.N.; Ekenyem, B.U. Haematology and serum biochemistry characteristics of broiler chicks fed varying dietary levels of Ipomoea asarifolia leaf meal. Int. J. Poult. Sci. 2006, 5, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Cañedo-Castro, B.; Piñón-Gimate, A.; Carrillo, S.; Ramos, D.; Casas-Valdez, M. Prebiotic effect of Ulva rigida meal on the intestinal integrity and serum cholesterol and triglyceride content in broilers. J. Appl. Phycol. 2019, 31, 3265–3273. [Google Scholar] [CrossRef]
- Al-Harthi, M.A.; El-Deek, A.A. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens. Ital. J. Anim. Sci. 2012, 11, e64. [Google Scholar] [CrossRef]
- Shalash, S.M.; Sayed, M.A.; Hoda El-Gabry, E.; Naha Ramadam, A.; Mamal Mohamed, S. Nutritive value of distillers dried grains with soluble and broiler performance at starter period. Int. J. Poult. Sci. 2009, 8, 783–787. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Using the precision—Feeding bioassay to determine the efficacy of exogenous enzymes—A new perspective. Anim. Feed Sci. Technol. 2006, 129, 149–158. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Habib, A.B.; Eltrefifi, A.M.; Shulukh, E.S.A.; Abubaker, A.A. Effect of different levels of multi-enzymes (Natuzyme Plus) on growth performance, carcass traits and meat quality of broiler chicken. Asian J. Anim. Vet. Adv. 2017, 13, 61–66. [Google Scholar] [CrossRef]
- Symeon, G.K.; Zintilas, C.; Ayoutanti, A.; Bizelis, J.A.; Deligeorgis, S.G. Effect of dietary oregano essential oil supplementation for an extensive fattening period on growth performance and breast meat quality of female medium-growing broilers. Can. J. Anim. Sci. 2009, 89, 331–334. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Morgan, N.K.; Swick, R.A.; Choct, M.; Wu, S.B. Roles of dietary fiber and ingredient particle size in broiler nutrition. World Poult. Sci. J. 2018, 74, 301–316. [Google Scholar] [CrossRef]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Fischer, G.; Maier, J.C.; Rutz, F.; Bermudez, V.L. Performance of broilers fed corn soybean meal based diets, with or without inclusion of enzymes. Revista Brasileira de Zootecnia 2002, 31, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Dyubele, N.L.; Muchenje, V.; Nkukwana, T.T.; Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 2010, 21, 815–819. [Google Scholar] [CrossRef]
- Hossain, M.; Begum, M.; Kim, I. Effect of Bacillus subtilis, Clostridium butyricum and Lactobacillus acidophilus endospores on growth performance, nutrient digestibility, meat quality, relative organ weight, microbial shedding and excreta noxious gas emission in broilers. Vet. Med. 2016, 60, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Barbut, S. Problem of pale soft exudative meat in broiler chickens. Br. Poult. Sci. 1997, 38, 355–358. [Google Scholar] [CrossRef] [PubMed]
Grower (14–28 d) | Finisher (29–42 d) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ingredients | T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 |
Viscozyme® L | 0 | 12.0 | 12.0 | 12.0 | 12.0 | 0 | 12.0 | 12.0 | 12.0 | 12.0 |
Protease | 0 | 0 | 5.0 | 10.0 | 15.0 | 0 | 0 | 5.0 | 10.0 | 15.0 |
Seaweed | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 |
Yellow maize | 648.8 | 648.8 | 648.8 | 648.8 | 648.8 | 646.3 | 646.3 | 646.3 | 646.3 | 646.3 |
Extruded full fat soya | 31.88 | 31.88 | 31.88 | 31.88 | 31.88 | 34.57 | 34.57 | 34.57 | 34.57 | 34.57 |
Soya O/C 47% | 211.9 | 211.9 | 211.9 | 211.9 | 211.9 | 218.1 | 218.1 | 218.1 | 218.1 | 218.1 |
Sunflower O/C 36% | 41.51 | 41.51 | 41.51 | 41.51 | 41.51 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
Limestone | 7.89 | 7.89 | 7.89 | 7.89 | 7.89 | 7.05 | 7.05 | 7.05 | 7.05 | 7.05 |
Monocalcium phosphate | 8.28 | 8.28 | 8.28 | 8.28 | 8.28 | 5.99 | 5.99 | 5.99 | 5.99 | 5.99 |
Sodium bicarbonate | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
DL-Methionine | 2.92 | 2.92 | 2.92 | 2.92 | 2.92 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 |
L-Threonine | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 |
Lysine HCL | 3.40 | 3.40 | 3.40 | 3.40 | 3.40 | 1.85 | 1.85 | 1.85 | 1.85 | 1.85 |
Crude soya oil mixer | - | - | - | - | - | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 |
Lignobond | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Premix | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
AxtraPhy10000 Broiler | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Salinomycin 12% | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Zinc Bacitracin | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Grower (14–28 d) | Finisher (29–42 d) | |
---|---|---|
Dry matter | 881.6 | 882.3 |
Crude protein | 192.1 | 189.5 |
Metabolisable energy (MJ/kg) | 12.92 | 13.26 |
AP Lysine | 10.65 | 9.50 |
AP Methionine | 5.60 | 4.98 |
AP Threonine | 6.90 | 6.50 |
Crude fat | 35.54 | 46.87 |
Crude fibre | 51.87 | 49.88 |
Ash | 35.44 | 35.16 |
Available phosphorus | 4.20 | 3.80 |
Calcium | 8.40 | 7.60 |
Chloride | 3.54 | 3.29 |
Sodium | 2.16 | 2.16 |
Total phosphorus | 5.47 | 4.94 |
1Diets | p Value | |||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | 2SEM | Linear | Quadratic | |
Week 3 | 513.4 | 499.0 | 475.3 | 480.8 | 494.2 | 14.58 | 0.892 | 0.207 |
Week 4 | 852.9 | 809.5 | 754.3 | 770.2 | 774.2 | 28.83 | 0.528 | 0.355 |
Week 5 | 1062.0 | 985.7 | 989.1 | 983.4 | 1015.6 | 27.86 | 0.514 | 0.616 |
Week 6 | 1144.5 b | 1006.6 a | 989.9 a | 1031.6 ab | 988.1 a | 29.60 | 0.916 | 0.645 |
1Diets | p Value | |||||||
---|---|---|---|---|---|---|---|---|
TI | T2 | T3 | T4 | T5 | 4SEM | Linear | Quadratic | |
2Overall BWG (g/bird) | 1708.0 | 1658.6 | 1646.1 | 1645.3 | 1653.6 | 40.00 | 0.926 | 0.782 |
3Overall FCE | 0.478 | 0.503 | 0.513 | 0.505 | 0.505 | 0.007 | 0.951 | 0.501 |
Final body weight (g/bird) | 1951.3 | 1896.4 | 1884.4 | 1885.1 | 1893.6 | 38.82 | 0.966 | 0.792 |
1Diets | p Value | |||||||
---|---|---|---|---|---|---|---|---|
2Parameters | T1 | T2 | T3 | T4 | T5 | 3SEM | Linear | Quadratic |
Hematology | ||||||||
Hematocrits (%) | 34.16 | 34.41 | 33.58 | 36.33 | 35.91 | 1.057 | 0.551 | 0.061 |
White blood cells (×109/L) | 13.08 | 12.61 | 11.66 | 13.36 | 12.0 | 1.501 | 0.492 | 0.681 |
Heterophils (×109/L) | 11.36 | 11.25 | 11.10 | 11.31 | 9.753 | 1.321 | 0.715 | 0.605 |
Platelets (×109/L) | 35.75 | 41.98 | 41.36 | 40.09 | 32.33 | 4.460 | 0.632 | 0.230 |
Monocytes (×109/L) | 0.620 | 0.463 | 0.486 | 0.660 | 0.388 | 0.119 | 0.716 | 0.692 |
Lymphocytes (×109/L) | 1.185 | 1.611 | 2.136 | 1.271 | 1.555 | 0.362 | 0.178 | 0.137 |
Eosinophils (×109/L) | 0.068 | 0.008 | 0.008 | 0.015 | 0.008 | 0.029 | 0.885 | 0.747 |
Serum biochemistry | ||||||||
Glucose (mmol/L) | 2.338 | 2.346 | 2.416 | 3.258 | 2.375 | 0.246 | 0.480 | 0.113 |
SDMA (µg/dL) | 10.08 ab | 10.16 ab | 16.0 b | 11.50 ab | 7.50 a | 1.494 | 0.136 | 0.012 |
Creatinine (µmol/L) | 12.75 | 12.50 | 15.33 | 18.62 | 15.25 | 2.354 | 0.326 | 0.239 |
Urea (mmol/L) | 16.02 | 17.34 | 13.26 | 19.26 | 16.50 | 1.526 | 0.660 | 0.711 |
BUN/CREA | 145.4 | 167.6 | 121.0 | 157.4 | 158.8 | 33.46 | 0.941 | 0.428 |
Phosphorus (mmol/L) | 3.37 a | 4.72 b | 4.86 b | 4.71 b | 4.60 b | 0.202 | 0.514 | 0.486 |
Calcium (mmol/L) | 1.18 ab | 1.03 a | 1.51 b | 1.57 b | 1.09 ab | 0.134 | 0.727 | 0.003 |
Total protein (g/L) | 99.00 | 103.4 | 96.66 | 105.9 | 92.75 | 11.44 | 0.613 | 0.749 |
Albumin (g/L) | 31.91 | 37.75 | 39.91 | 48.08 | 34.16 | 4.946 | 0.915 | 0.147 |
Globulin (g/L) | 60.33 | 45.08 | 29.41 | 29.58 | 49.08 | 9.738 | 0.760 | 0.059 |
ALB/GLOB | 0.658 | 0.350 | 5.541 | 0.733 | 0.475 | 2.022 | 0.697 | 0.291 |
ALT (U/L) | 164.2 | 282.5 | 203.2 | 223.7 | 217.3 | 54.01 | 0.519 | 0.548 |
ALKP (U/L) | 33.58 | 34.58 | 40.66 | 36.00 | 46.75 | 13.75 | 0.654 | 0.883 |
Total bilirubin (µmol/L) | 105.5 | 161.0 | 185.2 | 237.6 | 165.8 | 28.89 | 0.649 | 0.152 |
1Diets | p Value | |||||||
---|---|---|---|---|---|---|---|---|
2Parameters | T1 | T2 | T3 | T4 | T5 | 3SEM | Linear | Quadratic |
Carcass yield (%) | 74.11 | 73.50 | 74.18 | 72.78 | 73.15 | 0.710 | 0.486 | 0.844 |
WCW (g) | 1445.8 | 1394.3 | 1397.5 | 1372.7 | 1385.1 | 32.13 | 0.726 | 0.891 |
CCW (g) | 1405.5 | 1357.8 | 1355.2 | 1340.1 | 1346.8 | 30.78 | 0.737 | 0.884 |
Wing | 5.38 | 5.60 | 5.27 | 5.73 | 5.70 | 0.152 | 0.297 | 0.364 |
Breast | 23.83 | 26.90 | 26.91 | 27.40 | 25.73 | 1.315 | 0.464 | 0.365 |
Drumstick | 5.95 | 6.20 | 6.05 | 6.25 | 6.23 | 0.115 | 0.518 | 0.535 |
Thigh | 7.40 | 7.67 | 7.37 | 7.73 | 7.42 | 0.186 | 0.722 | 0.968 |
Liver | 1.93 | 1.81 | 1.97 | 1.96 | 1.91 | 0.088 | 0.481 | 0.246 |
Gizzard | 1.99 b | 1.87 a | 2.10 c | 2.15c | 2.12 c | 0.088 | 0.022 | 0.079 |
Proventriculus | 0.46 | 0.45 | 0.47 | 0.46 | 0.471 | 0.021 | 0.552 | 0.790 |
Spleen | 0.10 | 0.10 | 0.11 | 0.11 | 0.10 | 0.006 | 0.690 | 0.108 |
Duodenum | 0.65 | 0.68 | 0.70 | 0.72 | 0.71 | 0.035 | 0.545 | 0.765 |
Ileum | 1.31 | 1.36 | 1.29 | 1.29 | 1.33 | 0.055 | 0.707 | 0.301 |
Jejunum | 1.35 | 1.39 | 1.41 | 1.40 | 1.43 | 0.056 | 0.693 | 0.961 |
Caecum | 0.98 | 1.04 | 0.96 | 1.00 | 1.03 | 0.072 | 0.970 | 0.415 |
1Diets | p Value | |||||||
---|---|---|---|---|---|---|---|---|
2Parameters | T1 | T2 | T3 | T4 | T5 | 3SEM | Linear | Quadratic |
pH1 | 6.23 | 6.01 | 6.09 | 6.04 | 5.92 | 0.130 | 0.689 | 0.587 |
L*1 | 44.30 | 40.06 | 40.71 | 36.62 | 30.74 | 5.594 | 0.205 | 0.558 |
a*1 | 3.27 | 3.24 | 4.18 | 3.67 | 4.17 | 0.460 | 0.293 | 0.640 |
b*1 | 14.40 | 12.36 | 15.57 | 14.59 | 13.96 | 1.081 | 0.390 | 0.062 |
Chroma1 | 14.78 | 12.79 | 16.19 | 15.07 | 14.60 | 1.055 | 0.332 | 0.061 |
Hue angle1 | 1.35 | 1.31 | 1.30 | 1.32 | 1.28 | 0.036 | 0.617 | 0.585 |
pH24 | 5.79 | 5.80 | 5.83 | 5.83 | 5.77 | 0.017 | 0.469 | 0.043 |
L*24 | 56.86 | 57.62 | 57.64 | 58.14 | 54.75 | 1.863 | 0.395 | 0.422 |
a*24 | 2.56 | 3.74 | 2.62 | 2.53 | 2.79 | 0.421 | 0.173 | 0.154 |
b*24 | 18.02 | 18.56 | 20.80 | 18.39 | 16.88 | 17.83 | 0.276 | 0.223 |
Chroma24 | 18.20 | 18.99 | 20.97 | 18.58 | 17.13 | 20.97 | 0.248 | 0.265 |
Hue angle24 | 1.43 | 1.37 | 1.45 | 1.43 | 1.40 | 0.022 | 0.447 | 0.041 |
WBC (%) | 86.08 | 85.01 | 88.41 | 88.48 | 87.69 | 1.307 | 0.181 | 0.125 |
Drip loss (%) | 1.14 | 1.41 | 1.82 | 1.41 | 1.48 | 0.378 | 0.864 | 0.522 |
Cooking loss (%) | 8.78 | 7.00 | 7.43 | 9.14 | 8.74 | 1.306 | 0.192 | 0.718 |
Shear force (N) | 1.90 | 1.92 | 1.86 | 1.93 | 1.90 | 0.040 | 0.869 | 0.766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matshogo, T.B.; Mnisi, C.M.; Mlambo, V. Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens. Foods 2021, 10, 1862. https://doi.org/10.3390/foods10081862
Matshogo TB, Mnisi CM, Mlambo V. Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens. Foods. 2021; 10(8):1862. https://doi.org/10.3390/foods10081862
Chicago/Turabian StyleMatshogo, Tumisang Ben, Caven Mguvane Mnisi, and Victor Mlambo. 2021. "Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens" Foods 10, no. 8: 1862. https://doi.org/10.3390/foods10081862
APA StyleMatshogo, T. B., Mnisi, C. M., & Mlambo, V. (2021). Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens. Foods, 10(8), 1862. https://doi.org/10.3390/foods10081862