Tubular Cellulose from Orange Juice By-Products as Carrier of Chemical Preservatives; Delivery Kinetics and Microbial Stability of Orange Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials, Microorganisms and Chemicals
2.2. Tubular Cellulose from Orange Pulp
2.3. Sodium Benzoate Encapsulation
2.4. Sodium Benzoate Delivery in Orange Juice
2.5. Microbiological Stability
2.6. Chemical Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Delignification and Characterization of Orange Pulp
3.2. Preparation of Tubular Cellulose/Sodium Benzoate (TC/SB) Substrates
3.3. Sodium Benzoate Delivery
3.4. Antimicrobial Effectiveness of TC/SB Susbstrates in Orange Juice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pongsavee, M. Effect of Sodium Benzoate Preservative on Micronucleus Induction, Chromosome Break, and Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes. BioMed Res. Int. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Raposa, B.; Pónusz, R.; Gerencsér, G.; Budán, F.; Gyöngyi, Z.; Tibold, A.; Hegyi, D.; Kiss, I.; Koller, Á.; Varjas, T. Food Additives: Sodium Benzoate, Potassium Sorbate, Azorubine, and Tartrazine Modify the Expression of NFκB, GADD45α, and MAPK8 Genes. Physiol. Int. 2016, 103, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Opinion on Benzoic Acid and Sodium Benzoate, Scientific Committee on Consumer Products (SCCP). 2005. Available online: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_015.Pdf (accessed on 2 June 2021).
- Chen, H.; Zhong, Q. Antibacterial Activity of Acidified Sodium Benzoate Against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Tryptic Soy Broth and on Cherry Tomatoes. Int. J. Food Microbiol. 2018, 274, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Nan, A. Miscellaneous Drugs, Materials, Medical Devices and Techniques. In Side Effects of Drugs Annual; Elsevier BV: Amsterdam, The Netherlands, 2016; Volume 38, pp. 523–532. [Google Scholar] [CrossRef]
- Shahmihammadi, M.; Javadi, M.; Nassiri-Asl, M. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products. Biotechnol. Health Sci. 2016, 3, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Bala, R.; Gondil, V.S.; Pandey, S.; Chhibber, S.; Jain, D.V.S.; Sharma, R.K.; Wangoo, N. Combating Food Pathogens Using Sodium Benzoate Functionalized Silver Nanoparticles: Synthesis, Characterization and Antimicrobial Evaluation. J. Mater. Sci. 2017, 52, 8568–8575. [Google Scholar] [CrossRef]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes Associated with Freshly Prepared Juices of Citrus and Carrots. Int. J. Food Sci. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Salomão, B.D.C.M. Pathogens and Spoilage Microorganisms in Fruit Juice. In Fruit Juices; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 291–308. [Google Scholar] [CrossRef]
- Piper, J.; Piper, P. Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barouni, E.; Petsi, T.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A. Low Volume Bioreactor Development in Dairy Industry Based on Encapsulated Rennin in Tubular Cellulose/Starch Gel Composite. Food Bioprocess. Technol. 2018, 11, 194–200. [Google Scholar] [CrossRef]
- Kumar, M.; Gialleli, A.-I.; Masson, J.B.; Kandylis, P.; Bekatorou, A.; Koutinas, A.A.; Kanellaki, M. Lactic Acid Fermentation by Cells Immobilised on Various Porous Cellulosic Materials and their Alginate/Poly-Lactic Acid Composites. Bioresour. Technol. 2014, 165, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Panitsa, A.; Petsi, T.; Kandylis, P.; Nigam, P.S.; Kanellaki, M.; Koutinas, A.A. Chemical Preservative Delivery in Meat Using Edible Vegetable Tubular Cellulose. LWT 2021, 141, 111049. [Google Scholar] [CrossRef]
- Katsaros, G.; Tsevdou, M.; Panagiotou, T.; Taoukis, P.S. Kinetic Study of High Pressure Microbial and Enzyme Inactivation and Selection of Pasteurisation Conditions for Valencia Orange Juice. Int. J. Food Sci. Technol. 2010, 45, 1119–1129. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kokkinomagoulos, E.; Hatzikamari, M.; Bekatorou, A. Emmer-Based Beverage Fortified with Fruit Juices. Appl. Sci. 2021, 11, 3116. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Gousi, M.; Kordouli, E.; Kanellaki, M. Effect of Immobilization Support and Fermentation Temperature on Beer and Fermented Milk Aroma Profiles. Beverages 2021, 7, 47. [Google Scholar] [CrossRef]
- Kandylis, P.; Bekatorou, A.; Pissaridi, K.; Lappa, K.; Dima, A.; Kanellaki, M.; Koutinas, A.A. Acidogenesis of Cellulosic Hydrolysates for New Generation Biofuels. Biomass Bioenergy 2016, 91, 210–216. [Google Scholar] [CrossRef]
- Kandylis, P.; Kanellaki, M. Effect of Alkaline Pretreatment on Corn Leaves. Ecol. Saf. 2017, 11, 246–254. [Google Scholar]
- Koutinas, A.A.; Sypsas, V.; Kandylis, P.; Michelis, A.; Bekatorou, A.; Kourkoutas, Y.; Kordulis, C.; Lycourghiotis, A.; Banat, I.; Nigam, P.; et al. Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE 2012, 7, e34350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gialleli, A.-I.; Ganatsios, V.; Terpou, A.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A.; Dimitrellou, D. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials. Food Technol. Biotechnol. 2017, 55, 325–332. [Google Scholar] [CrossRef]
- Conte, A.; Lecce, L.; Iannetti, M.; Del Nobile, M.A. Study on the Influence of Bio-Based Packaging System on Sodium Benzoate Release Kinetics. Foods 2020, 9, 1010. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Green Consumerism and Alternative Approaches for Food Preservation: An Intro-Duction. In Application of Alternative Food-Preservation Technologies to Enhance Food Safety and Stability; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Bentham Publisher: Sharjah, United Arab Emirates, 2010; pp. 1–3. [Google Scholar]
- Samani, B.H.; Khoshtaghaza, M.H.; Lorigooini, Z.; Minaei, S.; Zareiforoush, H. Analysis of the Combinative Effect of Ultrasound and Microwave Power on Saccharomyces cerevisiae in Orange Juice Processing. Innov. Food Sci. Emerg. Technol. 2015, 32, 110–115. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, X.; Lu, Y.; Zhao, H.; Lu, F.; Lu, Z. Improving Iturin A Production of Bacillus amyloliquefaciens by Genome Shuffling and Its Inhibition Against Saccharomyces cerevisiae in Orange Juice. Front. Microbiol. 2018, 9, 2683. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mahmoudi, M.R.; Roohi, R.; Torres, I.; Saraiva, J.A. Statistical Modeling of the Inactivation of Spoilage Microorganisms During Ohmic Heating of Sour Orange Juice. LWT 2019, 111, 821–828. [Google Scholar] [CrossRef]
- Fenoglio, D.; Ferrario, M.; Schenk, M.; Guerrero, S. Effect of Pilot-Scale UV-C Light Treatment Assisted by Mild Heat on E. coli, L. plantarum and S. cerevisiae Inactivation in Clear and Turbid Fruit Juices. Storage Study of Surviving Populations. Int. J. Food Microbiol. 2020, 332, 108767. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Wu, Z.; Yang, L.; Wang, Y.; Xiang, Q.; Bai, Y. Antimicrobial Effect of UVC Light-Emitting Diodes Against Saccharomyces cerevisiae and Their Application in Orange Juice Decontamination. J. Food Prot. 2021, 84, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Anapi, G.R.; Aba, R.P.M.; Gabriel, A.A. Screening for Heat-Resistant Reference Yeast Isolate in Orange Juice. Food Microbiol. 2021, 94, 103639. [Google Scholar] [CrossRef] [PubMed]
- Gialleli, A.-I.; Bekatorou, A.; Kanellaki, M.; Nigam, P.; Koutinas, A.A. Apple Juice Preservation through Microbial Adsorption by nano/Micro-Tubular Cellulose. Innov. Food Sci. Emerg. Technol. 2016, 33, 416–421. [Google Scholar] [CrossRef]
- Peña, N.; Panagopoulos, V.; Kanellaki, M.; Koutinas, A.A.; Ruiz-Rico, M.; Fernández-Segovia, I.; Barat, J.M. Non-Thermal Treatment for the Stabilisation of Liquid Food Using a Tubular Cellulose Filter from Corn Stalks. Food Control. 2020, 112, 107164. [Google Scholar] [CrossRef]
1. Tubular Cellulose (TC) from Orange Pulp |
Orange pulp (pulp and peel pith) → delignification (1% w/v NaOH + 70 °C for 3 h) → TC (freeze drying; FD) |
2. Sodium Benzoate Encapsulation |
I. TC/SB-WI (Wet Impregnation Method) |
TC (1.5 g) + SB solution (30 mL; 1.5–49% w/v) + stirring (0.5–5 h) |
II. TC/SB-SG (Starch Gel Method) |
7 mL of deionized water was mixed with corn starch and 5% w/v SB solution + TC |
3. Sodium Benzoate Delivery in Orange Juice |
2 g FD TC/SB-WI and FD TC/SB-SG (containing 0.13 g of encapsulated SB) + 100 mL orange juice |
Delivery after 0.5–5 h and 0.5–60 days; 2 °C and 25 °C |
4. Microbiological Stability |
Contaminated juice with L. casei, L. planatrum and S. cerevisiae (storage 0, 2, 5 and 15 days; 5 °C) |
Analyses | Untreated Orange Pulp | Delignified Orange Pulp |
---|---|---|
Specific surface area (BET 1) (m2/g) | 0.30 ± 0.03 | 0.67 ± 0.05 |
Pore volume (BJH) (×10−3 cm3/g) | 1.3 ± 0.4 | 6.7 ± 0.5 |
Average pore diameter (BET) (Å) | 47.0 ± 5.6 | 115.3 ± 13.2 |
Time (h) | 2 °C | 25 °C | Significance | |||
---|---|---|---|---|---|---|
SG | WI | SG | WI | WI/SG | Temperature | |
0.5 | 10.6 ± 4.2 a | 9.9 ± 2.1 a | 16.9 ± 0.2 a | 9.0 ± 0.6 a | ns | ns |
2 | 12.0 ± 0.5 ab,A | 16.6 ± 1.2 ab,B | 16.2 ± 1.2 a,AB | 16.3 ± 1.4 ab,AB | * | ns |
5 | 17.9 ± 2.7 abc | 17.9 ± 2.1 abc | 18.8 ± 2.1 ab | 18.7 ± 3.4 bc | ns | ns |
12 | 17.3 ± 5.7 abc | 18.3 ± 1.4 abc | 17.6 ± 0.3 a | 21.0 ± 1.1 bcd | ns | ns |
24 | 17.8 ± 0.7 abc,A | 19.3 ± 0.5 bc,AB | 20.9 ± 0.7 ab,AB | 24.5 ± 1.2 bcde,B | * | * |
48 | 18.4 ± 1.5 abc,A | 25.4 ± 1.5 cde,B | 21.8 ± 0.7 ab,AB | 25.8 ± 0.7 cde,B | ** | ns |
72 | 19.3 ± 0.9 abc | 24.4 ± 2.8 bcd | 21.2 ± 3.7 ab | 25.9 ± 0.7 cde | * | ns |
96 | 21.9 ± 0.7 bcd | 25.8 ± 0.7 cde | 24.9 ± 3.5 abc | 26.0 ± 0.9 cde | ns | ns |
120 | 20.9 ± 2.0 abcd,A | 28.4 ± 1.4 de,B | 26.0 ± 0.1 abc,AB | 28.4 ± 1.4 de,B | ** | ns |
240 | 21.9 ± 0.7 bcd | 28.6 ± 3.8 de | 28.1 ± 1.8 bcd | 31.0 ± 2.3 ef | * | ns |
360 | 23.5 ± 2.2 cd,A | 29.5 ± 3.1 de,AB | 32.8 ± 4.5 cde,AB | 39.2 ± 3.5 fg,B | ns | * |
720 | 27.6 ± 5.2 cd | 34.0 ± 2.8 ef | 37.1 ± 3.5 de | 41.8 ± 3.5 g | ns | * |
1440 | 31.5 ± 0.7 d,A | 38.2 ± 2.1 f,AB | 40.7 ± 3.3 e,AB | 48.2 ± 4.5 g,B | * | * |
Time (d) | L. casei | L. plantarum | S. cerevisiae | |||||
---|---|---|---|---|---|---|---|---|
EC1118 | CR51 | |||||||
C | SB | C | SB | C | SB | C | SB | |
0 | 8.31 ± 0.01 ab | 8.31 ± 0.01 a | 8.32 ± 0.01 a | 8.32 ± 0.01 a | 7.41 ± 0.04 ab | 7.41 ± 0.04 a | 7.38 ± 0.03 ab | 7.38 ± 0.03 a |
2 | 7.69 ± 0.01 b | 7.68 ± 0.68 a | 8.54 ± 0.06 b | 7.69 ± 0.34 a | 7.49 ± 0.02 bc | 4.75 ± 0.38 b | 7.54 ± 0.01 a | 5.57 ± 0.03 b |
5 | 8.35 ± 0.07 ab | 7.35 ± 0.01 a | 8.63 ± 0.06 b | 7.48 ± 0.02 a | 7.66 ± 0.05 c | 2.78 ± 0.67 c | 7.59 ± 0.12 a | 3.93 ± 0.11 c |
15 | 9.97 ± 1.07 a | 1.05 ± 0.07 b | 8.34 ± 0.03 a | 5.70 ± 0.28 b | 7.30 ± 0.06 a | 1.70 ± 0.28 c | 7.19 ± 0.02 b | 4.00 ± 0.07 c |
Significance | ns | *** | ** | ** | ** | *** | * | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panitsa, A.; Petsi, T.; Kandylis, P.; Kanellaki, M.; Koutinas, A.A. Tubular Cellulose from Orange Juice By-Products as Carrier of Chemical Preservatives; Delivery Kinetics and Microbial Stability of Orange Juice. Foods 2021, 10, 1882. https://doi.org/10.3390/foods10081882
Panitsa A, Petsi T, Kandylis P, Kanellaki M, Koutinas AA. Tubular Cellulose from Orange Juice By-Products as Carrier of Chemical Preservatives; Delivery Kinetics and Microbial Stability of Orange Juice. Foods. 2021; 10(8):1882. https://doi.org/10.3390/foods10081882
Chicago/Turabian StylePanitsa, Athanasia, Theano Petsi, Panagiotis Kandylis, Maria Kanellaki, and Athanasios A. Koutinas. 2021. "Tubular Cellulose from Orange Juice By-Products as Carrier of Chemical Preservatives; Delivery Kinetics and Microbial Stability of Orange Juice" Foods 10, no. 8: 1882. https://doi.org/10.3390/foods10081882
APA StylePanitsa, A., Petsi, T., Kandylis, P., Kanellaki, M., & Koutinas, A. A. (2021). Tubular Cellulose from Orange Juice By-Products as Carrier of Chemical Preservatives; Delivery Kinetics and Microbial Stability of Orange Juice. Foods, 10(8), 1882. https://doi.org/10.3390/foods10081882