Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Raw Materials
2.2.1. Marination and Storage of the Samples
2.2.2. The Cooking Process of the Marinated Beef Samples
2.3. Analysis of the Grilled Marinated Beef Samples
2.3.1. pH-Measurement, Marinade Absorption and Cooking Loss
2.3.2. Lipids and Fatty Acid Composition
2.3.3. Phenolic Compounds Determination Using HPLC/DAD/ESI-MS
2.3.4. Organic Acid Determination through HPLC-RID
2.3.5. Texture Profile Analysis
2.3.6. Sensory Analysis of the Cooked Marinated Samples
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Results of Analysis Obtained for Oils, Plants Herbs Used for Preparation of Marinades and Marinated Beef Samples
3.1.1. pH and Marinade Absorption Values
3.1.2. Fatty Acids and Volatile Profile Composition of Oils Used for Aging Meat
3.1.3. Polyphenols of the Herbs, Oils and Marinated Beef Samples
3.1.4. Organic Acid Marinated Samples
3.1.5. Textural Properties of Marinated Sirloins
3.2. pH, Water Loss, Phenolic Compounds, Organic Acid, Texture and Sensory Analysis of the Processed Sirloin Samples
3.2.1. pH Value and Water Loss
3.2.2. Treated Marinated Meat Phenolic Acid Samples Results
3.2.3. Organic Acids Content in Treated Meat
3.2.4. Textural Characteristics of Cooked Meats
3.2.5. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ismail, M.A.; Chong, G.H.; Ismail-Fitry, M.R. Potential Effect of Averrhoa bilimbi (belimbing buluh) Marinades on Tenderizing the Buffalo Meat Compared to Actinidia chinensis (kiwifruit), Citrus limon (lemon) and Commercial Bromelain. J. Sci. Technol. 2018, 10, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization. Overview of global meat market developments in 2020. In Meat Market Review; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/3/cb3700en/cb3700en.pdf (accessed on 3 August 2021).
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods 2021, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Christensen, M.; Ertbjerg, P.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Olleta, J.L.; Panea, B.; Albertí, P.; Hocquette, J.F.; et al. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2011, 87, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.D.A. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahrai, N.N.; Babji, A.S.; Maskat, M.Y.; Razali, A.F.; Yusop, S.M. Effect of marbling on physical and sensory characteristics of ribeye steaks from four different catle breeds. Anim. Biosci. 2021, 34, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Yusop, S.M.; O’Sullivan, M.G.; Kerry, J.P. Marinating and enhancement of the nutritional content of processed meat products. In Processed Meats: Improving Safety, Nutrition and Quality, 1st ed.; Kerry, J.P., Kerry, J.F., Eds.; Woodhead Publishing Limited: Philadelphia, PA, USA, 2011; pp. 422–449. [Google Scholar]
- Sengun, I.Y.; Turp, G.Y.; Cicek, S.N.; Avci, T.; Ozturk, B.; Kilic, G. Assessment of the effect of marination with organic fruit vinegars on safety and quality of beef. Int. J. Food Microbiol. 2020, 1, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Roudbari, Z.; Eijssen, L.M.T.; Kutmon, M.; Sadkowski, T. Identification of Biological Pathways Contributing to Marbling in Skeletal Muscle to Improve Beef Cattle Breeding. Front. Genet. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siroli, L.; Baldi, G.; Soglia, F.; Bukvicki, D.; Patrignani, F.; Petracci, M.; Lanciotti, R. Use of essential oils to increase the safety and the quality of marinated pork loin. Foods 2020, 9, 1–21. [Google Scholar] [CrossRef]
- Shaltout, F.A.; Thabet, M.G.; Koura, H.A. Impact of Some Essential Oils on the Quality Aspect and Shelf Life of Meat. J. Nutr. Food Sci. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Paramasivan, K.; Moses, J.A. Vaccum packaging of meat. Food Mark. Technol. 2015, 42, 1–3. [Google Scholar]
- Gibis, M. Effect of oil marinades with garlic, onion, and lemon juice on the formation of heterocyclic aromatic amines in fried beef patties. J. Agric. Food Chem. 2017, 55, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Kruk, Z.A.; Kim, H.J.; Kim, Y.J.; Rutley, D.L.; Jung, S.; Lee, S.K.; Jo, C. Combined effects of high pressure processing and addition of soy sauce and olive oil on safety and quality characteristics of chicken breast meat. Asian Australas. J. Anim. Sci. 2014, 27, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karacabey, E.; Özkan, G.; Dalgıç, L.; Sermet, S.O. Rosemary Aromatization of Extra Virgin Olive Oil and Process Optimization Including Antioxidant Potential and Yield. Turkish J. Agric. Food Sci. Technol. 2016, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.B.K.S.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Vergara, H.; Cózar, A.; Rubio, N. Lamb meat burgers shelf life: Effect of the addition of different forms of rosemary (Rosmarinus Officinalis L.). CYTA J. Food 2021, 19, 606–613. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Lee, E.J.; Mendonca, A.; Ahn, D.U. Effect of oregano essential oil (Origanum vulgare subsp. hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidants 2018, 5, 1–5. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Sallam, K.I.; Abd-Elghany, S.M.; Imre, K.; Morar, A.; Herman, V.; Abdallah Hussein, M.; Mahros, M.A. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents. Food Microbiol. 2021, 99, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Ameri, F.; Gadgil, P. Effects of marinades on the formation of heterocyclic amines in grilled beef steaks. Toxicol. Chem. Food Saf. 2008, 73, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef]
- Istrati, D.; Ciuciu, A.S.; Vizireanu, C.; Ionescu, A.; Carballo, J. Impact of spices and wine-based marinades on tenderness, fragmentation of myofibrillar proteins and color stability in bovine biceps femoris muscle. J. Texture Stud. 2015, 46, 455–466. [Google Scholar] [CrossRef]
- Mielnik, M.B.; Sem, S.; Egelandsdal, B.; Skrede, G. By-products from herbs essential oil production as ingredient in marinade for turkey thighs. LWT–Food Sci. Technol. 2008, 41, 93–100. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E.H. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem. 2020, 310, 1–20. [Google Scholar] [CrossRef]
- Szabo, K.F.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 1–8. [Google Scholar] [CrossRef]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focșan, M.; Rugină, D.O.; Pintea, A. Sea buckthron oil as a valuable source of bioaccesible xanthophylls. Nutrients 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Igual, M.; Chiș, M.S.; Socaci, S.A.; Vodnar, D.C.; Ranga, F.; Martínez-Monzó, J.; García-Segovia, P. Effect of Medicago sativa Addition on Physicochemical, Nutritional and Functional Characteristics of Corn Extrudates. Foods 2021, 10, 928. [Google Scholar] [CrossRef]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Vodnar, D.C.; Teleky, B.E.; Pop, C.R.; Stan, L.; Borsai, O.; Kadar, C.B.; Urcan, A.D.; et al. Quinoa sourdough fermented with lactobacillus plantarum ATCC 8014 designed for gluten-free muffins—A powerful tool to enhance bioactive compounds. Appl. Sci. 2020, 10, 7140. [Google Scholar] [CrossRef]
- Su, S.I.T.; Yoshida, C.M.P.; Contreras-Castillo, C.J.; Venturini, A.C. Okara, a soymilk industry by-product, as a non-meat protein source in reduced fat beef burgers. Cienc. Techol. Aliment. 2013, 33, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Ayyash, M.; Liu, S.Q.; Mheiri, A.; Aldhaheri, M.; Raeisi, B.; Al-Nabulsi, A.; Osaili, T.; Olaimat, A. In vitro investigation of health-promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages. LWT 2019, 99, 346–354. [Google Scholar] [CrossRef]
- Yeh, Y.; Omaye, S.T.; Ribeiro, F.A.; Calkins, C.R.; de Mello, A.S. Evaluation of palatability and muscle composition of novel value-added beef cuts. Meat Sci. 2018, 35, 79–83. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/679 of the European Parliament and of the Council on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 (accessed on 9 June 2021).
- Meat & Livestock Australia. Meat Standards Australia Beef Information Kit. 2011. Available online: https://www.mla.com.au (accessed on 10 January 2021).
- Ünal, K.; Cabi, A.; Sarıçoban, C.; Alagöz, E. Determination of the Effect of Some Acidic Solutions on the Tenderness and Quality Properties of Chicken Breast Meat. Selcuk J. Agric. Food Sci. 2020, 34, 19–23. [Google Scholar]
- Gómez, I.; Ibañez, F.C.; Beriain, M.J. Physicochemical and sensory properties of sous vide meat and meat analog products marinated and cooked at different temperature-time combinations. Int. J. Food Prop. 2019, 22, 1693–1708. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Geoffrey, G.R.; Litwinwnko, W.; Maragoni, A.G. Fat Crystal Networks. In Food Materials Science: Principles and Practice, 1st ed.; Aguilera, J.M., Lillford, P.J., Barbosa-Cánovas, Eds.; Springer: New York, NY, USA, 2008; pp. 121–159. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- Melero, V.; de la Torre, N.G.; Assaf-Balut, C.; Jiménez, I.; Del Valle, L.; Durán, A.; Bordiu, E.; Valerio, J.J.; Herraiz, M.A.; Izquierdo, N.; et al. Effect of a mediterranean diet-based nutritional intervention on the risk of developing gestational diabetes mellitus and other maternal-fetal adverse events in hispanic women residents in Spain. Nutrients 2020, 12, 3505. [Google Scholar] [CrossRef]
- Murkovic, M. Phenolic compounds. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 4507–4514. [Google Scholar]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Chemistry, Safety, and Challenges of the Use of Organic Acids and Their Derivative Salts in Meat Preservation. J. Food Qual. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Nergiz, C.; Ergönül, P.G. Organic acid content and composition of the olive fruits during ripening and its relationship with oil and sugar. Sci. Hortic. 2009, 122, 216–220. [Google Scholar] [CrossRef]
- Radu, O.; Fuior, A.; Capcanari, T. The Study of Biological and Nutritional Potential of Walnut Oil; IRTUM—Institutional Repository of the Technical University of Moldova: Moldova, Romania, 2013; pp. 472–473. [Google Scholar]
- Zhou, C.L.; Mi, L.; Hu, X.Y.; Zhu, B.H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef]
- Klinhom, P.; Klinhom, J.; Senapa, J.; Methawiwat, S. Improving the quality of citric acid and calcium chloride marinated culled cow meat. Int. Food Res. J. 2015, 22, 1410–1416. [Google Scholar]
- Ke, S.; Huang, Y.; Decker, E.A.; Hultin, H.O. Impact of citric acid on the tenderness, microstructure and oxidative stability of beef muscle. Meat Sci. 2009, 82, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Theron, M.M.; Lues, J.F.R. Organic acids and meat preservation: A review. Food Rev. Int. 2007, 23, 141–158. [Google Scholar] [CrossRef]
- Lytou, A.E.; Panagou, E.Z.; Nychas, G.J.E. Effect of different marinating conditions on the evolution of spoilage microbiota and metabolomic profile of chicken breast fillets. Food Microbiol. 2017, 66, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2019, C9, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiş, M.S.; Păucean, A.; Man, S.; Mureșan, V.; Socaci, S.A.; Pop, A.; Stan, L.; Rusu, B.; Muste, S. Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Botinestean, C.; Hossain, M.; Mullen, A.M.; Auty, M.A.E.; Kerry, J.P.; Hamill, R.M. Optimization of textural and technological parameters using response surface methodology for the development of beef products for older consumers. J. Texture Stud. 2020, 51, 263–275. [Google Scholar] [CrossRef]
- Chang, H.J.; Wang, Q.; Zhou, G.H.; Xu, X.L.; Li, C.B. Influence of weak organic acids and sodium chloride marination on characteristics of connective tissue collagen and textural properties of beef semitendinosus muscle. J. Texture Stud. 2010, 41, 279–301. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.B.; Dragoev, S.G.; Balev, D.K.; Assenova, B.K.; Amirhanov, K.J. Quality, microstructure, and technological properties of sheep meat marinated in three different ways. J. Food Qual. 2016, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.I.; Fraqueza, M.J.; Pissarra, H.; Saraiva, J.A.; Vicente, A.A.; Moldão-Martins, M. Optimization of the Effect of Pineapple By-Products Enhanced in Bromelain by Hydrostatic Pressure on the Texture and Overall Quality of Silverside Beef Cut. Foods 2020, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Li, C.; Xu, X.; Zhou, G. Effects of phenolic acid marinades on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled chicken wings. J. Food Prot. 2019, 82, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Clifford, M.N. Dietary hydroxybenzoic acid derivatives—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1024–1032. [Google Scholar] [CrossRef]
- Da Costa, R.J.; Voloski, F.L.S.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J. Food Qual. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Berge, P.; Ertbjerg, P.; Larsen, L.M.; Astruc, T.; Vignon, X.; Møller, A.J. Tenderization of beef by lactic acid injected at different times post mortem. Meat Sci. 2001, 57, 347–357. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Hopkins, D.L. The use of conventional laboratory-based methods to predict consumer acceptance of beef and sheep meat: A review. Meat Sci. 2021, 181, 108586. [Google Scholar] [CrossRef]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. semitendinosus steaks targeted at elderly consumers. LWT Food Sci. Technol. 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Kadıoğlu, P.; Karakaya, M.; Unal, K.; Babaoğlu, A.S. Technological and textural properties of spent chicken breast, drumstick and thigh meats as affected by marinating with pineapple fruit juice. Br. Poult. Sci. 2019, 60, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwin, J.H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Listrat, A.; Gagaoua, M.; Andueza, D.; Gruffat, d.; Normand, J.; Mairesse, G.; Picarrd, B.; Hocquette, J.F. What are the drivers of beef sensory quality using metadata of intramuscular connective tissue, fatty acids and muscle fiber characteristics? Livest. Sci. 2020, 240, 104209. [Google Scholar] [CrossRef]
- Shahidi, F.; Oh, W.Y. Lipid-derived flavor and off-flavor of traditional and functional foods: An overview. J. Food Bioact. 2020, 10, 20–31. [Google Scholar] [CrossRef]
Spices, Herbs and Oils | Duration of Marination | ||
---|---|---|---|
24 h | 72 h | 120 h | |
Codes for Marinades | |||
Salt * and Black pepper ** | M124h | M172h | M1120h |
Rosemary *** and Olive oil **** | M224h | M272h | M2120h |
Oregano *** and Pumpkin oil **** | M324h | M372h | M3120h |
Thyme *** and Sunflower oil **** | M424h | M472h | M4120h |
Basil *** and Walnut oil **** | M524h | M572h | M5120h |
Ginger *** and Sesame oil **** | M624h | M672h | M6120h |
Codes for marinated beef samples | |||
Salt * and Black pepper ** | M1M24h | M1M72h | M1M120h |
Rosemary *** and Olive oil **** | M2M24h | M2M72h | M2M120h |
Oregano *** and Pumpkin oil **** | M3M24h | M3M72h | M3M120h |
Thyme *** and Sunflower oil **** | M4M24h | M4M72h | M4M120h |
Basil *** and Walnut oil **** | M5M24h | M5M72h | M5M120h |
Ginger *** and Sesame oil **** | M6M24h | M6M72h | M6M120h |
Codes for marinated grilled beef samples | |||
Salt * and Black pepper ** | M1T24h | M1T72h | M1T120h |
Rosemary *** and Olive oil **** | M2T24h | M2T72h | M2T120h |
Oregano *** and Pumpkin oil **** | M3T24h | M3T72h | M3T120h |
Thyme *** and Sunflower oil **** | M4T24h | M4T72h | M4T120h |
Basil *** and Walnut oil **** | M5T24h | M5T72h | M5T120h |
Ginger *** and Sesame oil **** | M6T24h | M6T72h | M6T120h |
Marinated Meat Samples | pH Value | Marinated Absorption (%) | ||||
---|---|---|---|---|---|---|
Time (h) | 24 h | 72 h | 120 h | 24 h | 72 h | 120 h |
M1 (control) | 5.8 ± 0.02 ab,ABC | 5.6 ± 0.01 a,BC | 5.5 ± 0.02 a,BC | n.d. | n.d. | n.d. |
M2 | 5.5 ± 0.01 b,A | 5.2 ± 0.03 a,bA | 4.9 ± 0.03 a,A | 1.35 ± 0.01 a,A | 2.89 ± 0.02 b,A | 3.85 ± 0.03 c,A |
M3 | 5.9 ± 0.02 b,BC | 5.4 ± 0.01 a,AB | 5.0 ± 0.01 a,A | 1.25 ± 0.05 a,A | 2.91 ± 0.03 b,A | 3.76 ± 0.01 c,A |
M4 | 6.0 ± 0.01 b,C | 5.8 ± 0.02 a,CD | 5.4 ± 0.02 a,BC | 1.31 ± 0.04 a,A | 2.97 ± 0.01 b,A | 3.88 ± 0.02 c,A |
M5 | 6.1 ± 0.02 b,C | 5.9 ± 0.03 b,CD | 5.2 ± 0.03 a,AB | 1.27 ± 0.03 a,A | 2.93 ± 0.02 b,A | 3.84 ± 0.02 c,A |
M6 | 5.9 ± 0.03 b,BC | 5.3 ± 0.03 a,A | 5.0 ± 02 a,A | 1.29 ± 0.02 a,A | 2.90 ± 0.04 b,A | 3.70 ± 0.03 c,A |
Shorthand Nomenclature | Fatty Acid Name | Type | Olive Oil (%) | Pumpkin Oil (%) | Sunflower Oil (%) | Walnut Oil (%) | Sesame Oil (%) |
---|---|---|---|---|---|---|---|
16:0 | Palmitic | SFA | 11.92 ± 0.33 d | 12.08 ± 0.45 e | 5.95 ± 0.22 a | 6.66 ± 0.33 ab | 10.00 ± 0.12 c |
16:1 (n-7) | Palmitoleic | MUFA | 0.93 ± 0.11 | n.d. | n.d. | n.d. | n.d. |
18:0 | Stearic acid | SFA | 2.03 ± 0.21 ab | 6.02 ± 0.39 c | 3.08 ± 0.29 b | 0.99 ± 0.03 a | 5.48 ± 0.18 c |
18:1 (n-9) | Oleic acid | MUFA | 75.61 ± 0.15 e | 33.22 ± 0.34 c | 24.10 ± 0.22 b | 17.02 ± 0.18 a | 35.31 ± 0.79 d |
18:1 (n-7) | Vaccenic acid | MUFA | 1.93 ± 0.22 d | 2.50 ± 0.33 e | 0.40 ± 0.26 a | 0.85 ± 0.12 ab | 1.79 ± 0.51 c |
18:2 (n-6) | Linoleic acid | PUFA | 6.96 ± 0.78 a | 46.09 ± 1.23 b | 66.40 ± 1.02 de | 65.58 ± 0.77 d | 46.94 ± 1.16 b,c |
18:3 (n-3) | Linolenic | PUFA | 0.37 ± 0.03 | n.d. | n.d. | 8.90 ± 0.59 | 0.48 ± 0.02 |
20:0 | Arachidic acid | SFA | 0.24 ± 0.02 | n.d. | n.d. | n.d. | n.d. |
22:00 | Behenic acid | SFA | n.d. | n.d. | 0.07 ± 0.01 | n.d. | n.d. |
Total SFA | 14.20 ± 0.56 c | 18.09 ± 0.84 d | 9.10 ± 0.51 b | 7.65 ± 0.36 a | 15.48 ± 0.30 c | ||
Total MUFA | 78.61 ± 0.48 e | 35.82 ± 0.67 c | 24.50 ± 0.48 b | 17.87 ± 0.30 a | 37.10 ± 1.30 d | ||
Total PUFA | 7.33 ± 0.81 a | 46.09 ± 1.23 b | 66.40 ± 1.02 d | 74.78 ± 1.36 e | 47.40 ± 1.18 c | ||
PUFAs/SFAs | 0.52 a | 2.55 b | 7.30 c | 9.74 d | 3.06 b |
Identified Compound (mg/g) | Rosemary | Thyme | Oregano | Basil | Ginger |
---|---|---|---|---|---|
Flavones | |||||
Hydroxy-Luteolin-glucoside | 0.14 ± 0.02 | n.d. | n.d. | n.d. | n.d. |
Cirsimaritin | 0.18 ± 0.12 | n.d. | n.d. | n.d. | n.d. |
Nepetrin | 0.64 ± 0.22 | n.d. | n.d. | n.d. | n.d. |
Plantaginin | 0.35 ± 0.11 | n.d. | n.d. | n.d. | n.d. |
Luteolin-acetyl-glucuronide | 0.33 ± 0.13 b | 0.38 ±0.34 c | 0.26 ± 0.11 a | n.d. | n.d. |
Cirsimarin | 0.43 ± 0.11 c | n.d. | 0.13 ± 0.22 b | 0.02 ± 0.32 a | n.d. |
Luteolin–malonyl–glucoside | n.d. | n.d. | 0.52 ± 0.14 | n.d. | n.d. |
Homoplantaginin | n.d. | 0.37 ± 0.13 b | n.d. | 0.05 ± 0.11 a | n.d. |
Apigenin–glucoside | n.d. | 0.28 ± 0.33 b | 0.09 ± 0.22 a | n.d. | n.d. |
Luteolin–glucoside | n.d. | 0.27 ± 0.21 b | 0.14 ± 0.22 a | n.d. | n.d. |
Hydroxycinnamic acids | |||||
Luteolin-glucuronide Rosemaryic acid | 3.12 ± 0.11 c | 1.89 ± 0.22 b | 1.83 ± 0.27 a | n.d. | n.d. |
Rosemaryic acid | n.d. | 0.41 ± 0.45 a | 0.55 ± 0.56 c | 0.52 ± 0.67 b | n.d. |
Luteolin-glucuronide Rosemaryic acid | n.d. | n.d. | n.d. | n.d. | n.d. |
Caftaric acid | n.d. | n.d. | n.d. | 0.32 ± 0.55 | n.d. |
Chicoric acid | n.d. | n.d. | n.d. | 2318.95 ± 0.21 | n.d. |
Phenolic terpene | |||||
Carnosol | 0.15 ± 0.33 a | 0.62 ±0.33 d | 0.24 ± 0.55 c | 0.19 ± 0.23 b | n.d. |
Carnosic acid | 0.62 ± 0.22 | n.d. | n.d. | n.d. | n.d. |
Hydroxyphenylpropene | |||||
Paradol | n.d. | n.d. | n.d. | n.d. | 0.13 ± 0.44 |
Gingerol | n.d. | n.d. | n.d. | n.d. | 0.81 ± 0.78 |
Shogaol | n.d. | n.d. | n.d. | n.d. | 0.29 ± 0.33 |
Hydroxybenzaldehide | |||||
Carnosol | 0.15 ±0.39 a | 0.62 ± 0.44 d | 0.24 ± 0.78 c | 0.19 ± 0.65 b | n.d. |
Carnosic acid | 0.62 ± 0.87 | n.d. | n.d. | n.d. | n.d. |
Total | 6.01 ± 2.63 e | 4.25 ± 2.45 d | 3.79 ± 3.07 c | 3.44 ± 2.74 b | 1.25 ±1.55 a |
Identified Compound (μg/g) | Olive Oil | Sunflower Oil | Pumpkin Oil | Walnut Oil | Sesame Oil |
---|---|---|---|---|---|
Flavones | |||||
Luteolin | 1.44 ± 0.45 | n.d. | n.d. | n.d. | n.d. |
Gallocatechin | n.d. | n.d. | n.d. | 1.53 ± 0.34 | n.d. |
Hydroxycinnamic acids | |||||
Chlorogenic acid | n.d. | 1.49 ± 0.48 | n.d. | n.d. | n.d. |
Dicaffeoylquinic acid 1 | n.d. | 0.98 ± 0.21 a | 3.63 ± 0.29 b | n.d. | n.d. |
Dicaffeoylquinic acid 2 | n.d. | 0.79 ± 0.38 | n.d. | n.d. | n.d. |
Caftaric acid | n.d. | 13.51 ± 0.76 | n.d. | n.d. | n.d. |
Hydroxybenzoic acids | |||||
Vanillic acid | 1.54 ± 0.33 | n.d. | n.d. | n.d. | n.d. |
Sinapic acid | n.d. | n.d. | n.d. | n.d. | 1.65 ± 0.53 |
Ellagic acid | n.d. | n.d. | n.d. | 1.99 ± 0.29 | n.d. |
Syringic acid | n.d. | n.d. | 1.22 ±0.27 a | n.d. | 4.38 ± 0.61 b |
Tyrosols | |||||
Hydroxytyrosol | 30.22 ± 0.65 | n.d. | n.d. | n.d. | n.d. |
Tyrosol | 14.11 ± 0.35 | n.d. | n.d. | n.d. | n.d. |
Oleoropein | 43.79 ± 0.53 | n.d. | n.d. | n.d. | n.d. |
Oleoropein derivative | 15.88 ± 0.30 | n.d. | n.d. | n.d. | n.d. |
Lignans | |||||
Pinoresinol | 2.4 ± 0.54 b | 0.11 ± 0.03 a | n.d. | n.d. | n.d. |
Acetoxypinoresinol | 24.12 ± 0.63 c | n.d. | n.d. | 4.6 ± 0.45 b | 0.25 ± 0.03 a |
Matairesinol | 20.66 ± 0.27 | n.d. | n.d. | n.d. | n.d. |
Isolariciresinol | 30.22 ± 0.56 b | n.d. | 6.90 ± 0.53 a | n.d. | n.d. |
Sesamin | n.d. | n.d. | n.d. | n.d. | 10.28 ± 0.72 |
Sesamolin | n.d. | n.d. | n.d. | n.d. | 7.58 ± 0.23 |
Hydroxybenzaldehide | |||||
Vanilin | n.d. | n.d. | 2.63 ± 0.22 | n.d. | n.d. |
Naphtoquinone | |||||
Juglona | n.d. | n.d. | n.d. | 1.23 ± 0.11 | n.d. |
Total | 154.16 ± 4.61 e | 16.88 ± 1.86 c | 14.38 ± 1.31 b | 9.35 ± 1.19 a | 24.15 ± 2.12 d |
Samples | Oxalic (μg/g) | Citric (μg/g) | Tartaric (μg/g) | Malic (μg/g) | Lactic (μg/g) |
---|---|---|---|---|---|
M124h | 21860.49 ± 1.23 c,R | 3592.45 ± 0.33 c,O | 1847.19 ± 0.78 c,P | 859.00 ± 0.47 b,R | 6574.54 ± 0.89 c,Q |
M172h | 13422.09 ± 0.89 b,0 | 2876.32 ± 0.88 b,H | 1503.22 ± 0.75 b,N | 829.02 ± 0.39 a,P | 5780.93 ± 0.99 b,O |
M1120h | 4367.35 ± 1.03 a,B | 2228.82 ± 0.63 a,D | 1100.03 ± 0.39 a,E | 850.62 ± 0.73 b,Q | 4223.17 ± 0.21 a,C |
M224h | 6456.40 ± 0.62 b,H | 3268.91 ± 0.81 a,L | 1416.44 ± 0.39 b,M | 813.72 ± 0.78 b,O | 4517.27 ± 1.30 a,F |
M272h | 6023.23 ± 0.39 a,F | 3512.78 ± 0.78 b,M | 1367.90 ± 0.38 a,K | 801.78 ± 0.59 b,N | 5131.78 ± 1.65 b,K |
M2120h | 5961.24 ± 1.29 a,E | 3632.05 ± 0.89 c,P | 1343.37 ± 0.55 a,J | 783.70 ± 0.44 a,M | 5653.69 ± 0.56 c,M |
M324h | 12621.95 ± 0.78 c,N | 3883.12 ± 1.49 c,Q | 1382.86 ± 0.82 c,L | 608.02 ± 0.78 a,G | 6235.59 ± 0.34 c,P |
M372h | 7234.09 ± 0.55 b,J | 3562.22 ± 1.05 b,N | 1256.09 ± 1.20 b,I | 657.13 ± 0.88 b,I | 5731.09 ± 49 b,N |
M3120h | 3576.84 ± 0.89 a,A | 2949.46 ± 1.30 a,J | 1107.93 ± 1.42 a,F | 755.77 ± 0.31 c,L | 5245.97 ± 0.31 a,L |
M424h | 4583.12 ± 0.93 a,C | 2436.40 ± 0.93 c,E | 681.80 ± 1.03 b,C | 355.87 ± 0.50 a,A | 4021.63 ± 0.55 a,A |
M472h | 6731.87 ± 0.88 b,I | 2213.98 ± 0.31 b,C | 671.09 ± 0.88 b,B | 421.78 ± 0.69 b,B | 4128.09 ± 0.62 b,B |
M4120h | 8813.78 ± 0.81 c,L | 2119.76 ± 0.59 a,B | 653.87 ± 0.49 a,A | 474.44 ± 0.74 c,C | 4297.07 ± 0.88 c,D |
M524h | 7701.96 ± 0.33 c,K | 2032.41 ± 0.44 a,A | 1098.23 ± 0.24 a,E | 491.27 ± 0.93 a,D | 4461.66 ± 0.67 a,E |
M572h | 6325.09 ± 0.77 b,G | 2540.87 ± 0.26 b,G | 1051.88 ± 0.31 b,D | 551.09 ± 0.46 b,F | 4786.09 ± 0.29 b,G |
M6120h | 5788.88 ± 0.39 a,D | 2502.78 ± 0.59 b,F | 1130.40 ± 0.82 c,G | 694.95 ± 0.88 c,J | 4854.43 ± 0.44 c,H |
M624h | 19812.71 ± 0.50 c,Q | 4096.79 ± 0.15 c,R | 1543.05 ± 0.30 c,O | 708.92 ± 0.99 c,K | 6574.61 ± 0.59 c,Q |
M672h | 16234.67 ± 0.31 b,P | 3245.10 ± 0.99 b,K | 1342.09 ± 0.22 b,J | 623.09 ± 1.50 b,H | 5032.90 ± 0.22 b,J |
M6120h | 9734.41 ± 0.91 a,M | 2885.98 ± 0.59 a,I | 1228.76 ± 0.11 a,H | 539.67 ± 1.43 a,E | 4874.64 ± 0.49 a,I |
Samples | Hardness Cycle 1 [N] | Resilience [mJ] | Hardness Cycle 2 [N] | Cohesiveness [n.a.] | Gumminess [N] | Chewiness [N] |
---|---|---|---|---|---|---|
M1M24h | 1019 ± 0.22 c,M | 0.17 ± 0.03 a,BC | 883 ± 1.23 c,L | 0.36 ± 0.02 a,BC | 469 ± 1.34 c,K | 66.5 ± 1.34 c,GH |
M1M72h | 997 ± 0.45 b,L | 0.16 ± 0.04 a,B | 495 ± 0.78 b,F | 0.39 ± 0.03 ab,BCD | 425 ± 1.56 b,I | 63 ± 0.67 b,G |
M1M120h | 985 ± 0.89 a,K | 0.16 ± 0.03 a,B | 440 ± 1.45 a,CE | 0.42 ± 0.11 b,BCDE | 399 ± 1.03 a,H | 57.0 ± 0.89 a,EF |
M2M24h | 1100 ± 1.24 c,N | 0.21 ± 0.02 a,BCDE | 612 ± 1.89 c,J | 0.41 ± 0.22 a,BCDE | 450 ± 0.89 c,J | 61.7 ± 1.02 c,FG |
M2M72h | 697 ± 0.76 b,F | 0.22 ± 0.02 a,CDE | 545 ± 1.03 b,G | 0.55 ± 0.02 b,EFG | 320 ± 0.90 b,F | 53.02 ± 0.76 b,E |
M2M120h | 389 ± 1.67 a,A | 0.24 ± 0.12 a,EF | 435 ± 0.89 a,BCD | 0.69 ± 0.04 c,G | 267 ± 1.45 a,C | 39.5 ± 0.34 a,C |
M3M24h | 1301 ± 0.88 c,P | 0.10 ± 0.03 a,A | 1290 ± 0.77 c,O | 0.17 ± 0.02 a,A | 400 ± 1.52 a,H | 46.2 ± 0.59 a,D |
M3M72h | 734 ± 0.45 b,G | 0.19 ± 0.02 a,BCDE | 765 ± 0.65 b,K | 0.20 ± 0.03 ab,A | 575 ± 1.09 b,L | 73.7 ± 0.52 c,I |
M3M120h | 656 ± 0.27 a,E | 0.23 ± 0.02 b,DE | 565 ± 0.45 a,I | 0.28 ± 0.02 b,AB | 580 ± 0.98 c,M | 71.10 ± 1.45 b,HI |
M4M24h | 1109 ± 0.39 c,O | 0.18 ± 0.04 a,BCD | 1023 ± 0.78 c,N | 0.28 ± 0.03 a,AB | 772 ± 0.45 c,O | 124.90 ± 0.89 c,J |
M4M72h | 879 ± 1.04 b,I | 0.23 ± 0.04 ab,DE | 767 ± 0.44 b,K | 0.35 ± 0.04 b,BC | 603 ± 0.63 b,N | 57.90 ± 0.95 b,EF |
M4M120h | 469 ± 1.87 a,B | 0.29 ± 0.02 b,F | 340 ± 0.67 a,A | 0.47 ± 0.02 c,CDEF | 325 ± 1.45 a,G | 47.50 ± 0.87 a,D |
M5M24h | 989 ± 1.02 c,K | 0.17 ± 0.02 a,BC | 435 ± 0.89 a,BC | 0.35 ± 0.03 a,BC | 253 ± 1.39 b,B | 29.70 ± 0.40 c,B |
M5M72h | 514 ± 0.99 b,D | 0.18 ± 0.03 a,BCD | 421 ± 0.90 b,F | 0.45 ± 0.12 b,CDEF | 283 ± 1.55 c,E | 24.50 ± 1.45 b,A |
M5M120h | 509 ± 0.67 a,C | 0.18 ± 0.02 a,BCD | 410 ± 0.34 c,P | 0.58 ± 0.05 c,FG | 183 ± 1.43 a,A | 20.50 ± 0.50 a,A |
M6M24h | 1487 ± 0.45 c,Q | 0.17 ± 0.04 b,BC | 987 ± 0.55 c,M | 0.29 ± 0.02 a,AB | 429 ± 1.30 c,I | 56.90 ± 1.43 c,EF |
M6M72h | 964 ± 0.44 b,J | 0.10 ± 0.02 a,A | 551 ± 0.90 b,H | 0.45 ± 0.03 b,CDEF | 273 ± 1.65 b,D | 45.91 ± 1.08 b,D |
M6M120h | 792 ± 0.67 a,H | 0.11 ± 0.05 a,A | 432 ± 0.89 a,B | 0.52 ± 0.02 c,DEF | 255 ± 1.02 a,B | 39.72 ± 1.34 a,C |
pH | Water Loss (%) | |||||
---|---|---|---|---|---|---|
Samples | 24 h | 72 h | 120 h | 24 h | 72 h | 120 h |
M1T (control) | 6.03 ± 0.02 a,B | 5.94 ± 0.01 ab,B | 5.87 ± 0.02 aBC | 23.53 ± 0.02 abB | 24.32 ± 0.01 bD | 23.33 ± 0.04 aC |
M2T | 5.72 ± 0.02 a,bA | 5.54 ± 0.01 a,A | 5.37 ± 0.02 aA | 22.07 ± 0.03 cA | 19.02 ± 0.04 abA | 18.10 ± 0.05 aA |
M3T | 6.02 ± 0.03 a,B | 5.91 ± 0.02 ab,B | 6.0 ± 0.03 aC | 23.33 ± 0.04 cB | 21.59 ± 0.04 abBC | 20.29 ± 0.03 aB |
M4T | 6.23 ± 0.02 a,CD | 6.03 ± 0.04 a,B | 5.90 ± 0.05 abBC | 24.12 ± 0.02 cB | 20.38 ± 0.03 abAB | 19.40 ± 0.04 aAB |
M5T | 6.30 ± 0.02 a,bD | 5.89 ± 0.02 a,B | 5.72 ± 0.03 aB | 23.65 ± 0.05 cB | 21.83 ± 0.01 abBC | 20.10 ± 0.05 aB |
M6T | 6.11 ± 0.03 ab,BC | 6.01 ± 0.05 ab,B | 5.42 ± 0.04 aA | 26.49 ± 0.03 cC | 22.93 ± 0.02 abCD | 21.05 ± 0.05 aB |
Samples | Oxalic (μg/g) | Citric (μg/g) | Tartaric (μg/g) | Malic (μg/g) | Lactic (μg/g) |
---|---|---|---|---|---|
M1T24h | 10121.68 ± 1.45 bN | 668.60 ± 0.55 bH | 1329.18 ± 0.77 aK | 731.08 ± 0.99 bP | 2760.52 ± 1.09 cO |
M1T72h | 11023.89 ± 1.09 cR | 643.22 ± 0.98 aG | 1345.66 ± 0.89 bL | 723.09 ± 0.78 aO | 2622.09 ± 0.80 bA |
M1T120h | 5518.32 ± 1.66 aH | 690.57 ± 0.88 cI | 1676.28 ± 0.61 cN | 740.82 ± 0.71 cQ | 2255.24 ± 2.11 aI |
M2T24h | 10715.90 ± 0.98 cP | 2364.58 ± 0.67 cE | 1144.40 ± 0.89 bD | 537.46 ± 0.89 bH | 5976.65 ± 1.33 aQ |
M2T72h | 7578.92 ± 0.77 bL | 2121.33 ± 0.50 aB | 1133.22 ± 0.90 aC | 520.98 ± 1.06 aF | 6052.99 ± 0.89 bL |
M2T120h | 5401.18 ± 0.90 aG | 2210.75 ± 0.77 bC | 1296.50 ± 0.81 cI | 621.34 ± 1.09 cJ | 6189.03 ± 0.55 cC |
M3T24h | 6346.07 ± 0.67 cK | 2760.58 ± 0.49 bK | 1219.00 ± 0.31 cH | 726.98 ± 1.89 cOP | 4982.52 ± 0.41 cG |
M3T72h | 5341.11 ± 1.45 bQ | 2766.22 ± 0.67 cL | 1132.44 ± 0.38 aC | 702.34 ± 0.90 bN | 4789.02 ± 1.09 aE |
M3T120h | 4114.87 ± 1.76 aE | 2716.45 ± 0.39 aJ | 1152.87 ± 1.09 bE | 683.91 ± 0.78 aM | 4859.87 ± 0.88 bF |
M4T24h | 10305.11 ± 0.55 bO | 3145.78 ± 0.88 cQ | 1161.60 ± 0.56 aF | 500.49 ± 0.12 aE | 5944.52 ± 0.67 cP |
M4T72h | 5231.11 ± 0.45 aF | 3012.33 ± 0.56 bO | 1322.09 ± 0.88 bJ | 577.34 ± 0.89 cI | 5633.09 ± 0.45 bM |
M4T120h | 2170.94 ± 0.43 cC | 2980.33 ± 1.09 aM | 1572.07 ± 0.49 cM | 540.51 ± 0.55 bK | 5340.01 ± 0.33 aK |
M5T24h | 5802.18 ± 0.33 cI | 1966.85 ± 1.98 aA | 952.42 ± 0.22 aA | 400.96 ± 0.39 cC | 4256.16 ± 0.55 aB |
M5T72h | 5550.13 ± 0.85 bB | 2544.11 ± 0.99 bF | 1123.48 ± 0.23 bB | 350.77 ± 0.67 bB | 4731.87 ± 0.61 bD |
M5T120h | 3782.82 ± 0.62 aD | 3084.21 ± 0.78 cP | 1133.10 ± 0.2 1bcC | 293.11 ± 0.77 aA | 5195.30 ± 0.43 cH |
M6T24h | 844.12 ± 1.03 cM | 2253.07 ± 0.67 aD | 1133.16 ± 0.33 bC | 482.04 ± 0.89 aD | 5258.39 ± 0.18 aI |
M6T72h | 435.77 ± 1.33 aA | 2766.19 ± 0.71 bL | 1126.89 ± 0.88 aB | 533.22 ± 1.34 bG | 5309.27 ± 0.73 bJ |
M6T120h | 5882.30 ± 1.02 bJ | 2996.77 ± 0.66 cN | 1191.59 ± 0.23 cG | 574.36 ± 1.09 cL | 5691.07 ± 0.64 cN |
Samples | Hardness Cycle 1 [N] | Resilience [mJ] | Hardness Cycle 2 [N] | Cohesiveness [n.a.] | Gumminess [N] | Chewiness [N] |
---|---|---|---|---|---|---|
M1T24h | 1588 ± 1.66 c,Q | 0.26 ± 0.01 a,BCDEF | 1211 ± 1.01 c,N | 0.54 ± 0.02 ab,ABC | 953 ± 1.09 c,P | 125.1 ± 1.04 c,J |
M1T72h | 1201 ± 1.23 b,L | 0.22 ± 0.02 a,ABC | 1001 ± 0.89 b,M | 0.55 ± 0.01 b,ABC | 821 ± 0.99 b,M | 93.1 ± 0.88 b,H |
M1T120h | 993 ± 0.99 a,J | 0.23 ± 0.03 a,ABCD | 888 ± 0.77 a,K | 0.45 ± 0.12 a,AB | 677 ± 0.87 a,I | 87.22 ± 0.44 a,G |
M2T24h | 1005 ± 1.45 c,K | 0.23 ± 0.02 aABCD | 989 ± 0.35 c,L | 0.56 ± 0.03 a,ABC | 779 ± 0.56 c,K | 112.3 ± 0.72 c,I |
M2T72h | 864 ± 0.99 b,F | 0.37 ± 0.01 ab,GH | 565 ± 0.67 b,B | 0.77 ± 0.08 ab,EF | 567 ± 1.89 b,G | 62.70 ± 1.67b d,E |
M2T120h | 392 ± 0.88 a,A | 0.48 ± 0.03 b,I | 324 ± 0.42 a,A | 0.89 ± 0.02 c,F | 257 ± 1.02 a,A | 44.02 ± 0.99 a,A |
M3T24h | 1255 ± 1.45 c,N | 0.28 ± 0.02 a,CDEFG | 1345 ± 0.98 c,O | 0.49 ± 0.01 a,ABC | 841 ± 1.09 c,N | 76.11 ± 1.76 c,F |
M3T72h | 985 ± 1.98 b,I | 0.33 ± 0.01 ab,DFGH | 799 ± 1.06 b,I | 0.55 ± 0.02 ab,ABC | 765 ± 0.88 b,J | 67.09 ± 0.55 b,E |
M3T120h | 679 ± 0.99 a,C | 0.39 ± 0.02 b,HI | 670 ± 1.00 a,D | 0.59 ± 0.03 b,CD | 348 ± 0.76 a,B | 50.40 ± 0.99 a,B |
M4T24h | 1455 ± 0.78 c,O | 0.17 ± 0.03 a,AB | 1400 ± 0.87 c,Q | 0.43 ± 0.04 ab,A | 822 ± 0.64 c,M | 109.32 ± 0.72 c,I |
M4T72h | 1002 ± 0.76 b,K | 0.23 ± 0.04 ab,ABCDE | 988 ± 0.56 b,L | 0.49 ± 0.02 a,ABC | 793 ± 0.67 b,L | 85.91 ± 1.05 b,G |
M4T120h | 823 ± 0.33 a,E | 0.37 ± 0.10 b,GH | 753 ± 0.51 a,G | 0.58 ± 0.11 a,BCD | 621 ± 0.88 a,H | 75.40 ± 0.77 a,F |
M5T24h | 1246 ± 0.45 c,M | 0.15 ± 0.01 a,A | 1358 ± 0.88 c,P | 0.58 ± 0.03 a,BCD | 1017 ± 0.45 c,Q | 109.91 ± 0.53 c,I |
M5T72h | 899 ± 0.89 b,G | 0.19 ± 0.02 ab,ABC | 686 ± 0.72 b,E | 0.70 ± 0.02 b,DE | 455 ± 1.35 b,F | 61.72 ± 0.33 b,D |
M5T120h | 583 ± 0.91 a,B | 0.33 ± 0.03 c,FGH | 662 ± 1.02 a,C | 0.77 ± 0.12 c,EF | 422 ± 1.95 a,D | 53.43 ± 0.71 a,BC |
M6T24h | 1489 ± 0.88 c,P | 0.21 ± 0.02 a,ABC | 765 ± 1.07 b,H | 0.50 ± 0.03 a,ABC | 899 ± 1.99 c,O | 78.11 ± 0.66 c,F |
M6T72h | 951 ± 0.72 b,H | 0.25 ± 0.01 a,BCDEF | 734 ± 0.88 a,F | 0.55 ± 0.02 ab,ABC | 414 ± 0.67 a,C | 56.80 ± 0.73 b,C |
M6T120h | 687 ± 0.81 a,D | 0.34 ± 0.01 ab,FGH | 839 ± 0.94 c,J | 0.61 ± 0.01 b,CD | 432 ± 1.01 b,E | 51.50 ± 0.79 a,B |
Sample | Colour | Aroma | Tenderness | Juiciness | Taste and Flavour | Overall Appreciation |
---|---|---|---|---|---|---|
M1T24h | 7.47 ± 1.31 c,EFG | 6.93 ± 1.60 a,A | 6.27 ± 0.98 a,A | 6.27 ± 0.98 a,AB | 6.60 ± 1.28 a,ABC | 6.57 ± 1.10 a,A |
M1T72h | 6.43 ± 1.38 b,BCD | 6.90 ± 1.67 a,A | 6.97 ± 1.19 ab,AB | 6.93 ± 1.05 b,C | 7.00 ± 1.34 a,bABCD | 7.10 ± 1.37 ab,AB |
M1T120h | 5.60 ± 1.37 a,AB | 7.83 ± 1.23 b,BCDEFG | 6.87 ± 1.04 ab, AB | 6.87 ± 1.11 ab,BC | 7.30 ± 1.39 b,ABCD | 7.17 ± 1.42 ab,B |
M2T24h | 7.33 ± 1.21 a,DEFG | 7.63 ± 1.40 a,BCD | 6.30 ± 0.99 a,A | 6.24 ± 0.99 a,AB | 6.93 ± 1.28 a,ABC | 7.13 ± 1.38 a,AB |
M2T72h | 7.63 ± 1.38 ab,FG | 7.93 ± 1.14 ab,BCDEFG | 7.10 ± 1.12 b, ABC | 7.07 ± 1.23 b,C | 7.90 ± 1.01 b,D | 7.90 ± 1.03 b,C |
M2T120h | 8.63 ± 1.38 c,H | 8.20 ± 0.83 b,H | 8.00 ± 0.87 c,E | 8.63 ± 0.91 c,D | 8.60 ± 0.84 c,F | 8.93 ± 0.82 c,D |
M3T24h | 7.17 ± 1.21 bc,DEFG | 7.67 ± 1.40 a,BCDE | 6.27 ± 0.91 a,A | 6.30 ± 0.95 a,AB | 7.27 ± 1.26 a,ABC | 7.13 ± 1.28 a,AB |
M3T72h | 6.80 ± 1.42 b,DEFG | 7.77 ± 1.25 a,BCDEFG | 6.83 ± 1.05 ab, AB | 6.87 ± 1.04 ab,ABC | 7.77 ± 1.01 ab,ABCD | 7.87 ± 0.97 a,bC |
M3T120h | 5.80 ± 1.40 a,ABC | 8.07 ± 0.78 b,GH | 7.83 ± 0.91 b,BC | 7.90 ± 0.88 c,D | 8.10 ± 0.92 b,EF | 8.13 ± 0.90 c,C |
M4T24h | 7.73 ± 1.11 a,GH | 7.77 ± 1.30 a,BCDEFG | 6.17 ± 0.79 a,A | 6.40 ± 0.97 a,A | 7.13 ± 1.22 a,ABCD | 7.17 ± 1.23 a,B |
M4T72h | 6.57 ± 1.48 b,CDE | 7.97 ± 1.13 a,EFGH | 6.97 ± 1.13 ab, AB | 7.00 ± 1.17 b,C | 7.87 ± 1.01 ab,CD | 7.77 ± 1.04 ab,C |
M4T120h | 5.40 ± 1.45 c,A | 8.07 ± 0.81 ab,GH | 7.87 ± 1.01 c,BC | 7.87 ± 0.94 b,cD | 8.00 ± 0.91 b,EF | 8.03 ± 0.89 c,C |
M5T24h | 7.60 ± 1.25 c,FG | 7.70 ± 1.34 a,BCDEF | 6.24 ± 0.99 a,A | 6.20 ± 1.00 a,AB | 7.23 ± 1.28 a,A | 7.13 ± 1.25 a,AB |
M5T72h | 6.73 ± 1.41 b,DEF | 7.73 ± 1.34 a,BCDEFG | 7.17 ± 1.18 ab,BC | 7.07 ± 1.01 ab,C | 7.83 ± 0.95 ab,D | 7.80 ± 1.00 ab,C |
M5T120h | 5.57 ± 1.28 a,AB | 8.03 ± 0.89 ab,FGH | 7.90 ± 0.99 b,CD | 7.87 ± 1.04 bc,D | 8.13 ± 0.78 c,EF | 8.13 ± 0.78 b,C |
M6T24h | 7.20 ± 1.42 c,DEFG | 7.63 ± 1.52 a,BC | 6.23 ± 0.94 a,A | 6.20 ± 0.92 a,AB | 7.07 ± 1.01 a,AB | 6.90 ± 1.24 a,AB |
M6T72h | 6.73 ± 1.34 b,DEF | 7.60 ± 1.35 a,B | 6.97 ± 1.19 ab,AB | 6.97 ± 1.19 ab,C | 7.80 ± 0.96 ab,ACD | 7.83 ± 1.02 b,C |
M6T120h | 5.57 ± 1.48 a,AB | 8.00 ± 0.83 ab,EFGH | 7.80 ± 1.00 c,CD | 7.80 ± 1.06 c,D | 8.10 ± 0.88 b,E | 8.07 ± 0.91 c,C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vişan, V.-G.; Chiş, M.S.; Păucean, A.; Mureșan, V.; Pușcaș, A.; Stan, L.; Vodnar, D.C.; Dulf, F.V.; Țibulcă, D.; Vlaic, B.A.; et al. Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat. Foods 2021, 10, 2012. https://doi.org/10.3390/foods10092012
Vişan V-G, Chiş MS, Păucean A, Mureșan V, Pușcaș A, Stan L, Vodnar DC, Dulf FV, Țibulcă D, Vlaic BA, et al. Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat. Foods. 2021; 10(9):2012. https://doi.org/10.3390/foods10092012
Chicago/Turabian StyleVişan, Vasile-Gheorghe, Maria Simona Chiş, Adriana Păucean, Vlad Mureșan, Andreea Pușcaș, Laura Stan, Dan Cristian Vodnar, Francisc Vasile Dulf, Dorin Țibulcă, Bogdan Alin Vlaic, and et al. 2021. "Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat" Foods 10, no. 9: 2012. https://doi.org/10.3390/foods10092012
APA StyleVişan, V. -G., Chiş, M. S., Păucean, A., Mureșan, V., Pușcaș, A., Stan, L., Vodnar, D. C., Dulf, F. V., Țibulcă, D., Vlaic, B. A., Rusu, I. E., Kadar, C. B., & Vlaic, A. (2021). Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat. Foods, 10(9), 2012. https://doi.org/10.3390/foods10092012