Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Materials
2.2. Solvents and Chemical Products
- -
- Sigma-Aldrich (St. Louis, MO, USA) for sodium carbonate, Folin-Ciocalteu phenol reagent, sodium acetate, citric acid, potassium chloride, hydrochloric acid, iron chloride (III) hexahydrate, 2,4,6-tripyridyl-S-triazine and 1,2-phenylenediamine dihydrochloride;
- -
- Sigma-Aldrich (St. Louis, MO, USA) for all polyphenolic and terpenic standards, potassium dihydrogen phosphate, phosphoric acid, methanol, and HPLC grade acetonitrile;
- -
- Fluka Biochemika (Buchs, Switzerland) for acetic acid, ethanol, organic acids, and HPLC-grade formic acid;
- -
- AMRESCO (Solon, OH, USA) for the disodium salt of ethylene diamine tetra-acetic acid;
- -
- Riedel-de Haen (Seelze, Germany) for sodium fluoride;
- -
- Extra-synthesis (Genay, France) for cetyltrimethylammonium bromide (cetrimide), ascorbic acid (AA), and dehydroascorbic acid (DHAA);
- -
- Sartorius Stedim Biotech (Arium, Göettingen, Germany) for the ultra-pure Milli-Q water.
2.3. Phytochemical Screening
2.4. Preparation of Extracts for Spectrophotometric and Chromatographic Analysis
2.5. Determination of the Total Polyphenolic Content (TPC)
2.6. Chromatographic Analysis
2.6.1. Quantitative Determination of Polyphenols
Conditions for the Analysis of Cinnamic Acid and Flavonols
Conditions for the Analysis of Benzoic Acids, Catechins, and Tannins
2.6.2. Quantitative Determination of Organic Acids
2.6.3. Quantitative Determination of Monoterpenes
2.6.4. Quantitative Determination of Vitamin C
2.7. Antibacterial Activity
- MUELLER-HINTON Agar (MHA) medium to study the microorganism sensitivity for extracts in a solid medium;
- MUELLER-HINTON (MHB) broth to study the extract activity in a liquid medium. Ready-to-use imipenem impregnated disks (10 µg) were used as a reference.
2.7.1. Evaluation of Antibacterial Activity by the Solid Medium Diffusion Method (Antibiogram Test)
2.7.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (CMB)
2.8. Antioxidant Capacity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening and Total Polyphenolic Content
3.2. Analysis of Bioactive Substances
3.2.1. Cinnamic Acid Derivatives
3.2.2. Benzoic Acid Derivatives
3.2.3. Catechins
3.2.4. Flavonols
3.2.5. Tannins
3.2.6. Organic Acids
3.2.7. Monoterpenes
3.2.8. Vitamin C
3.3. Antibacterial Activity
3.3.1. Activities of Extracts in a Solid Medium (Solid Diffusion Method)
3.3.2. MIC, CMB, and CMB/MIC of the Different Extracts (Liquid Microdilution Method)
3.3.3. Antibacterial Activity by Comparison between Solid Diffusion and Liquid Microdilution Methods
3.4. Antioxidant Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO; FIDA; PAM. L’état de L’insécurité Alimentaire Dans le Monde 2015. Objectifs Internationaux 2015 de Réduction de la Faim: Des Progrès Inégaux; FAO: Rome, Italy, 2015. [Google Scholar]
- FAO. Rapport sur L’état de la Sécurité Alimentaire et de la Nutrition Dans le Monde; FAO: Rome, Italy, 2019. [Google Scholar]
- OMS. Alimentation du nourrisson et du jeune enfant. Principaux Faits; OMS: Geneva, Switzerland, 2018. [Google Scholar]
- Fanzo, J.; Hawkes, C.; Udomkesmalee, E.; Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K. 2018 Global Nutrition Report. 2019. Available online: https://openaccess.city.ac.uk/id/eprint/22797/ (accessed on 26 August 2021).
- CSA (Comité de la Sécurité Alimentaire Mondiale). S’entendre sur la terminologie. In Proceedings of the Comité de la Sécurité Alimentaire Mondiale, 39ème Session. Rome, Italy, 15–20 October 2012; pp. 1–17. [Google Scholar]
- Union des Comores. Bilan Annuel de Mandat: 2ème Rapport D’activité Annuel; Secrétariat du Gouvernement: Moroni, Comoros, 2013; 48p.
- The World Bank Group. The Union of the Comoros: Jumpstarting Agricultural Transformation: Agriculture Sector Review; The World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Dagnelie, P. Statistique Théorique et Appliquée; De Boeck et Larcier: Paris, France, 1998; Volume 2, 659p. [Google Scholar]
- Jones, A.M.P.; Ragone, D.; Aiona, K.; Lane, W.A.; Murch, S.J. Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): Identification of elite cultivars for food security. J. Food Comp. Anal. 2011, 24, 1091–1102. [Google Scholar] [CrossRef]
- Ragone, D. Breadfruit, Artocarpus Altilis (Parkinson) Fosberg; International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- FAO. FAO Metadata for Crop Production—Yield per Hectare of World Crop Productions; Food and Agricultural Organization: Rome, Italy, 2019. [Google Scholar]
- Dalton, D.R. The Alkaloids the Fundamental Chemistry, a Biogenetic Approach; Marcel Dekker: New York, NY, USA, 1979; 565p. [Google Scholar]
- Cordell, G.A. Introduction to Alkaloids, a Biogenetic Approach; John Wiley: New York, NY, USA, 1981; 441p. [Google Scholar]
- Hemingway, R.W.; Karchesy, J.J. Chemistry and Significance of Condensed Tannins; Plenum Press: New York, NY, USA, 1989; pp. 164–249. [Google Scholar]
- Nes, W.D.; Parish, E.J. Analysis of Sterols and Other Biologically Significant Steroids; Elsevier: Amsterdam, The Netherlands, 2012; 358p. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Marinoni, T.D.; Cerutti, A.K.; Canterino, S.; Bounous, G. Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J. Food Qual. 2012, 35, 169–181. [Google Scholar] [CrossRef]
- Donno, D.; Cerutti, A.K.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Serviceberry, a berry fruit with growing interest of industry: Physicochemical and quali- quantitative health-related compound characterization. J. Funct. Foods 2016, 26, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lamuela-Raventos, R.M. Folin-Ciocalteu: Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity & Capacity Recent Trends and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 107–117. [Google Scholar]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Strategies for the extraction and analysis of non-extractable polyphenols from plants. J. Chromatogr. A 2017, 1514, 1–15. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Heilerová, L.; Bućkova, M.; Tarapćik, P.; Silhár, S.; Labuda, J. Origanum vulgare and Melissa officinalis showed highest antioxidant activity. Czech J. Food Sci. 2003, 21, 78–84. [Google Scholar] [CrossRef]
- Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Beccaro, L.G. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2016, 2, 1071–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 29–44. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Bounous, G. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. J. Funct. Foods 2015, 18, 1070–1085. [Google Scholar] [CrossRef]
- Gonzalez-Molina, E.; Moreno, D.A.; Garcia-Viguera, C. Genotype and Harvest Time Influence the Phytochemical Quality of Fino Lemon Juice (Citrus limon (L.) Burm. F.) for Industrial Use. J. Agric. Food Chem. 2008, 56, 1669–1675. [Google Scholar] [CrossRef]
- Sandeep, K.; Shrivastava, B.; Khajuria, R.K. Antimicrobial activity of Crotalaria burhia Buch.-Ham. root. J. Nat. Prod. Resour. 2010, 1, 481–484. [Google Scholar]
- Govindappa, M.; Bharath, N.; Shruthi, H.B.; Sadananda, T.S.; Sharanappa, P. Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of Crotalaria pallida Aiton. Afr. J. Pharm. Pharmacol. 2011, 5, 2359–2371. [Google Scholar] [CrossRef]
- Linthoingambi, W.; Mutum, S.S. Antimicrobial activities of different solvent extracts of Tithonia diversifolia (Hemsely) A. Gray. Asian J. Plant Sci. Res. 2013, 3, 50–54. [Google Scholar]
- Marimuthu, M.M.; Aruldass, C.A.; Sandrasagaran, U.M.; Mohamad, S.; Ramanathan, S.; Mansor, S.M.; Murugaiyah, V. Antimicrobial activity and phytochemical screening of various parts of Ixora coccinea. J. Med. Plants Res. 2014, 8, 423–429. [Google Scholar]
- Andriamampianina, H.L.; Rakoto, D.A.D.; Petit, T.; Ramanankierana, H.; Randrianarivo, H.R.; Jeannoda, V.L. Antimicrobial activity of extracts from Crotalaria bernieri Baill. (Fabaceae). Afr. J. Microbiol. Res. 2016, 10, 1229–1239. [Google Scholar]
- Ponce, A.G.; Fritz, R.; del Valle, C.E.; Roura, S.I. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Lebensmittel-Wissenschaft und Technologie 2003, 36, 679–684. [Google Scholar] [CrossRef]
- Moreira, M.R.; Ponce, A.G.; Del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Lebensmittel-Wissenschaft und Technologie 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Michelle da Silva, C.; Mota FB, C.; Rodrigues, M.D.; Alves, O.D.; Maia, V.H. Crude extracts and semi-fractions from Myracrodruon urundeuva with antibacterial activity against American type culture collection (ATCC) strains of clinical relevance. J. Med. Plan Res. 2013, 7, 2407–2413. [Google Scholar] [CrossRef]
- Chamandi, G.; Olama, Z.; Holail, H. Antimicrobial effect of Propolis from different geographic origins in Lebanon. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 328–342. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Pulido, R.; Bravo, L.; Sauro-Calixto, F. Antioxidant activity of dietary polyphenols as determinated by a modified ferric reducing/antioxidant power assay. J. Food. Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiyauddin, K.; Zulhabri, O.; Aishah, U.A.M.; Rasha, S.; Hamid, K.; Qamar, M.; Budiasih, S.; Jawad, A.; Samer, A.D.; Kaleemullah, M.; et al. Evaluation of Antioxidant and Antimicrobial Activity of Artocarpus altilis Against Human Pathogens. UK J. Pharma. Biosci. 2014, 2, 10–14. [Google Scholar] [CrossRef]
- Bouayed, J.; Rammal, H.; Dicko, A.; Youned, C.; Soulimai, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolitic and antioxydant effects. J. Neurol. Sci. 2007, 262, 1–2. [Google Scholar] [CrossRef]
- Jassim, S.A.A.; Naji, M.A. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, D.R.; Hadley, M.; Wolf-Hall, C. Potato peel extracts a non-mutagenic antioxidant with potential antimicrobial activity. J. Food Sci. 1998, 63, 907. [Google Scholar] [CrossRef]
- Bowels, B.L.; Milller, A.J. Caffeic acid activity against Clostridium botulinum spores. J. Food Sci. 1994, 59, 905. [Google Scholar] [CrossRef]
- Zida, K.; Melvin, H.; Caroline, O. Inhibitory effect of chlorogenic acid on digestion of potato starch. Food Chem. 2017, 217, 498–504. [Google Scholar]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nut. 2003, 78, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y.; Shibata, H.; Kodama, Y.; Sawa, Y. The suppression of the N-nitrosating reaction by chlorogenic acid. Biochem. J. 1995, 312, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef] [PubMed]
- Kasai, H.; Fukada, S.; Yamaizumi, Z.; Sugie, S.; Mori, H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol. 2000, 38, 467–471. [Google Scholar] [CrossRef]
- Guan, Y.Q.; Wu, T.; Lin, M.; Ye, J.N. Determination of pharmacologically active ingredients in sweet potato (Ipomoea batatas L.) by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 2006, 54, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.H.; Wishart, K. Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low-density lipoproteins in vitro. J. Agric. Food Chem. 2010, 58, 5828–5833. [Google Scholar] [CrossRef]
- Chung, M.I.; Walker, P.A.; Hogstrand, C. Dietary phenolic antioxidant, caffeic acid and Trolox protect raibow trout gill cells from nitric oxide-induced apoptosis. Aquat. Toxicol. 2006, 80, 321–328. [Google Scholar] [CrossRef]
- Da Cunha, F.M.; Duma, D.; Assreuy, J.; Buzzi, F.C.; Niero, R.; Campos, M.M.; Calixto, J.B. Caffeic acid derivatives: In vitro and in vivo anti-inflammatory properties. Free Radic. Res. 2004, 38, 1241–1253. [Google Scholar] [CrossRef]
- Ferguson, L.R.; Shuo-tun, Z.; Harris, P.J. Antioxydant and antogenotoxic effects of plant cell wall hydrocinnamic acid in cultured HT. Mol. Nutr. Food Res. 2005, 49, 585–693. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Du, H.; Wang, L.; Li, S.; Zhang, L.; Zhang, L. Nitrite Scavenging and Inhibition of N-Nitrosamines Formation by Phenolic Extracts From Diospyros lotus L. Leaves and Active Ingredients. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Kratz, J.M.; Andrighetti-Fröhner, C.R.; Leal, P.C.; Nunes, R.J.; Yunes, R.A.; Trybala, E.; Bergström, T.; Barardi, C.R.; Simões, C.M. Evaluation of anti-HSV-2 activity of gallic acid and pentylgallate. Biol. Pharm. Bull. 2008, 31, 903–907. [Google Scholar] [CrossRef] [Green Version]
- You, B.R.; Park, W.H. Gallic acid induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol. In-Vitro 2010, 24, 1356–1362. [Google Scholar] [CrossRef]
- Delmas, D.; Jannin, B.; Latruffe, N. Resveratrol: Preventive properties against vascular alterations and ageing. Mol. Nutr. Food Res. 2005, 49, 377–395. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruits extract. Food Chem. Toxicol. 2007, 45, 328–336. [Google Scholar] [CrossRef]
- Leverve, X.; Weststrate, J. Les Catéchines et Santé: État des Connaissances—Symposium; UNILEVER France: Paris, France, 2008; p. 33. [Google Scholar]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Drent, M.; De Boer, V.C.J.; Bast, A.; Haenen, G.R.M.M. Quercetin reduces markers of oxidative stress and inflammation in Sarcoidosis. Clin. Nutr. 2003, 30, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoskes, D.A.; Zeitlin, S.I.; Shaded, A.; Rajfer, J. Quertin in men with category III chronic prostatic: A preliminary prospective, double-blind, placebo-controlled trial. Urology 1999, 54, 960–963. [Google Scholar] [CrossRef]
- Wach, A.; Pyrzyńska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem. 2007, 100, 699–704. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxydant capacity and phenolics in foods and dietary suppléments. J. Agric. Food Chem. 2001, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Eyduran, S.P.; Ercisli, S.; Akin, M.; Beyhan, O.; Gecer, M.K.; Eyduran, E.; Erturk, Y.E. Organic acids, sugars, vitamin c, antioxidant capacity and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J. Appl. Bot. Food Qual. 2015, 88, 134–138. [Google Scholar]
- Sheng, X.; Jung, T.; Wesson, J.A. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc. Natl. Acad. Sci. USA 2005, 102, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. Antidiabetic potential of monoterpene: A case of small molecules punching above their weight. Int. J. Mol. Sci. 2017, 19, 4. [Google Scholar] [CrossRef] [Green Version]
- De Cassia da Silveira e Sa, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristan, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Astani, A.; Reichling, J.; Schnitzler, P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res. 2010, 24, 673–679. [Google Scholar] [CrossRef]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea spp. Agrobiodiversity conservation: Genotype influence on chemical and sensorial traits of cultivars grown on the same clonal rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef]
- Christina, E.T.; Ying, L.; Ragone, D.; Murch, S.J. Breadfruit (Artocarpus altilis and hybrids): A traditional crop with the potential to prevent hunger and mitigate diabetes in Oceania. Trends Food Sci. Technol. 2015, 4, 264–272. [Google Scholar]
- Huang, A.S.; Titchenal, C.A.; Meilleur, B.A. Nutrient Composition of Taro Corms and Breadfruit. J. Food Comp. Anal. 2000, 13, 859–864. [Google Scholar] [CrossRef]
- Oliveira, D.D.S.; Lobato, A.L.; Ribeiro, S.M.R.; Santana, A.M.C.; Chaves, J.B.P.; Pinheiro-Sant’Ana, H.M. Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. J. Agric. Food Chem. 2009, 58, 6166–6172. [Google Scholar] [CrossRef]
- Pradhan, C.; Mohanty, M.; Rout, A.; Das, A.B.; Satapathy, K.B.; Patra, H.K. Phytoconstituent screening and comparative assessment of antimicrobial potentiality of Artocarpus altilis fruit extracts. Int. J. Pharm. Pharm. Sci. 2013, 5, 840–843. [Google Scholar]
- Jalal, T.K.; Ahmed, I.A.; Mikail, M.; Momand, L.; Draman, S.; Isa, M.L.M.; Rasad, M.S.B.A.; Omar, M.N.; Ibrahim, M.; Wahab, R.A. Evaluation of Antioxidant, Total Phenol and Flavonoid Content and Antimicrobial Activities of Artocarpus altilis (Breadfruit) of Underutilized Tropical Fruit Extracts. Appl. Biochem. Biotechnol. 2015. [Google Scholar] [CrossRef]
- Nur Arina, A.J.; Azrina, A. Comparison of phenolic content and antioxidant activity of fresh and fried local fruits. Int. Food Res. J. 2015, 23, 1717–1724. [Google Scholar]
- Stangeland, T.; Remberg, S.F.; Lye, K.A. Total antioxidant activity in 35 Ugandan fruits and vegetables. Food Chem. 2011, 113, 85–91. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils in the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Sahoo, K.; Dhal, N.K.; Sahoo, S.L.; Lenka, S.S. Comparative phytochemical and antimicrobial study of Morinda pubescens sm. and Morinda citrifolia L. Int. J. Pharm. Pharm. Sci. 2012, 4, 425–429. [Google Scholar]
- Sivagnanasundaram, P.; Karunanayake, K.O.L.C. Phytochemical Screening and Antimicrobial Activity of Artocarpus heterophyllus and Artocarpus altilis Leaf and Stem Bark Extracts. OUSL J. 2015, 9, 1–17. [Google Scholar] [CrossRef]
Harvest Area | ID Extracts |
---|---|
Mitsamihuli | ExMIT |
Hamahamet | ExHAM |
Itsandra | ExITS |
Centre | ExCEN |
Mbadjini | ExMBA |
Strains | Gram Stain | References |
---|---|---|
Bacillus cereus | + | ATCC 14579 |
Bacillus megaterium | + | LMG 7127 |
Clostridium perfringens | + | ATCC 13124 |
Listeria monocytogenes | + | ATCC 19114 |
Staphylococcus aureus | + | ATCC 25923 |
Yersinia enterolitica | + | ATCC 23715 |
Vibrio fisheri | − | ATCC 7744 |
Shigella flexneri | − | ATCC 12022 |
Pseudomonas aeruginosa | − | ATCC 10145 |
Enterobacter aerogenes | − | ATCC 13048 |
Escherichia coli | − | ATCC 25922 |
Salmonella enterica | − | ATCC 13076 |
IHD (x) | Results | Sensitivity of Bacteria |
---|---|---|
<8 mm | − | Insensitive |
9 mm < x < 14 mm | + | Sensitive |
15 mm < x < 19 mm | ++ | Very sensitive |
x > 20 mm | +++ | Extremely sensitive |
Chemical Group | Test | Results | ||||
---|---|---|---|---|---|---|
ExMIT | ExHAM | ExITS | ExCEN | ExMBA | ||
Alkaloids | MAYER | − | − | − | − | − |
DRAGENDORF | − | − | − | − | − | |
WAGNER | − | − | − | − | − | |
Deoxyosis | KELLER-KILIANI | + | + | + | + | + |
Saponins | Foam index | − | − | − | − | − |
Tannins and polyphenols | Gélatin 1% | + | + | + | + | + |
Salted gelatin | + | + | + | + | + | |
Ferric chloride | − | − | − | − | − | |
Flavonoids and leucoanthocyanins | WILSTATER | + | − | − | − | − |
BATE-SMITH | +++ | +++ | +++ | ++ | +++ | |
Iridoids | − | − | − | − | − | |
Steroids and Triterpenes | LIEBERMANN-BURCHARD | + | ++ | ++ | ++ | ++ |
SALKOWSKI | ++ | + | ++ | ++ | ++ |
Extracts | Total Polyphenolic Content (TPC) (mgGAE/100 g DW) |
---|---|
ExCEN | 35.98 ± 4.27 c |
ExITS | 96.14 ± 2.07 a |
ExMIT | 62.43 ± 1.76 b |
ExHAM | 38.60 ± 0.80 c |
ExMBA | 29.69±1.40 d |
Cinnamic Acids (mg/100 g DW) | ExMIT | ExHAM | ExITS | ExCEN | ExMBA |
---|---|---|---|---|---|
Caffeic acid | 1.60 ± 0.41 b | 1.61 ± 0.04 b | 1.53 ± 0.18 b | 1.57 ± 0.05 b | 2.65 ± 1.00 a |
Chlorogenic acid | 26.57 ± 0.31 c | 27.55 ± 0.28 b | 26.80 ± 0.23 c | 27.22 ± 0.23 b | 43.80 ± 5.43 a |
Coumaric acid | 11.21 ± 0.18 a | 11.85 ± 0.30 a | 11.20 ± 0.28 a | 11.61 ± 0.26 a | n.q. |
Ferulic acid | 1.65 ± 0.31 c | 1.54 ± 0.18 c | 3.04 ± 0.39 a | 2.09 ± 0.24 b | n.q. |
Benzoic Acids (mg/100 g DW) | ExMIT | ExHAM | ExITS | ExCEN | ExMBA |
---|---|---|---|---|---|
Ellagic acid | 4.03 ± 0.29 c | 0.87 ± 0.16 d | 9.87 ± 0.28 a | 1.08 ± 0.21 d | 5.69 ± 0.08 b |
Gallic acid | 0.62 ± 0.03 d | 1.42 ± 0.26 c | 0.90 ± 0.09 d | 1.81 ± 0.07 b | 5.23 ± 0.14 a |
Extracts | Catechin (mg/100 g DW) | Epicatechin (mg/100 g DW) |
---|---|---|
ExMIT | 0.95 ± 0.06 b | 3.15 ± 0.30 c |
ExHAM | 1.10 ± 0.11 b | 3.24 ± 0.18 c |
ExITS | 4.41 ± 0.22 a | 12.95 ± 0.42 a |
ExCEN | 0.67 ± 0.10 c | 3.56 ± 0.39 c |
ExMBA | n.q. | 7.76 ± 0.31 b |
Phenolic Compounds (mg/100 g DW) | ExMIT | ExHAM | ExITS | ExCEN | ExMBA |
---|---|---|---|---|---|
Quercetin | 14.68 ± 0.19 b | 16.26 ± 0.32 b | 29.60 ± 0.28 a | 16.03 ± 0.29 b | nd |
Hyperoside | 0.77 ± 0.28 b | 1.38 ± 0.22 a | 1.09 ± 0.28 a | 0.80 ± 0.23 ab | nd |
Phenolic Compounds (mg/100 g DW) | ExMIT | ExHAM | ExITS | ExCEN | ExMBA |
---|---|---|---|---|---|
Castalagin | 9.06 ± 0.36 b | 4.76 ± 0.28 d | 6.95 ± 0.29 c | 5.42 ± 0.30 cd | 15.66 ± 5.42 a |
Vescalagin | 5.97 ± 0.15 c | 22.38 ± 0.23 a | 10.01 ± 0.39 bc | 14.88 ± 0.08 b | 13.53 ± 4.94 b |
Extracts | Organic Acids (mg/100 g DW) | |||||
---|---|---|---|---|---|---|
Citric ACID | Malic acid | Oxalic Acid | Quinic Acid | Succinic Acid | Tartric Acid | |
ExMIT | 41.89 ± 0.13 | n.d. | 9.37 ± 0.31 a | 309.50 ± 0.44 c | 225.45 ± 0.29 c | 22.95 ± 0.30 b |
ExHAM | 60.72 ± 0.28 | n.d. | 5.94 ± 0.38 b | 658.56 ± 0.25 a | 225.13 ± 0.16 c | 19.30 ± 0.34 b |
ExITS | 52.14 ± 0.30 | n.d. | 9.52 ± 0.20 a | 633.27 ± 0.16 a | 283.74 ± 0.35 b | 31.24 ± 0.43 a |
ExCEN | 64.15 ± 0.25 | n.d. | 7.77 ± 0.31 ab | 426.44 ± 0.16 b | 323.71 ± 0.31 a | 20.45 ± 0.16 b |
ExMBA | 5.07 ± 0.77 | n.d. | n.q. | 77.25 ± 6.04 d | n.d. | n.q. |
Extraits | Monoterpenes (mg/100 g DW) | ||||
---|---|---|---|---|---|
Limonene | Phellandrene | Sabinene | γ-Terpinene | Terpinolene | |
ExMIT | 85.86 ± 0.23 d | n.d. | n.d. | 83.51 ± 0.33 c | 14.81 ± 0.26 ab |
ExHAM | 233.55 ± 0.34 b | n.d. | n.d. | 141.24 ± 0.36 b | 15.63 ± 0.23 a |
ExITS | 565.45 ± 0.24 a | n.d. | n.d. | 309.83 ± 0.18 a | 13.23 ± 0.23 b |
ExCEN | 136.76 ± 0.23 c | n.d. | n.d. | 123.89 ± 0.16 b | 15.59 ± 0.35 a |
ExMBA | 145.64 ± 40.78 c | 44.63 ± 4.27 a | 52.98 ± 1.08 a | n.q. | n.q. |
Extraits | Vitamin C (mg/100 g DW) |
---|---|
ExMIT | 28.08 ± 0.10 bc |
ExHAM | 30.33 ± 0.03 b |
ExITS | 27.95 ± 0.04 c |
ExCEN | 28.28 ± 0.15 bc |
ExMBA | 35.40 ± 1.46 a |
Strains | Extract (1 mg/Disk) | Imepenem (10 µg) | |||||
---|---|---|---|---|---|---|---|
ExMIT | ExHAM | ExITS | ExCEN | ExMBA | |||
GRAM + | Bacillus cereus | 7.5 ± 0.7 | 7.75 ± 1.06 | 10.5 ± 0.70 | 7 ± 0.00 | 8 ± 0.00 | 34 |
Bacillus megatorium | 10 ± 1.41 | 11.5 ± 2.13 | 12.5 ± 3.53 | 13 ± 4.26 | 13 ± 2.80 | 35 | |
Clostridium perfringens | 9 ± 1.41 | 13 ± 1.41 | 15.5 ± 2.12 | 13.25 ± 2.47 | 13 ± 4.24 | 31 | |
Listeria monocytogenes | 9.75 ± 0.35 | 9.75 ± 0.35 | 10.75 ± 1.06 | 8.75 ± 0.35 | 10.25 ± 1.76 | 30 | |
Staphylococcus aureus | 8.5 ± 0.70 | 8.5 ± 0.70 | 10.5 ± 0.70 | 7.75 ± 0.35 | 8.5 ± 0.70 | 45 | |
Yersenia enterolitica | 9.5 ± 0.70 | 9.5 ± 2.12 | 11.25 ± 2.47 | 10.5 ± 0.70 | 10.5 ± 0.00 | 32 | |
GRAM − | Enterobacter aerogenes | 11.25 ± 1.06 | 10.25 ± 0.36 | 10 ± 2.82 | 9 ± 1.41 | 10.5 ± 2.12 | 31 |
Escherichia coli | 7 ± 0.00 | 7 ± 0.00 | 7 ± 0.00 | 7 ± 0.00 | 7 ± 0.00 | 34 | |
Pseudomonas aeruginosa | 7 ± 0.00 | 7 ± 0.00 | 8 ± 0.00 | 8 ± 0.00 | 7 ± 0.00 | 18 | |
Salmonella enterica | 10.5 ± 0.70 | 11.25± 1.06 | 16 ± 1.41 | 12.25 ± 1.06 | 10.5 ± 0.70 | 33 | |
Shigella flexneri | 8 ± 1.41 | 9.5 ± 0.70 | 12 ± 1.41 | 9.5 ± 0.70 | 10.25 ± 0.35 | 33 | |
Vibrio fischeri | 10 ± 0.00 | 13.5 ± 3.53 | 14.50 ± 3.53 | 12.5 ± 6.36 | 12 ± 1.41 | 28 |
Bacterial Strains | ExMIT | ExHAM | ExITS | ExCEN | ExMBA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | CMB | CMB/MIC | MIC | CMB | CMB/MIC | MIC | CMB | CMB/MIC | MIC | CMB | CMB/MIC | MIC | CMB | CMB/MIC | ||
GRAM + | Bacillus cereus | 12.5 | 50 | 4 | 6.25 | 50 | 8 | 12.5 | ˃100 | >4 | 6.25 | 50 | 4 | 50 | 100 | 2 |
Bacillus megatorium | 12.5 | ˃100 | >4 | 6.25 | ˃100 | >4 | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | |
Clostridium perfringens | 12.5 | ˃100 | >4 | 6.25 | ˃100 | >4 | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 25 | ˃100 | >4 | |
Listeria monocytogenes | 6.25 | 100 | 8 | 12.5 | 50 | 4 | 12.5 | ˃100 | >4 | 25 | ˃100 | >4 | 25 | 100 | 2 | |
Staphylococcus aureus | 12.5 | 100 | 8 | 3.12 | 100 | >4 | 12.5 | 25 | 2 | 12.5 | 50 | 4 | 25 | 100 | 4 | |
Yersenia enterolitica | 12.5 | ˃100 | >4 | 6.25 | ˃100 | >4 | 12.5 | 50 | 4 | 12.5 | ˃100 | >4 | 50 | ˃100 | >4 | |
GRAM − | Enterobacter aerogenes | 12.5 | ˃100 | >4 | 6.25 | 50 | 4+ | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 50 | ˃100 | >4 |
Escherichia coli | 6.25 | ˃100 | >4 | 12.5 | ˃100 | >4 | 25 | 50 | 2 | 25 | 50 | 2 | 25 | 50 | 2 | |
Pseudomonas aeruginosa | 12.5 | 50 | 4 | 12.5 | 50 | 4 | 12.5 | 100 | 8 | 12.5 | ˃100 | >4 | 25 | 100 | 4 | |
Salmonella enterica | 12.5 | ˃100 | >4 | 6.25 | ˃100 | >4 | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 25 | ˃100 | >4 | |
Shigella flexneri | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 25 | 50 | 2 | 25 | 100 | 4 | 50 | ˃100 | >4 | |
Vibrio fischeri | 12.5 | ˃100 | >4 | 12.5 | ˃100 | >4 | 12.5 | 100 | 8 | 25 | ˃100 | >4 | 25 | ˃100 | >4 |
Extracts | Antioxidant Activity |
---|---|
(mmol Fe2+/kg) | |
ExMIT | 8.10 ± 0.12 bc |
ExHAM | 14.83 ± 0.11 a |
ExITS | 11.42 ± 0.17 b |
ExCEN | 5.91 ± 0.22 c |
ExMBA | 5.44 ± 0.35 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soifoini, T.; Donno, D.; Jeannoda, V.; Rakoto, D.D.; Msahazi, A.; Farhat, S.M.M.; Oulam, M.Z.; Beccaro, G.L. Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry. Foods 2021, 10, 2136. https://doi.org/10.3390/foods10092136
Soifoini T, Donno D, Jeannoda V, Rakoto DD, Msahazi A, Farhat SMM, Oulam MZ, Beccaro GL. Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry. Foods. 2021; 10(9):2136. https://doi.org/10.3390/foods10092136
Chicago/Turabian StyleSoifoini, Toilibou, Dario Donno, Victor Jeannoda, Danielle Doll Rakoto, Ahmed Msahazi, Saidi Mohamed Mkandzile Farhat, Mouandhoime Zahahe Oulam, and Gabriele Loris Beccaro. 2021. "Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry" Foods 10, no. 9: 2136. https://doi.org/10.3390/foods10092136
APA StyleSoifoini, T., Donno, D., Jeannoda, V., Rakoto, D. D., Msahazi, A., Farhat, S. M. M., Oulam, M. Z., & Beccaro, G. L. (2021). Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry. Foods, 10(9), 2136. https://doi.org/10.3390/foods10092136