Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sub-Critical Fluid Extraction (SFE) of Bran Oil and Preparation of Mixed Fatty Acid Ethyl Esters (MFAEs)
2.3. ELA Enrichment by UC
2.3.1. Single-Factor Test Design
2.3.2. Optimization of the Experimental Design
2.4. Wiped Film-Short Path MD Equipment and Methodology
2.5. Fatty Acid Analysis Using GC–MS
3. Results
3.1. Single-Factor Experiment on UC
3.1.1. Optimization of 95% Ethanol/Urea Ratio
3.1.2. Optimization of the Urea/FAEE Ratio
3.1.3. Effect of Improving Crystallization Time on the Purity
3.1.4. Effect of Crystallization Temperature
3.2. Optimization of UC Process Parameters by the Response Surface Method
3.2.1. Response Surface Test Results
3.2.2. Regression Analysis and Analysis of Variance
3.2.3. Validation of the Predictive Model
3.3. Molecular Distillation
3.4. MFAE Composition of Bran Oil and RF2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.-Z.; Ma, Y.-X.; Zhang, R.-T.; Ma, H.-J.; Liu, B.-G. Preparation and characterization of foxtail millet bran oil using subcritical propane and supercritical carbon dioxide extraction. J. Food Sci. Technol. 2015, 52, 3099–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.-M.; Liu, Y.-L.; Ge, Z.-F.; Zhang, Y.; Wang, X.-D. Oleochemical Properties for Different Fractions of Foxtail Millet Bran. J. Oleo Sci. 2019, 68, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-F.; Wu, J.-H.; Bai, H.-J.; Zhang, L. Process Optimization for Extraction of Millet Small Bran Oil by Aqueous Ethanol. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 2023. [Google Scholar]
- Liu, B.-Y.; Peng, J.-Y.; Zeng, X.-M. Characterization of dietary fiber from millet brans. Appl. Mech. Mater. 2011, 140, 278–285. [Google Scholar] [CrossRef]
- Liang, S.-H.; Yang, G.-L.; Ma, Y.-X. Chemical characteristics and fatty acid profile of foxtail millet bran oil. J. Am. Oil Chem. Soc. 2010, 87, 63–67. [Google Scholar] [CrossRef]
- Koo, H.J.; Park, H.J.; Byeon, H.E.; Kwak, J.H.; Um, S.H.; Kwon, S.T.; Rhee, D.K.; Pyo, S. Extracts Containing β-Sitosterol and Ethyl Linoleate Protect against Atherosclerosis in Apolipoprotein E-Deficient Mice and Inhibit Muscular Expression of VCAM-1 In Vitro. J. Food Sci. 2014, 79, H719–H729. [Google Scholar] [CrossRef]
- Ko, G.A.; Kim Cho, S. Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway. Korean J. Physiol. Pharmacol. 2018, 22, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Charakida, A.; Charakida, M.; Chu, A.-C. Double-blind, randomized, placebo-controlled study of a lotion containing triethyl citrate and ethyl linoleate in the treatment of acne vulgaris. Br. J. Dermatol. 2007, 157, 569–574. [Google Scholar] [CrossRef]
- Kang, J.-B. Research on Synthetizing of Linoleic Acid Ethyl Ester from Cron Oil; Jilin University: Changchun, China, 2013. [Google Scholar]
- Hutsell, T.C.; Quackenbush, F.W. Reduction of atherogenicity of natural fats by small additions of ethyl linoleate in the diet of the rat. Lipids 1967, 2, 342–344. [Google Scholar] [CrossRef]
- Sosa, M.D.; Magallanes, L.M.; Grosso, N.R.; Pramparo, M.d.C.; Gayol, M.F. Optimisation of omega-3 concentration and sensory analysis of chia oil. Ind. Crops Prod. 2020, 154, 12635. [Google Scholar] [CrossRef]
- Fei, C.-Y.; Salimon, J.; Said, M. Optimisation of urea complexation by Box-Behnken design. Sains Malays. 2010, 39, 795–803. [Google Scholar]
- Abdullah, B.M.; Salimon, J. Optimization of Process Variables using D-optimal Design for Separating Linoleic acid in Jatropha curcas Seed Oil by Urea Complex Fractionation. Biotechnology 2010, 3, 362. [Google Scholar]
- González-Fernández, M.J.; Fabrikov, D.; Lyashenko, S.; Ferrón-Carrillo, F.; Guil-Guerrero, J.L. Highly concentrated very long-chain PUFA obtainment by Urea complexation methodology. Environ. Technol. Innov. 2020, 18, 100736. [Google Scholar] [CrossRef]
- Magallanes, L.M.; Tarditto, L.V.; Grosso, N.R.; Pramparo, M.C.; Gayol, M.F. Highly concentrated omega-3 fatty acid ethyl esters by urea complexation and molecular distillation. J. Sci. Food Agric. 2019, 99, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Fregolente, L.V.; Fregolente, P.B.L.; Chicuta, A.M.; Batistella, C.B.; Maciel Filho, R.; Wolf-Maciel, M.R. Effect of Operating Conditions on the Concentration of Monoglycerides Using Molecular Distillation. Chem. Eng. Res. Des. 2007, 85, 1524–1528. [Google Scholar] [CrossRef]
- Liñan, L.Z.; Lima, N.M.N.; Maciel, M.R.W.; Filho, R.W.; Medina, L.C.; Embiruçu, M. Correlation for predicting the molecular weight of Brazilian petroleum residues and cuts: An application for the simulation of a molecular distillation process. J. Pet. Sci. Eng. 2011, 78, 78–85. [Google Scholar] [CrossRef]
- No, D.S.; Zhao, T.-T.; Kim, Y.; Yoon, M.R.; Lee, J.S.; Kim, I.H. Preparation of highly purified pinolenic acid from pine nut oil using a combination of enzymatic esterification and urea complexation. Food Chem. 2015, 170, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Solaesa, Á.G.; Sanz, M.T.; Falkeborg, M.; Beltrán, S.; Guo, Z. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem. 2016, 190, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.-H.; Zhang, X.-J.; Zhao, Y.-H. Effects of different processing technologies on nutritional components in the velvet antler of sika deer (Cervus nippon). Int. Agric. Eng. J. 2020, 29, 306–315. [Google Scholar]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Foods World 1987, 32, 857–868. [Google Scholar]
- Kshirsagar, A.C.; Singhal, R.S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydr. Polym. 2007, 69, 455–461. [Google Scholar] [CrossRef]
- Min, J.H.; Reddy, L.V.; Dimitris, C.; Kim, Y.M.; Wee, Y.J. Optimized Production of Poly (γ-Glutamic acid) By Bacillus sp. FBL-2 through Response Surface Methodology Using Central Composite Design. J. Microbiol. Biotechnol. 2019, 29, 1061–1070. [Google Scholar] [CrossRef]
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2003, 37, 319–327. [Google Scholar] [CrossRef]
Independent Variables | Code Variable Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
95% ethanol-to-urea ratio (v/w) (g/g) (X1) | 5 | 15 | 25 |
urea-to-fatty acid ratio (w/w) (g/g) (X2) | 1 | 2.5 | 4 |
Crystallization time (h) (X3) | 3 | 15 | 27 |
Crystallization temperature (°C) (X4) | −18 | −6 | 6 |
Experimental Condition | Value | |
---|---|---|
Preheating temperature (°C) | 35 ± 0.5 | |
Wiper speed (rpm) | 220–240 | |
Feed rate (mL/min) | 10.0 ± 1.0 | |
The first level distillation process | ||
Evaporating temperature (°C) | 90 ± 0.2 | |
Internal condenser temperature (°C) | 15 ± 1.0 | |
Operating pressure (mbar) | 1.0–3.0 | |
The second level distillation process | ||
Evaporating temperature (°C) | 145 ± 0.2 | |
Internal condenser temperature (°C) | 15 ± 1.0 | |
Operating pressure (mbar) | 0.01–0.05 |
Run | X1 | X2 | X3 | X4 | ELA Purity (%) |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | 0 | 31.08 |
2 | −1 | −1 | 0 | 0 | 28.48 |
3 | −1 | 0 | 0 | −1 | 32.39 |
4 | −1 | 1 | 0 | 0 | 29.84 |
5 | 0 | 0 | 1 | −1 | 31.92 |
6 | 1 | −1 | 0 | 0 | 25.09 |
7 | 0 | −1 | 0 | −1 | 25.06 |
8 | 0 | −1 | 1 | 0 | 30.01 |
9 | 0 | 0 | −1 | 1 | 32.13 |
10 | 0 | 1 | −1 | 0 | 31.77 |
11 | 1 | 0 | −1 | 0 | 29.95 |
12 | 0 | 0 | 0 | 0 | 40.49 |
13 | 0 | 0 | −1 | −1 | 29.01 |
14 | 0 | 1 | 0 | 1 | 28.28 |
15 | 1 | 1 | 0 | 0 | 29.37 |
16 | 0 | 0 | 0 | 0 | 41.02 |
17 | −1 | 0 | 0 | 1 | 30.58 |
18 | −1 | 0 | −1 | 0 | 32.61 |
19 | 1 | 0 | 0 | −1 | 25.6 |
20 | 1 | 0 | 0 | 1 | 27.84 |
21 | 0 | −1 | 0 | 1 | 27.1 |
22 | 0 | 0 | 0 | 0 | 42.93 |
23 | 0 | −1 | −1 | 0 | 25.47 |
24 | 0 | 0 | 0 | 0 | 43.13 |
25 | 0 | 0 | 1 | 1 | 32.4 |
26 | −1 | 0 | 1 | 0 | 32.48 |
27 | 1 | 0 | 1 | 0 | 30.33 |
28 | 0 | 0 | 0 | 0 | 41.72 |
29 | 0 | 1 | 0 | −1 | 25.88 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value | Notability |
---|---|---|---|---|---|---|
Model | 784.10 | 14 | 56.01 | 38.81 | <0.0001 | *** |
X1 | 17.99 | 1 | 17.99 | 12.47 | 0.0033 | *** |
X2 | 31.92 | 1 | 31.92 | 22.12 | 0.0003 | *** |
X3 | 0.79 | 1 | 0.79 | 0.55 | 0.4713 | |
X4 | 1.36 | 1 | 1.36 | 0.94 | 0.3477 | |
X1X2 | 2.13 | 1 | 2.13 | 1.48 | 0.2443 | |
X1X3 | 0.065 | 1 | 0.065 | 0.045 | 0.8349 | |
X1X4 | 4.10 | 1 | 4.10 | 2.84 | 0.1140 | |
X2X3 | 6.84 | 1 | 6.84 | 4.74 | 0.0471 | * |
X2X4 | 16.29 | 1 | 16.29 | 11.29 | 0.0047 | *** |
X3X4 | 1.74 | 1 | 1.74 | 1.21 | 0.2904 | |
X1X1 | 248.17 | 1 | 248.17 | 171.99 | <0.0001 | *** |
X2X2 | 430.83 | 1 | 430.83 | 298.57 | <0.0001 | *** |
X3X3 | 124.07 | 1 | 124.07 | 85.98 | <0.0001 | *** |
X4X4 | 248.68 | 1 | 248.68 | 172.34 | <0.0001 | *** |
Residual | 20.20 | 14 | 1.44 | |||
Lack of Fit | 14.84 | 10 | 1.48 | 1.11 | 0.5020 | |
Pure Error | 5.36 | 4 | 1.34 | |||
Cor Total | 804.30 | 28 |
Distillation Process | Feed | Residue Fraction (RF) | Distillate Fraction (DF) | |
---|---|---|---|---|
First process | ||||
Weight (g) | 376.33 ± 2.62 | 338.04 ± 0.91 (RF1) | 34.82 ± 2.45 (DF1) | |
Yield (%, w/w) | 89.89 ± 0.57% | 8.22 ± 0.17% | ||
Second process | ||||
Weight (g) | 338.04 ± 0.91 (RF1) | 114.34 ± 1.04 (RF2) | 214.30 ± 1.88 (DF2) | |
Yield (%, w/w) | 31.92 ± 0.44% | 56.87 ± 0.49% | ||
Total weight (g) | 363.66 ± 1.88 | |||
Recovery rate (%, w/w) | 96.63 ± 1.03% |
Nr. | Fatty Acid | Molecular Formula | Foxtail Millet Bran Oil | RF2 |
---|---|---|---|---|
Ratio/% | Ratio/% | |||
1 | Palmitic acid ethyl ester (C16:0) | C18H36O2 | 10.01 ± 0.26 | 3.42 ± 0.39 |
2 | Hexadecenoic acid ethyl ester (C16:1) | C18H34O2 | 6.22 ± 0.03 | 6.01 ± 1.04 |
3 | Stearic acid ethyl ester (C18:0) | C20H40O2 | 9.28 ± 1.17 | 2.14 ± 0.44 |
4 | Oleic acid ethyl ester (C18:1) | C20H38O2 | 21.65 ± 1.10 | 18.92 ± 0.19 |
5 | Linoleic acid ethyl ester (C18:2) | C20H36O2 | 39.98 ± 1.83 | 60.45 ± 0.43 |
6 | Linolenic acid ethyl ester (C18:3) | C20H34O2 | 5.24 ± 0.33 | 3.46 ± 0.41 |
7 | arachidic acid ethyl ester (C20:0) | C22H44O2 | 5.03 ± 0.64 | 2.98 ± 0.86 |
8 | Behenic acid methyl ester (C22:0) | C24H48O2 | 2.51 ± 0.09 | 1.34 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhao, Y.; Hou, Z. Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation. Foods 2021, 10, 1925. https://doi.org/10.3390/foods10081925
Huang X, Zhao Y, Hou Z. Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation. Foods. 2021; 10(8):1925. https://doi.org/10.3390/foods10081925
Chicago/Turabian StyleHuang, Xiaoli, Yuehan Zhao, and Zhaohua Hou. 2021. "Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation" Foods 10, no. 8: 1925. https://doi.org/10.3390/foods10081925
APA StyleHuang, X., Zhao, Y., & Hou, Z. (2021). Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation. Foods, 10(8), 1925. https://doi.org/10.3390/foods10081925