Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Construction of 4T1 Breast Cancer Tumor Mouse Model
2.4. Preparation of Functionalized Indwelling Needle
2.5. Capture of CTC In Vivo
2.6. Immunofluorescence Staining and Counting of CTCs
2.7. Hematoxylin and Eosin (H&E) Staining
2.8. Statistical Analysis
3. Results
3.1. Effects of Different Dietary Patterns on the Growth of Carcinoma In Situ
3.2. Effects of Different Dietary Patterns on Metastasizing Tumors of Lung
3.3. Effects of Different Dietary Patterns on CTCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.Q.; Liu, J.; Zhao, S.Q.; Zhu, K.; Gong, Z.Q.; Xu, R.; Lu, H.M.; Zhou, R.B.; Zhao, G.; Yin, D.C. Recent treatment progress of triple negative breast cancer. Prog. Biophys. Mol. Biol. 2020, 151, 40–53. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Fedewa, S.A.; Sauer, A.G.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J. Clin. 2016, 66, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemminki, K.; Li, X.J. Cancer risks in second-generation immigrants to Sweden. Int. J. Cancer 2002, 99, 229–237. [Google Scholar] [CrossRef]
- Emmons, K.M.; Colditz, G.A. Realizing the potential of cancer prevention-the role of implementation science. N. Engl. J. Med. 2017, 376, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Amadou, A.; Ferrari, P.; Muwonge, R.; Moskal, A.; Biessy, C.; Romieu, I.; Hainaut, P. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: A systematic review and dose-response meta-analysis. Obes. Rev. 2013, 14, 665–678. [Google Scholar] [CrossRef]
- Marzbani, B.; Nazari, J.; Najafi, F.; Marzbani, B.; Shahabadi, S.; Amini, M.; Moradinazar, M.; Pasdar, Y.; Shakiba, E.; Amini, S. Dietary patterns, nutrition, and risk of breast cancer: A case-control study in the west of Iran. Epidemiol. Health 2019, 41, e2019003. [Google Scholar] [CrossRef] [Green Version]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef]
- Dandamudi, A.; Tommie, J.; Nommsen-Rivers, L.; Couch, S. Dietary patterns and breast cancer risk: A systematic review. Anticancer Res. 2018, 38, 3209–3222. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Liu, Z.C.; Zhang, Z.; Jiang, Y.H.; Zhang, H.Y. The effect of selected food phytochemicals on breast cancer metastasis based on in vivo capture of circulating tumor cells. Food Funct. 2017, 8, 2698–2701. [Google Scholar] [CrossRef]
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.L. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.S.M.; Matthews, C.S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 2006, 27, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.A.S.; Melo, T.M.; Flister, K.F.T.; Franca, L.M.; Kajihara, D.; Tanaka, L.Y.; Laurindo, F.R.M.; Paes, A.M.D. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats. Metab. Brain Dis. 2016, 31, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Zheng, M.; Tiriveedhi, V. Oleanolic acid inhibits high salt-induced exaggeration of warburg-like metabolism in breast cancer cells. Cell Biochem. Biophys. 2016, 74, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Ozaykan, B.; Taskin, E.; Magemizoglu, A. Effect of salt loading on baroreflex sensitivity in reduced renal mass hypertension. Clin Exp. Hypertens. 2017, 39, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ma, Z.; Liu, Y.; Kan, X.; Wang, C.; Su, B.; Li, Y.; Zhang, Y.; Wang, P.; Luo, Y.; et al. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J. 2016, 283, 2836–2852. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.I.; Jin, B.; Kim, S.Y.; Li, Q.; Nam, A.; Ryu, M.O.; Lee, W.W.; Son, M.H.; Park, H.J.; Song, W.J.; et al. Antitumour effects of Liporaxel (oral paclitaxel) for canine melanoma in a mouse xenograft model. Vet. Comp. Oncol. 2020, 18, 152–160. [Google Scholar] [CrossRef]
- Euhus, D.M.; Hudd, C.; LaRegina, M.C.; Johnson, F.E. Tumor measurement in the nude mouse. J. Surg. Oncol. 1986, 31, 229–234. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Xia, J.; Wang, D.; Qian, M.; Ding, S. Treatment of diabetic mice with a combination of ketogenic diet and aerobic exercise via modulations of PPARs gene programs. PPAR Res. 2018, 2018, 4827643. [Google Scholar] [CrossRef] [Green Version]
- Mcauley, K.A.; Hopkins, C.M.; Smith, K.J.; McLay, R.T.; Williams, S.M.; Taylor, R.W.; Mann, J.I. Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia 2005, 48, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Wahl, D.; Solon-Biet, S.M.; Wang, Q.P.; Wali, J.A.; Pulpitel, T.; Clark, X.; Raubenheimer, D.; Senior, A.M.; Sinclair, D.A.; Cooney, G.J.; et al. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 2018, 25, 2234–2243. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.; Molfino, A.; Testorio, M.; Perrotta, A.M.; Currado, A.; Pintus, G.; Pietrucci, D.; Unida, V.; La Rocca, D.; Biocca, S.; et al. Effect of low-protein diet and inulin on microbiota and clinical parameters in patients with chronic kidney disease. Nutrients 2019, 11, 3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.H.; Tan, L.H.; Li, Y.X.; Chen, J.; Zhai, Y.H.; Rao, J.; Fang, X.Y.; Wu, X.H.; Xu, H.; Shen, Q. Intrauterine low-protein diet aggravates developmental abnormalities of the urinary system via the Akt/Creb3 pathway in Robo2 mutant mice. Am. J. Physiol. Renal Physiol. 2020, 318, F43–F52. [Google Scholar] [CrossRef]
- Hyoju, S.K.; Adriaansens, C.; Wienholts, K.; Sharma, A.; Keskey, R.; Arnold, W.; van Dalen, D.; Gottel, N.; Hyman, N.; Zaborin, A.; et al. Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: An experimental model. Br. J. Surg. 2020, 107, 743–755. [Google Scholar] [CrossRef]
- Costanzo, A.; Liu, D.L.; Nowson, C.; Duesing, K.; Archer, N.; Bowe, S.; Keast, R. A low-fat diet up-regulates expression of fatty acid taste receptor gene FFAR4 in fungiform papillae in humans: A co-twin randomised controlled trial. Br. J. Nutr. 2019, 122, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Calabriso, N.; Massaro, M.; Pellegrino, M.; Storelli, C.; Martines, G.; De Caterina, R.; Carluccio, M.A. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 2012, 527, 81–89. [Google Scholar] [CrossRef]
- Carruba, G.; Granata, O.M.; Pala, V.; Campisi, I.; Agostara, B.; Cusimano, R.; Ravazzolo, B.; Traina, A. A traditional Mediterranean diet decreases endogenous estrogens in healthy postmenopausal women. Nutr. Cancer 2006, 56, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jia, Z.; Wu, C.; Zang, L.; Yang, G.; Chen, Z.; Tang, B. In vivo capture of circulating tumor cells based on transfusion with a vein indwelling needle. ACS Appl. Mater. Interfaces 2015, 7, 20477–20484. [Google Scholar] [CrossRef]
- Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 2019, 573, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Jiang, P.; Liu, W.Y.; Xu, H.S.; Li, Y.F.; Li, Z.X.; Ma, H.; Yu, Y.; Li, X.G.; Ye, X.L. Role of daucosterol linoleate on breast cancer: Studies on apoptosis and metastasis. J. Agric. Food Chem. 2018, 66, 6031–6041. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.; Wang, Y.; Ye, K.; Glass, A.G.; Ginsberg, M.; Loudig, O.; Rohan, T. Association between lifestyle, menstrual/reproductive history, and histological factors and risk of breast cancer in women biopsied for benign breast disease. Breast Cancer Res. Treat. 2017, 165, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Cleeland, C.S.; Allen, J.D.; Roberts, S.A.; Brell, J.M.; Giralt, S.A.; Khakoo, A.Y.; Kirch, R.A.; Kwitkowski, V.E.; Liao, Z.X.; Skillings, J. Reducing the toxicity of cancer therapy: Recognizing needs, taking action. Nat. Rev. Clin. Oncol. 2012, 9, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Ahn, S.K.; Kim, J.H. Steady low intensity physical activity and healthy dietary habits are differently affect breast cancer progression. Breast 2019, 44, S34–S35. [Google Scholar] [CrossRef]
- Phoenix, K.N.; Vumbaca, F.; Fox, M.M.; Evans, R.; Claffey, K.P. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy. Breast Cancer Res. Treat. 2010, 123, 333–344. [Google Scholar] [CrossRef] [Green Version]
Dietary Patterns and Component Content (g/100 g) | ||||||||
---|---|---|---|---|---|---|---|---|
Composition | Standard Diet | KD | HPD | LPD | HFD | LFD | DR | MD |
Fish meal | - | - | - | - | - | - | - | 6.00 |
Soybean meal | 26.00 | 25.00 | 38.00 | 9.50 | 25.00 | 26.00 | 26.00 | 20.00 |
Corn starch | 25.00 | - | 20.00 | 35.00 | 13.65 | 27.00 | 25.00 | 8.90 |
Wheat flour | 26.00 | - | 20.00 | 32.50 | 18.56 | 29.20 | 26.00 | 9.00 |
Wheat bran | 4.00 | 4.00 | 3.00 | 4.00 | 2.18 | 4.00 | 4.00 | 6.00 |
Mixed Fruit and Vegetable Powder | - | - | - | - | - | - | - | 30.00 |
Maltodextrin | 0.50 | - | 0.50 | 0.50 | 2.50 | 0.50 | 0.50 | 0.50 |
Sucrose | 10.00 | - | 10.00 | 10.00 | 14.00 | 10.00 | 10.00 | 10.00 |
Soybean oil | 7.00 | 70.0 | 7.00 | 7.00 | 1.09 | 1.80 | 7.00 | - |
Lard | - | - | - | - | 21.50 | - | - | - |
Olive oil | - | - | - | - | - | - | - | 7.00 |
Salt | 0.40 | 0.30 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
L-cystine | 0.50 | 0.27 | 0.50 | 0.50 | 0.55 | 0.50 | 0.50 | 0.50 |
Mineral mixture | 0.20 | 0.14 | 0.20 | 0.20 | 0.26 | 0.20 | 0.20 | 0.20 |
Vitamin mixture | 0.20 | 0.19 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.30 |
Choline Bitartrate | 0.20 | 0.10 | 0.20 | 0.20 | 0.11 | 0.20 | 0.20 | 0.20 |
Red wine | - | - | - | - | - | - | - | 1.00 |
References | [18] | [18] | [19] | [20,21,22] | [18] | [23,24] | [18] | [25,26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, X.; Jia, Z.; Zhang, Y.; Wang, S.; Zhang, H. Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells. Foods 2021, 10, 2223. https://doi.org/10.3390/foods10092223
Wang X, Liu X, Jia Z, Zhang Y, Wang S, Zhang H. Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells. Foods. 2021; 10(9):2223. https://doi.org/10.3390/foods10092223
Chicago/Turabian StyleWang, Xiuxiu, Xiaoyu Liu, Zhenzhen Jia, Yilun Zhang, Shuo Wang, and Hongyan Zhang. 2021. "Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells" Foods 10, no. 9: 2223. https://doi.org/10.3390/foods10092223
APA StyleWang, X., Liu, X., Jia, Z., Zhang, Y., Wang, S., & Zhang, H. (2021). Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells. Foods, 10(9), 2223. https://doi.org/10.3390/foods10092223