Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pasta Manufacturing
2.3. Chemical Analysis and Nutritional Values
2.4. Physical Analysis
2.4.1. Cooking Properties
Optimum Cooking Time
Swelling Index
Cooking Water Absorption
Cooking Loss
2.4.2. Quality Measurements
Texture Measurements
Color Measurements
Water Activity
2.4.3. Rheological Characteristics
2.4.4. Differential Scanning Calorimetry
2.5. Sensory Evaluation
2.6. Scanning Electron Microscopy (SEM)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Pasta
3.2. Physical Parameters of Pasta
3.2.1. Cooking Properties of Pasta
3.2.2. Texture Analysis
3.2.3. Color Characteristics of Pasta
3.2.4. Water Activity Characteristics of Dried Pasta
3.2.5. Rheological Properties of Enriched Pasta
3.2.6. Thermal Gelling Properties of Pasta
3.3. Scanning Electron Microscopy of Pasta Dough
3.4. Sensory Evaluation
3.5. Multiple Factor Analysis (MFA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas-Gonzalez, R.; Manuel, V.; Jose, A.; Clemencia, C.; Blerina, S.; Moscaritolo, S.; Juana, F.; Giampiero, S. Persimmon flours as functional ingredients in spaghetti: Chemical, physico-chemical and cooking quality. J. Food Meas. Charact. 2020, 14, 1634–1644. [Google Scholar] [CrossRef]
- Barbara, B.; Rebeka, F.; Ildikó, S.; Klára, P.; Attila, G. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. LWT-Food Sci. Technol. 2019, 116, 108542. [Google Scholar]
- Minarovičová, L.; Michaela, L.; Zlatica, K.; Jolana, K.; Veronika, K. Effect of pumpkin powder incorporation on cooking and sensory parameters of pasta. J. Food Sci. 2017, 11, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Tudorica, C.M.; Kuri, V.; Brennan, S. Nutritional and Physicochemical Characteristics of Dietary Fiber Enriched Pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Borneo, R.; Aguirre, A. Chemical composition, cookingquality, and consumer acceptance of pasta made with dried amaranth leaves flour. LWT-Food Sci. Technol. 2008, 41, 1748–1751. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of four types of dietary fiber on the technological quality of pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef]
- Abdel-Moemin, A.R. Analysis of phenolic acids and anthocyanins of pasta-like product enriched with date kernels (Phoenix dactylifera L.) and purple carrots (Daucus carota L. sp. sativus var. atrorubens). J. Food Meas. Charact. 2016, 10, 507–519. [Google Scholar] [CrossRef]
- Crizel, T.M.; Araujo, R.R.; Rios, A.O.; Rech, R.; Flôres, S.H. Orange fiber as a novel fat replacer in lemon ice cream. Food Sci. Technol. 2014, 34, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Spinelli, S.; Conto, F.; Del Nobile, M.A. Chemical composition, sensory and cooking quality evaluation of durum wheat spaghetti enriched with pea flour. Int. J. Food Sci. Technol. 2014, 49, 1544–1556. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT-Food Sci. Technol. 2015, 63, 470–474. [Google Scholar] [CrossRef]
- Ovando-Martinez, S.; Sa´yago-Ayerdi, E.; Agama-Acevedo, I.; Goni, L.A.; Bello, P. Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chem. 2009, 113, 121–126. [Google Scholar] [CrossRef]
- Aguedo, M.; Kohnen, S.; Rabetafika, N.; Vanden-Bossche, S.; Sterckx, J.; Blecker, C. Composition of byproducts from cooked fruit processing and potential use in food products. J. Food Compos. Anal. 2012, 27, 61–69. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Aguedo, M.; Paquot, M.; Blecker, C. Effects of processing on the composition and physicochemical properties of fibre concentrate from cooked fruit pomaces. Food Bioprocess Technol. 2014, 7, 749–760. [Google Scholar] [CrossRef]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Bchir, B.; Felfoul, I.; Bouaziz, M.A.; Gharred, T.; Yaich, H.; Noumi, E.; Snoussi, M.; Bejaoui, H.; Kenzali, Y.; Blecker, C.; et al. Investigation of physicochemical, nutritional, textural, and sensory properties of yoghurt fortified with fresh and dried Spirulina (Arthrospira platensis). Int. Food Res. J. 2019, 26, 1565–1576. [Google Scholar]
- Bouacida, S.; Amal, B.A.; Hayet, B.; Koubaier, B.; Christophe, B.; Nabiha, B. Chemical composition, cooking quality, texture and consumer acceptance of pasta with Eruca vesicaria leaves. Int. J. Food Sci. Technol. 2017, 52, 2248–2255. [Google Scholar] [CrossRef]
- Codex Alimentarius Hungaricus; Directive 2-231: Dried Pasta Products; Ministry of Rural Development: Budapest, Hungary, 2013.
- AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; Helrich, K., Ed.; Method Chapter 32 Cereal Foods; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Ainsa, A.; Honrado, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche M., J.B. Innovative Development of Pasta with the Addition of Fish By-Products from Two Species. Foods 2021, 10, 1889. [Google Scholar] [CrossRef]
- Mestres, C.; Colonna, P.; Bule, O. Characteristics of starch networks within rice flour noodles and mungbean starch vermicelli. J. Food Sci. 1988, 53, 1809–1812. [Google Scholar] [CrossRef]
- Sozer, N.; Dalgıç, A.C.; Kaya, A. Thermal, textural and cooking properties of spaghetti enriched with resistant starch. J. Food Eng. 2007, 81, 476–484. [Google Scholar] [CrossRef]
- Bchir, B.; Besbes, S.; Karoui, R.; Attia, H.; Paquot, M.; Blecker, C. Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioprocess Technol. 2012, 5, 1840–1852. [Google Scholar] [CrossRef]
- American Association of Cereal Chemistry. Approved Methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists (AACC): St. Paul, MN, USA, 2000. [Google Scholar]
- Chillo, S.; Laverse, J.; Falcone, P.M.; Protopapa, A.; Del Nobile, M.A. Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. J. Cereal Sci. 2008, 47, 144–152. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.J.; Fellows, C.M.; Blazek, J.; Gilbert, E.P. Effect of inulin soluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 132, 993–1002. [Google Scholar] [CrossRef]
- Zhen, M.; Joyce, I.B. Advances in the Design and Production of Reduced-Fat and Reduced-Cholesterol Salad Dressing and Mayonnaise: A Review. Food Bioprocess Technol. 2013, 6, 648–670. [Google Scholar]
- Shreenithee, R.; Prabhasankar, P. Effect of different shapes on the quality, microstructure, sensory. and nutritional characteristics of yellow pea flour incorporated pasta. Food Meas. Charact. 2013, 7, 166–176. [Google Scholar] [CrossRef]
- Kuchtová, V.; Kohajdová, Z.; Karovičová, J.; Mešterová, E. Use of pumpkin fiber for the preparation of pasta. Chem. Listy 2016, 11, 808–811. [Google Scholar]
- Petitot, M.; Boyer, L.; Minier, C.; Micard, V. Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Res. Int. 2010, 43, 634–641. [Google Scholar] [CrossRef]
- Rakhesh, N.; Fellows, C.M.; Sissons, M. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres. J. Sci. Food Agric. 2015, 95, 2–11. [Google Scholar] [CrossRef]
- Li, P.; Lu, W.; Hsieh, C.; Li, T.; Huang, D. Rheological Properties of Dough and Quality of Salted Noodles Supplemented with Djulis (Chenopodium formosanum Koidz.) Flour. J. Agric. Sci. 2015, 6, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Sibakov, N.; Heinio, R.; Cassan, D.; Holopainen-Mantila, U.; Micard, V.; Lantto, R.; Sozer, N. Effect of bioprocessing and fractionation on the structural, textural and sensory properties of gluten-free faba bean pasta. LWT-Food Sci. Technol. 2016, 67, 27–36. [Google Scholar] [CrossRef]
- Susanna, S.; Prabhasankar, P. A study on development of gluten free pasta and its biochemical and immunological validation. LWT-Food Sci. Technol. 2013, 50, 613–621. [Google Scholar] [CrossRef]
- Wang, L.; Wei, D.; Haifeng, Q.; Hui, Z.; Qi, X. Effect of rice bran fibre on the quality of rice pasta. Int. J. Food Sci. Technol. 2018, 53, 81–87. [Google Scholar] [CrossRef]
- Hoseney, C. Principles of Cereal Science and Technology; American Association of Cereal Chemists: St. Paul, MN, USA, 1999; pp. 269–274. [Google Scholar]
- Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef]
- Silva, M.; Spencer, J.; Shu-Hong, Y.; Martin, S.; Bonny, B.; Yao, O. Effect of selected dietary fibre sources and addition levels on physical and cooking quality attributes of fibre-enhanced pasta. Food Qual. Saf. 2019, 3, 117–127. [Google Scholar]
- Wojtowicz, A.; Moscicki, L. Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT-Food Sci. Technol. 2014, 59, 1175–1185. [Google Scholar] [CrossRef]
- Islas-Rubio, A.R.; Calderon de la Barca, A.M.; Cabrera-Chavez, F.; Cota-Gastelum, A.G.; Beta, T. Effect of semolina replacement with a raw: Popped amaranth flour blend on cooking quality and texture of pasta. LWT-Food Sci. Technol. 2014, 57, 217–222. [Google Scholar] [CrossRef]
- Sudha, M.L.; Rajeswari, G.; Venkateswara-Rao, O. Effect of wheat and oat brans on the dough rheological and quality characteristics of instant vermicelli. J. Texture Stud. 2011, 43, 195–202. [Google Scholar] [CrossRef]
- Brennan, C.S.; Kuri, V.; Tudorica, C.M. Inulin-enriched pasta: Effects on textural properties and starch degradation. Food Chem. 2004, 86, 189–193. [Google Scholar] [CrossRef]
- Hager, A.S.; Czerny, M.; Bez, J.; Zannini, E.; Arendt, E.K. Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. J. Cereal Sci. 2013, 58, 156–163. [Google Scholar] [CrossRef]
- Cemin, R.P.; Rios, A.O.; Thys, R.C.S. Use of broccoli (Brassica oleracea italica) leaves powder to produce fresh pasta. In Proceedings of the 20th Brazilian Congress of Chemical Engineering, Florinopolis, SC, USA, 19–22 October 2014; pp. 1–8. [Google Scholar]
- Wojciech, M.; Maciej, T. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wadhwa, S.S. Industry relevant approaches for minimizing the bitterness of bioactive compounds in functional foods: A review. Food Bioprocess Technol. 2013, 6, 607–627. [Google Scholar] [CrossRef]
- Lauková, M.; Kohajdová, Z.; Karovičová, J. Effect of hydrated apple powder on dough rheology and cookies quality. Potravinarstvo 2016, 10, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Aramouni, F.; Mahmoud, A. Physicochemical and sensory characteristics of no-bake wheat-soy snack bars. J. Sci. Food Agric. 2011, 91, 44–51. [Google Scholar] [CrossRef]
- Martín-Esparza, M.; Raigon, M.; Raga, A.; Albors, A. Functional, Thermal and rheological properties of high fibre fresh pasta: Effect of tiger nut flour and xanthan gum addition. Food Bioprocess Technol. 2018, 11, 2131–2141. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT-Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef] [Green Version]
By-Product Addition (g/100 g Pasta) | Fiber (g/100 g) | Protein (g/100 g) | Carbohydrate (g/100 g) | Fat (g/100 g) | Ash (g/100 g) | Energy (Kcal) | |
---|---|---|---|---|---|---|---|
Apple | 2.5% | 5.30 ± 0.01 e | 11.79 ± 0.31 a | 80.23 ± 1.10 abc | 1.70 ± 0.21 a | 6.28 ± 0.15 de | 383.38 ± 3.22 bc |
5% | 7.85 ± 0.25 d | 11.99 ± 0.22 a | 79.78 ± 1.15 abc | 1.82 ± 0.21 a | 6.41 ± 0.10 d | 383.46 ± 1.15 bcd | |
7.5% | 10.08 ± 0.10 c | 12.03 ± 0.51 a | 78.59 ± 2.02 bc | 1.86 ± 0.15 a | 7.52 ± 0.50 abc | 379.22 ± 2.54 cde | |
10% | 12.42 ± 0.20 b | 12.12 ± 0.61 a | 77.81 ± 2.50 c | 1.88 ± 0.10 a | 8.19 ± 0.20 a | 376.64 ± 2.31 e | |
Pear | 2.5% | 5.60 ± 0.35 e | 11.66 ± 0.55 a | 80.36 ± 0.23 abc | 1.71 ± 0.14 a | 6.27 ± 0.22 de | 383.47 ± 2.10 bc |
5% | 7.29 ± 0.50 d | 11.83 ± 0.10 a | 79.18 ± 1.50 bc | 1.80 ± 0.15 a | 7.19 ± 0.25 c | 380.24 ± 1.86 cde | |
7.5% | 10.28 ± 0.01 c | 12.08 ± 1.02 a | 78.59 ± 1.20 bc | 1.91 ± 0.30 a | 7.42 ± 0.70 bc | 379.87 ± 3.18 cde | |
10% | 13.00 ± 0.61 a | 12.01 ± 0.15 a | 78.20 ± 1.15 bc | 1.93 ± 0.01 a | 7.77 ± 0.10 abc | 378.57 ± 3.71 de | |
Date | 2.5% | 5.80 ± 0.55 e | 11.79 ± 0.10 a | 80.86 ± 2.15 ab | 1.65 ± 0.21 a | 5.70 ± 0.51 e | 385.45 ± 2.50 d |
5% | 7.45 ± 0.41 d | 11.98 ± 0.21 a | 79.80 ± 0.25 abc | 1.70 ± 0.11 a | 6.52 ± 0.45 d | 382.42 ± 1.15 bcd | |
7.5% | 10.20 ± 0.10 c | 12.05 ± 0.31 a | 78.86 ± 2.50 bc | 1.75 ± 0.15 a | 7.34 ± 0.42 abc | 379.39 ± 2.40 cde | |
10% | 12.70 ± 0.30 ab | 12.11 ± 0.45 a | 78.12 ± 1.15 bc | 1.82 ± 0.40 a | 7.95 ± 0.10 ab | 377.30 ± 0.56 de | |
Control | 0% | 4.00 ±0.01 f | 11.55 ± 0.60 a | 82.49 ± 1.50 a | 1.65 ± 0.20 a | 4.31 ± 0.25 f | 391.01 ± 1.23 a |
F | 266.59 | 0.46 | 2.23 | 0.71 | 30.27 | 7.80 |
By-Product Addition (g/100 g DM) | Optimum Cooking Time (Min) | Swelling Index (g of Water/g of Pasta) | Cooking Water Absorption (g/kg) | Cooking Loss (g/100 g of Pasta) | |
---|---|---|---|---|---|
Apple | 2.5% | 16.20 ± 0.01 b | 2.94 ± 0.12 de | 111.00 ± 2.50 h | 4.06 ± 0.15 cd |
5% | 13.32 ± 0.04 f | 3.05 ± 0.01 cd | 114.10 ± 2.15 fg | 4.55 ± 0.52 c | |
7.5% | 12.47 ± 0.04 g | 3.25 ± 0.05 bc | 120.32 ± 0.05 bcd | 5.10 ± 0.11 b | |
10% | 10.51 ± 0.01 j | 3.86 ± 0.04 a | 123.20 ± 1.15 a | 6.41 ± 0.16 a | |
Pear | 2.5% | 15.06 ± 0.02 d | 2.82 ± 0.13 e | 113.50 ± 1.50 gh | 4.10 ± 0.10 cd |
5% | 13.54 ± 0.03 e | 2.95 ± 0.02 de | 116.41 ± 2.12 ef | 4.21 ± 0.13 c | |
7.5% | 12.26 ± 0.01 h | 3.14 ± 0.11 bcd | 119.64 ± 1.15 cd | 5.23 ± 0.40 b | |
10% | 11.15 ± 0.24 i | 3.36 ± 0.22 b | 121.23 ± 1.50 abc | 6.20 ± 0.24 a | |
Date | 2.5% | 15.19 ± 0.02 c | 2.77 ± 0.15 e | 112.00 ± 1.18 gh | 4.04 ± 0.41 cd |
5% | 13.46 ± 0.03 e | 2.90 ± 0.14 de | 115.10 ± 1.50 ef | 4.40 ± 0.55 c | |
7.5% | 12.27 ± 0.05 h | 3.10 ± 0.22 cd | 118.23 ± 1.30 de | 5.15 ± 0.32 b | |
10% | 10.18 ± 0.02 k | 3.23 ± 0.13 bc | 122.10 ± 1.52 ab | 6.71 ± 0.17 a | |
Control | 0% | 17.30 ± 0.01 a | 2.54 ± 0.01 f | 98.50 ± 1.50 i | 3.80 ± 0.22 d |
F | 3181.54 | 21.63 | 58.27 | 33.46 |
By-Product Addition (g/100 g DM) | T0 | T1 | T2 | T3 | F | ||
---|---|---|---|---|---|---|---|
Apple | Firmness (N) | 2.5% | 8.25 ± 0.20 a | 8.00 ± 0.11 ab | 7.55 ± 0.05 b | 6.93 ± 0.05 c | 29.88 |
5% | 8.05 ± 0.10 a | 7.25 ± 0.12 ab | 6.86 ± 0.05 b | 6.04 ± 0.01 b | 4.263 | ||
7.5% | 7.65 ± 0.21 a | 6.35 ± 0.05 b | 6.02 ± 0.21 c | 5.85 ± 0.15 c | 95.88 | ||
10% | 7.25 ± 0.13 a | 6.21 ± 0.10 b | 5.86 ± 0.15 c | 5.10 ± 0.12 d | 154.6 | ||
Adhesiveness (N.s) | 2.5% | −0.24 ± 0.01 a | −0.22 ± 0.02 a | −0.20 ± 0.01 a | −0.19 ± 0.01 a | 0.55 | |
5% | −0.22 ± 0.00 c | −0.19 ± 0.01 b | −0.16 ± 0.02 a | −0.14 ± 0.01 a | 24.50 | ||
7.5% | −0.20 ± 0.02 c | −0.15 ± 0.01 b | −0.13 ± 0.01 ab | −0.11 ± 0.02 a | 17.90 | ||
10% | −0.18 ± 0.01 c | −0.14 ± 0.01 b | −0.12 ± 0.02 ab | −0.10 ± 0.02 a | 14.00 | ||
Pear | Firmness (N) | 2.5% | 8.46 ± 0.15 a | 7.22 ± 0.02 b | 6.85 ± 0.10 c | 6.51 ± 0.18 d | 132.13 |
5% | 8.26 ± 0.20 a | 7.13 ± 0.15 b | 6.64 ± 0.01 c | 6.05 ± 0.15 c | 30.86 | ||
7.5% | 8.05 ± 0.10 a | 7.02 ± 0.10 b | 6.45 ± 0.16 c | 5.85 ± 0.10 d | 192.28 | ||
10% | 7.55 ± 0.50 a | 6.95 ± 0.30 b | 6.01 ± 0.12 c | 5.65 ± 0.10 c | 63.53 | ||
Adhesiveness (N.s) | 2.5% | −0.25 ± 0.01 b | −0.21 ± 0.05 ab | −0.20 ± 0.01 ab | −0.17 ± 0.01 a | 5.17 | |
5% | −0.23 ± 0.01 c | −0.19 ± 0.03 b | −0.17 ± 0.01 ab | −0.15 ± 0.02 a | 9.33 | ||
7.5% | −0.21 ± 0.01 b | −0.20 ± 0.01 b | −0.18 ± 0.01 b | −0.13 ± 0.05 a | 5.42 | ||
10% | −0.20 ± 0.02 c | −0.18 ± 0.02 bc | −0.15 ± 0.02 ab | −0.14 ± 0.01 a | 7.00 | ||
Date | Firmness (N) | 2.5% | 7.95 ± 0.20 a | 7.04 ± 0.35 b | 6.75 ± 0.15 c | 5.96 ± 0.11 d | 69.04 |
5% | 7.85 ± 0.30 a | 6.98 ± 0.06 b | 6.45 ± 0.05 c | 5.76 ± 0.10 d | 99.91 | ||
7.5% | 7.55 ± 0.20 a | 6.45 ± 0.15 b | 5.85 ± 0.11 c | 5.15 ± 0.05 d | 142.61 | ||
10% | 7.24 ± 0.18 a | 6.19 ± 0.20 b | 5.64 ± 0.12 c | 5.01 ± 0.10 d | 103.50 | ||
Adhesiveness (N.s) | 2.5% | −0.20 ± 0.03 b | −0.17 ± 0.01 ab | −0.15 ± 0.02 a | −0.13 ± 0.02 a | 5.94 | |
5% | −0.18 ± 0.01 b | −0.17 ± 0.01 b | −0.16 ± 0.02 ab | −0.14 ± 0.01 a | 5.00 | ||
7.5% | −0.17 ± 0.01 c | −0.15 ± 0.01 bc | −0.14 ± 0.01 ab | −0.12 ± 0.02 a | 7.42 | ||
10% | −0.17 ± 0.01 b | −0.14 ± 0.02 a | −0.12 ± 0.01 a | −0.11 ± 0.02 a | 8.40 | ||
Control | Firmness(N) | 0% | 12.50 ± 0.05 a | 10.25 ± 0.15 b | 9.55 ± 0.10 c | 9.02 ± 0.01 d | 802.25 |
Adhesiveness (N.s) | −0.96 ± 0.01 c | −0.85 ± 0.03 b | −0.80 ± 0.03 a | −0.76 ± 0.01 a | 28.37 |
Pear | Apple | Date | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | ||
L* | 2.5% | 56.24 ±1.72 | 54.20 ±0.13 | 54.01 ±0.41 | 53.01 ±2.01 | 53.17 ±0.15 | 53.69 ±0.31 | 52.25 ±0.21 | 52.01 ±0.11 | 53.04 ±0.38 | 53.65 ±0.56 | 52.72 ±0.14 | 52.01 ±0.04 |
5% | 55.34 ±0.51 | 53.30 ±1.41 | 49.44 ±1.20 | 49.01 ±0.27 | 53.22 ±1.50 | 53.70 ±2.01 | 53.60 ±1.03 | 52.20 ±1.23 | 45.79 ±0.46 | 43.32 ±0.57 | 44.72 ±0.65 | 41.25 ±1.75 | |
7.5% | 49.48 ±1.01 | 47.78 ±2.12 | 47.21 ±0.01 | 46.00 ±1.25 | 52.67 ±0.06 | 52.55 ±0.75 | 51.44 ±0.38 | 50.62 ±0.34 | 41.61 ±0.08 | 40.26 ±0.04 | 40.76 ±0.31 | 38.54 ±0.02 | |
10% | 41.38 ±1.51 | 40.23 ±1.26 | 40.33 ±2.01 | 38.56 ±1.14 | 51.86 ±0.10 | 50.73 ±0.15 | 50.01 ±0.01 | 48.41 ±2.02 | 39.29 ±0.45 | 38.84 ±0.08 | 37.20 ±0.75 | 36.75 ±0.13 | |
a* | 2.5% | 4.87 ±0.18 | 4.60 ±0.06 | 4.20 ±0.05 | 4.16 ±0.02 | 4.27 ±0.45 | 4.15 ±0.23 | 4.11 ±0.06 | 4.12 ±0.02 | 3.56 ±0.10 | 3.16 ±0.05 | 3.17 ±0.01 | 3.20 ±0.38 |
5% | 1.53 ±0.03 | 1.50 ±0.01 | 1.49 ±0.04 | 1.42 ±0.02 | 1.64 ±0.02 | 1.31 ±0.18 | 1.11 ±0.07 | 1.10 ±0.13 | 1.89 ±0.25 | 1.56 ±0.36 | 1.16 ±0.31 | 1.11 ±0.01 | |
7.5% | 0.46 ±0.02 | 0.45 ±0.04 | 0.43 ±0.07 | 0.44 ±0.01 | 0.41 ±0.03 | 0.40 ±0.01 | 0.40 ±0.04 | 0.38 ±0.01 | 0.75 ±0.05 | 0.71 ±0.02 | 0.72 ±0.06 | 0.70 ±0.05 | |
10% | −1.40 ±0.67 | −1.38 ±0.29 | −1.39 ±0.38 | −1.37 ±0.13 | −1.72 ±0.14 | −1.70 ±0.04 | −1.69 ±0.01 | −1.67 ±0.06 | −1.56 ±0.02 | −1.57 ±0.01 | −1.55 ±0.06 | −1.52 ±0.08 | |
b* | 2.5% | 16.56 ±0.05 | 16.33 ±0.18 | 16.28 ±0.03 | 16.13 ±0.02 | 18.40 ±0.10 | 18.14 ±0.01 | 18.10 ±0.02 | 18.16 ±0.02 | 12.78 ±0.05 | 12.24 ±0.31 | 12.15 ±0.14 | 12.10 ±0.01 |
5% | 13.57 ±0.36 | 13.36 ±0.76 | 13.20 ±0.29 | 13.00 ±0.12 | 16.32 ±0.07 | 16.04 ±0.01 | 15.97 ±0.05 | 16.00 ±0.02 | 10.83 ±0.04 | 10.17 ±0.03 | 10.11 ±0.20 | 10.02 ±0.13 | |
7.5% | 10.45 ±0.46 | 10.25 ±0.11 | 10.23 ±0.03 | 10.13 ±0.02 | 14.70 ±0.03 | 14.15 ±0.11 | 14.05 ±0.06 | 14.00 ±0.02 | 8.36 ±0.01 | 8.08 ±0.04 | 7.97 ±0.01 | 8.00 ±0.06 | |
10% | 8.59 ±0.22 | 8.23 ±0.01 | 8.20 ±0.14 | 8.25 ±0.24 | 12.83 ±0.05 | 12.26 ±0.05 | 12.13 ±0.01 | 12.10 ±0.02 | 5.19 ±0.01 | 5.10 ±0.31 | 5.06 ±0.14 | 5.08 ±0.05 | |
∆E | 2.5% | 14.14 ±0.03 | 15.88 ±0.01 | 16.05 ±0.25 | 16.96 ±0.15 | 10.69 ±0.10 | 15.34 ±0.25 | 16.63 ±0.21 | 16.82 ±0.14 | 22.13 ±0.25 | 18.95 ±0.10 | 24.41 ±0.05 | 20.24 ±0.01 |
5% | 16.96 ±0.20 | 18.58 ±0.05 | 21.70 ±0.10 | 22.17 ±0.52 | 13.72 ±0.21 | 16.65 ±0.18 | 16.80 ±0.34 | 17.93 ±0.19 | 25.99 ±0.23 | 28.43 ±0.14 | 27.34 ±0.27 | 30.30 ±0.05 | |
7.5% | 23.46 ±0.15 | 24.90 ±0.10 | 26.96 ±0.23 | 27.18 ±0.14 | 16.16 ±0.14 | 18.83 ±0.28 | 19.76 ±0.26 | 20.45 ±0.31 | 30.92 ±0.25 | 32.20 ±0.05 | 31.84 ±0.20 | 33.69 ±0.34 | |
10% | 31.28 ±0.18 | 32.42 ±0.30 | 32.35 ±0.05 | 33.80 ±0.10 | 20.14 ±0.15 | 21.83 ±0.27 | 22.45 ±0.04 | 23.71 ±0.16 | 34.12 ±0.14 | 35.32 ±0.34 | 36.67 ±0.25 | 37.02 ±0.13 |
By-Product Addition (g/100 g DM) | T0 | T1 | T2 | T3 | F | |
---|---|---|---|---|---|---|
Apple | 2.5% | 0.688 ± 0.005 a | 0.585 ± 0.002 b | 0.573 ± 0.005 c | 0.565 ± 0.004 d | 602.20 |
5% | 0.686 ± 0.001 a | 0.592 ± 0.005 b | 0.577 ± 0.001 c | 0.568 ± 0.003 d | 986.75 | |
7.5% | 0.685 ± 0.004 a | 0.597 ± 0.003 b | 0.580 ± 0.003 c | 0.570 ± 0.005 d | 561.22 | |
10% | 0.701 ± 0.003 a | 0.599 ± 0.002 b | 0.582 ± 0.005 c | 0.571 ± 0.005 d | 677.12 | |
Pear | 2.5% | 0.695 ± 0.005 a | 0.577 ± 0.006 b | 0.568 ± 0.005 b | 0.546 ± 0.003 c | 528.18 |
5% | 0.699 ± 0.002 a | 0.579 ± 0.003 b | 0.569 ± 0.002 c | 0.549 ± 0.001 d | 3066.66 | |
7.5% | 0.701 ± 0.005 a | 0.581 ± 0.002 b | 0.572 ± 0.005 bc | 0.550 ± 0.004 c | 9.80 | |
10% | 0.702 ± 0.002 a | 0.583 ± 0.001 b | 0.574 ± 0.005 c | 0.555 ± 0.001 d | 1721.93 | |
Date | 2.5% | 0.689 ± 0.003 a | 0.568 ± 0.001 b | 0.545 ± 0.005 c | 0.540 ± 0.004 c | 115.21 |
5% | 0.691 ± 0.005 a | 0.690 ± 0.001 a | 0.573 ± 0.004 b | 0.544 ± 0.002 c | 1551.73 | |
7.5% | 0.698 ± 0.005 a | 0.590 ± 0.006 b | 0.576 ± 0.002 b | 0.551 ± 0.001 c | 204.59 | |
10% | 0.700 ± 0.003 a | 0.598 ± 0.005 b | 0.579 ± 0.001 b | 0.555 ± 0.002 c | 239.85 | |
Control | 0% | 0.672 ± 0.001 a | 0.558 ± 0.001 b | 0.541 ± 0.005 b | 0.537 ± 0.003 b | 16.24 |
Tenacity (P) (mm of H2O) | Extensibility (L) (mm) | P/L | Deformation Energy (×10−4) | ||
---|---|---|---|---|---|
Dough Control | 0% | 80.23 ± 1.80 h | 62.53 ± 0.40 a | 1.29 ± 0.05 g | 154.82 ± 2.30 a |
Flour with Date Fibers | 2.5% | 115.23 ± 1.50 g | 25.84 ± 0.50 b | 4.46 ± 0.21 f | 135.21 ± 1.15 b |
5% | 123.16 ± 1.50 ef | 23.64 ± 1.20 bcd | 5.21 ± 0.03 e | 133.11 ± 2.23 bc | |
7.5% | 130.52 ± 2.30 bc | 20.15 ± 1.40 defg | 6.47 ± 0.01 c | 130.50 ± 1.01 cde | |
10% | 135.43 ± 1.20 a | 18.01 ± 1.50 fg | 7.52 ± 0.22 a | 128.30 ± 2.84 ef | |
Flour with Pear Fibers | 2.5% | 114.12 ± 1.40 g | 26.23 ± 1.50 b | 4.35 ± 0.10 f | 133.10 ± 1.5 0 bcd |
5% | 122.40 ± 2.80 ef | 23.60 ± 3.70 bcd | 5.18 ± 0.13 e | 129.50 ± 5.30 def | |
7.5% | 128.00 ± 1.50 cd | 21.54 ± 1.10 cdef | 5.94 ± 0.23 d | 127.20 ± 2.10 efg | |
10% | 133.60 ± 3.50 ab | 18.76 ± 3.80 fg | 7.12 ± 0.01 b | 125.23 ± 1.40 fg | |
Flour with Apple Fibers | 2.5% | 121.23 ± 3.50 f | 24.13 ± 1.40 bc | 5.02 ± 0.11 e | 134.23 ± 2.80 bc |
5% | 126.30 ± 2.10 de | 22.10 ± 1.70 cde | 5.71 ± 0.02 d | 130.50 ± 3.50 bc | |
7.5% | 130.23 ± 1.80 bc | 19.50 ± 1.20 efg | 6.68 ± 0.22 c | 126.23 ± 2.40 efg | |
10% | 135.10 ± 2.70 a | 17.50 ± 1.90 g | 7.72 ± 0.01 a | 124.10 ± 1.50 g | |
F | 142.84 | 118.49 | 531.40 | 34.47 |
By-Product Addition (g/100 g DM) | T onset (°C) | T endset (°C) | Enthalpy (∆H j/g) | Gelatinization Temperature (°C) | |
---|---|---|---|---|---|
Control | 0% | 57.23 ± 0.25 a | 67.42 ± 0.29 c | 0.97 ± 0.06 a | 62.07 ± 0.22 bc |
Pear | 2.5% | 56.03 ± 0.40 b | 67.89 ± 0.25 bc | 0.80 ± 0.01 bcd | 62.31 ± 0.16 c |
5% | 55.56 ± 0.45 bc | 68.06 ± 0.35 bc | 0.71 ± 0.03 ef | 62.54 ± 0.05 bc | |
7.5% | 55.30 ± 0.30 cd | 68.35 ± 0.15 abc | 0.66 ± 0.03 fg | 62.61 ± 0.05 abc | |
10% | 55.05 ± 0.21 cd | 68.20 ± 0.65 bc | 0.62 ± 0.01 g | 62.84 ± 0.20 a | |
Apple | 2.5% | 56.88 ± 0.43 a | 68.01 ± 0.12 bc | 0.84 ± 0.02 b | 61.10 ± 0.35 d |
5% | 56.01 ± 0.31 b | 68.25 ± 0.35 abc | 0.76 ± 0.01 cde | 62.29 ± 0.12 c | |
7.5% | 55.50 ± 0.26 bc | 68.45 ± 0.10 c | 0.68 ± 0.02 de | 62.36 ± 0.23 c | |
10% | 55.25 ± 0.29 cd | 68.81 ± 0.20 a | 0.65 ± 0.03 fg | 62.44 ± 0.25 bc | |
Date | 2.5% | 55.86 ± 0.32 b | 67.95 ± 0.14 bc | 0.82 ± 0.01 bc | 62.37 ± 0.30 c |
5% | 55.10 ± 0.15 cd | 68.08 ± 0.23 bc | 0.74 ± 0.02 cde | 62.56 ± 0.15 abc | |
7.5% | 54.89 ± 0.10 d | 68.55 ± 0.15 ab | 0.64 ± 0.02 g | 62.78 ± 0.11 abc | |
10% | 54.75 ± 0.19 d | 68.70 ± 0.22 ab | 0.60 ± 0.01 g | 62.93 ± 0.20 ab | |
F | 19.10 | 2.75 | 21.95 | 9.08 |
Taste | Aftertaste | Appearance | Texture | Color | Overall Acceptability | ||
---|---|---|---|---|---|---|---|
Control | 0% | 6.5 ± 0.4 a | 6.6 ± 0.5 c | 6.0 ± 0.3 bcd | 6.3 ± 0.2 ab | 5.9 ± 0.4 bc | 6.2 ± 0.2 abc |
Flour with Apple Fibers | 2.5% | 6.6 ± 0.1 a | 6.5 ± 0.2 ab | 6.2 ± 0.1 ab | 6.5 ± 0.3 a | 6.4 ± 0.1 a | 6.4 ± 0.1 a |
5% | 6.5 ± 0.3 a | 6.0 ± 0.1 c | 6.0 ± 0.2 bcd | 6.0 ± 0.1 bcd | 5.9 ± 0.1 b | 6.0 ± 0.1 cde | |
7.5% | 6.3 ± 0.2 ab | 6.1 ± 0.2 bc | 5.9 ± 0.3 be | 5.4 ± 0.4 fg | 5.6 ± 0.2 cde | 5.8 ± 0.2 ef | |
10% | 6.4 ± 0.1 ab | 6.0 ± 0.1 c | 5.8 ± 0.1 cde | 5.2 ± 0.2 g | 5.4 ± 0.2 e | 5.7 ± 0.1 f | |
Flour with Pear Fibers | 2.5% | 6.4 ± 0.1 ab | 6.5 ± 0.2 ab | 6.1 ± 0.1 abc | 6.2 ± 0.2 abc | 6.5 ± 0.1 a | 6.3 ± 0.1 ab |
5% | 6.2 ± 0.1 abc | 6.0 ± 0.2 c | 5.8 ± 0.1 cde | 5.9 ± 0.1 cde | 6.0 ± 0.1 bc | 5.9 ± 0.2 def | |
7.5% | 6.0 ± 0.2 bc | 6.1 ± 0.1 bc | 5.6 ± 0.2 e | 5.6 ± 0.1 ef | 5.8 ± 0.1 bcd | 5.8 ± 0.2 ef | |
10% | 5.8 ± 0.3 c | 6.0 ± 0.2 c | 5.7 ± 0.1 de | 5.5 ± 0.1 fg | 5.5 ± 0.1 de | 5.8 ± 0.1 ef | |
Flour with Date Fibers | 2.5% | 6.3 ± 0.1 ab | 6.5 ± 0.1 ab | 6.4 ± 0.1 a | 6.4 ± 0.2 a | 6.5 ± 0.1 a | 6.4 ± 0.1 a |
5% | 6.2 ± 0.2 abc | 6.4 ± 0.2 abc | 6.2 ± 0.1 ab | 5.7 ± 0.2 def | 6.0 ± 0.2 b | 6.1 ± 0.1 bcd | |
7.5% | 6.4 ± 0.1 ab | 6.4 ± 0.1 abc | 6.0 ± 0.2 bcd | 5.6 ± 0.1 ef | 5.7 ± 0.1 bcde | 6.2 ± 0.1 abc | |
10% | 6.3 ± 0.1 abc | 6.0 ± 0.3 c | 5.8 ± 0.2 cde | 5.4 ± 0.1 fg | 5.5 ± 0.2 de | 5.8 ± 0.2 ef | |
F | 2.60 | 3.66 | 4.84 | 14.05 | 13.81 | 8.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bchir, B.; Karoui, R.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties. Foods 2022, 11, 1393. https://doi.org/10.3390/foods11101393
Bchir B, Karoui R, Danthine S, Blecker C, Besbes S, Attia H. Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties. Foods. 2022; 11(10):1393. https://doi.org/10.3390/foods11101393
Chicago/Turabian StyleBchir, Brahim, Romdhane Karoui, Sabine Danthine, Christophe Blecker, Souhail Besbes, and Hamadi Attia. 2022. "Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties" Foods 11, no. 10: 1393. https://doi.org/10.3390/foods11101393
APA StyleBchir, B., Karoui, R., Danthine, S., Blecker, C., Besbes, S., & Attia, H. (2022). Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties. Foods, 11(10), 1393. https://doi.org/10.3390/foods11101393