Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analytical Framework
2.3. Data Processing
2.4. Methods
2.4.1. Top Network
2.4.2. Network Centrality
- (1)
- Degree Centrality
- (2)
- Betweenness Centrality
- (3)
- Eigenvector Centrality
2.4.3. Core-Periphery Profile
3. Results
3.1. Cereal Trade Patterns of the BRI Region
3.2. Structural Evolution of the Top Networks
3.3. Centrality Characteristics of the Trade Networks
3.4. Core-Periphery Structures of the BRI Region
4. Discussion
4.1. Understanding of Cereal Trade Network Structures
4.2. Implications for Promoting the BRI Cereal Security
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matkovski, B.; Zekić, S.; Đokić, D.; Jurjević, Ž.; Đurić, I. Export competitiveness of agri-food sector during the E.U. integration process: Evidence from the Western Balkans. Foods 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Hu, S.; Tong, L.; Xia, C.; Ran, P. Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods 2022, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wang, L.; Li, C. Market Integration and Price Dynamics under Market Shocks in European Union Internal and External Cheese Export Markets. Foods 2022, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Arita, S.; Grant, J.; Sydow, S.; Beckman, J. Has global agricultural trade been resilient under coronavirus (COVID-19)? Findings from an econometric assessment of 2020. Food Policy 2022, 107, 102204. [Google Scholar] [CrossRef] [PubMed]
- Montolalu, M.H.; Ekananda, M.; Dartanto, T.; Widyawati, D.; Panennungi, M. The Analysis of Trade Liberalization and Nutrition Intake for Improving Food Security across Districts in Indonesia. Sustainability 2022, 14, 3291. [Google Scholar] [CrossRef]
- Wood, S.A.; Smith, M.R.; Fanzo, J.; Remans, R.; DeFries, R.S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 2018, 1, 34–37. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earths Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Lee, J. Network Effects on International Trade. Econ. Lett. 2012, 116, 199–201. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C.; Zhou, M.; Liu, Z. Research on global grain trade network pattern and its influencing factors. J. Nat. Resour. 2021, 36, 1545–1556. [Google Scholar] [CrossRef]
- Davis, K.F.; D’Odorico, P.; Rulli, M.C. Moderating diets to feed the future. Earths Future 2014, 2, 559–565. [Google Scholar] [CrossRef]
- Chen, W.; Golubchikov, O.; Liu, Z. Measuring polycentric structures of megaregions in China: Linking morphological and functional dimensions. Environ. Plan B Urban 2021, 48, 2272–2288. [Google Scholar] [CrossRef]
- Chen, W. Delineating the Spatial Boundaries of Megaregions in China: A City Network Perspective. Complexity 2021, 2574025. [Google Scholar] [CrossRef]
- Sartori, M.; Schiavo, S. Connected we stand: A network perspective on trade and global food security. Food Policy 2015, 57, 114–127. [Google Scholar] [CrossRef]
- Hou, W.; Liu, H.; Wang, H.; Wu, F. Structure and Patterns of the International Rare Earths Trade: A Complex Network Analysis. Resour. Policy 2018, 55, 133–142. [Google Scholar] [CrossRef]
- Cai, H.; Song, Y. The state’s position in international agricultural commodity trade: A complex network. China. Agr. Econ. Rev. 2016, 8, 430–442. [Google Scholar] [CrossRef]
- Wang, X.; Qiang, W.; Niu, S.; Liu, A.; Cehng, S.; Li, Z. Analysis on Global Agricultural Trade Network and Its Evolution. J. Nat. Resour. 2018, 33, 940–953. [Google Scholar]
- Shutters, S.T.; Muneepeerakul, R. Agricultural trade networks and patterns of economic development. PLoS ONE 2012, 7, e39756. [Google Scholar] [CrossRef]
- Gephart, J.A.; Pace, M.L. Structure and evolution of the global seafood trade network. Environ. Res. Lett. 2015, 10, 125014. [Google Scholar] [CrossRef]
- Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. The spatial and temporal dynamics of global meat trade networks. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Wang, R.; Zhu, J. Dynamics of global pork trade networks during 2000-2019 and its implications for China: A complex network analysis. J. Nat. Resour. 2021, 36, 1557–1572. [Google Scholar] [CrossRef]
- Duan, J.; Nie, C.; Wang, Y.; Yan, D.; Xiong, W. Research on Global Grain Trade Network Pattern and Its Driving Factors. Sustainability 2022, 14, 245. [Google Scholar] [CrossRef]
- Sun, J.; Mooney, H.; Wu, W.; Tang, H.; Tong, Y.; Xu, Z.; Liu, J. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [PubMed]
- Fair, K.R.; Bauch, C.T.; Anand, M. Dynamics of the global wheat trade network and resilience to shocks. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Moya, E.; Adenso-Díaz, B.; Lozano, S. Analysis and vulnerability of the international wheat trade network. Food. Secur. 2021, 13, 113–128. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global maize trade and food security: Implications from a social network model. Risk. Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, J. Implications from pattern and evolution of global rice trade: A complex network analysis. J. Nat. Resour. 2020, 35, 1055–1067. [Google Scholar]
- Nie, C.; Jiang, H.; Duan, J. Spatial Pattern Evolution of Global Grain Trade Network Since the 21st Century. Econ. Geogr. 2022, 41, 119–127. [Google Scholar]
- Torreggiani, S.; Mangioni, G.; Puma, M.J.; Fagiolo, G. Identifying the community structure of the food-trade international multi-network. Environ. Res. Lett. 2018, 13, 054026. [Google Scholar] [CrossRef]
- Dong, C.; Yin, Q.; Lane, K.J.; Yan, Z.; Shi, T.; Liu, Y.; Bell, M.L. Competition and transmission evolution of global food trade: A case study of wheat. Phys. A Stat. Mech. Appl. 2018, 509, 998–1008. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C. Evolution of Global Food Trade Patterns and Its Implications for Food Security Based on Complex Network Analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- Blondelvd, G. Fast unfolding of community hierarchies in large networks. J. Stat. Mech. Theory 2008, 10, 155–168. [Google Scholar]
- Chen, Y.; Li, E. Spatial pattern and evolution of cereal trade networks among the Belt and Road countries. Prog. Geog. 2019, 38, 1643–1654. [Google Scholar] [CrossRef]
- Han, D.; Li, G.; Zhong, Y. Evolution of the core structure of food trade networks in countries along the “Belt and Road” and China’s food policy response. Rural. Econ. 2021, 5, 11–21. [Google Scholar]
- Dupas, M.C.; Halloy, J.; Chatzimpiros, P. Time dynamics and invariant subnetwork structures in the world cereals trade network. PLoS ONE 2019, 14, e0216318. [Google Scholar] [CrossRef] [PubMed]
- Karakoc, D.B.; Konar, M. A complex network framework for the efficiency and resilience trade-off in global food trade. Environ. Res. Lett. 2021, 16, 105003. [Google Scholar] [CrossRef]
- Liu, W.; Michael, D. Inclusive globalization: Unpacking China’s Belt and Road initiative. Area Dev. Policy 2016, 1, 323–340. [Google Scholar] [CrossRef]
- Liu, W.; Michael, D.; Gao, B. A discursive construction of the Belt and Road Initiative: From neo-liberal to inclusive globalization. J. Geogr. Sci. 2018, 28, 1199–1214. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Sonn, J.; Chen, W. The structure and evolution of trade relations between countries along the Belt and Road. J. Geogr. Sci. 2018, 28, 1233–1248. [Google Scholar] [CrossRef]
- Song, Z.; Che, S.; Yang, Y. The trade network of the Belt and Road Initiative and its topological relationship to the global trade network. J. Geogr. Sci. 2018, 28, 1249–1262. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, D. China’s increased utilization of grain markets and resources in countries along the “Belt and Road” under the new situation. Res. Agric. Moder. 2021, 42, 827–840. [Google Scholar]
- Wang, Y.; Yang, J.; Liu, Q.; Tan, R.; Yuan, H. Virtual water and embodied energy transfer in grain trade across the countries along the “Belt and Road”. Resour. Sci. 2021, 43, 974–986. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Feng, Z.; Jia, K.; Lang, T. Spatio-temporal pattern of cereals consumption in countries along the “Belt and Road”. J.Nat. Resour. 2021, 36, 1398–1412. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.H.; Tian, Q.; Liu, Z.H.; Zhang, H.L. Virtual water trade of agricultural products: A new perspective to explore the Belt and Road. Sci. Total Environ. 2018, 622, 988–996. [Google Scholar] [CrossRef]
- Pyakuryal, B.; Roy, D.; Thapa, Y.B. Trade liberalization and food security in Nepal. Food Policy 2010, 35, 20–31. [Google Scholar] [CrossRef]
- Sui, G.; Zou, J.; Wu, S.; Tang, D. Comparative Studies on Trade and Value-Added Trade along the “Belt and Road”: A Network Analysis. Complexity 2022, 7353462. [Google Scholar] [CrossRef]
- Büyüksoy, G.D.B.; Çatıke, A.; Özdil, K. Food Insecurity and Affecting Factors in Households with Children during the Covid-19 Pandemic: A Cross-Sectional Study. Disaster Med. Public Health Prep. 2021, 1–20. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Chen, W. The rise of China and change of the global trade network during 1980–2018. Prog. Geog. 2019, 38, 1596–1606. [Google Scholar] [CrossRef]
- Ge, J.P.; Wang, X.B.; Guan, Q. World rare earths trade network: Patterns, relations and role characteristics. Resour. Policy. 2016, 50, 119–130. [Google Scholar] [CrossRef]
- Boyd, J.P.; Fitzgerald, W.J.; Beck, R.J. Computing core/periphery structures and permutation tests for social relations data. Soc. Netw. 2006, 28, 165–178. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. Models of core/periphery structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Holme, P. Core-periphery organization of complex networks. Phys. Rev. E 2005, 72, 046111. [Google Scholar] [CrossRef]
- Da Silva, M.R.; Ma, H.; Zeng, A.P. Centrality, network capacity, and modularity as parameters to analyze the core-periphery structure in metabolic networks. Proc. IEEE 2008, 96, 1411–1420. [Google Scholar] [CrossRef]
- Della, R.F.; Dercole, F.; Piccardi, C. Profiling core-periphery network structure by random walkers. Sci. Rep. 2013, 3, 1–8. [Google Scholar]
- Puma, M.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the Evolving Fragility of the Global Food System. Environ. Res. Lett. 2015, 10, 24007. [Google Scholar] [CrossRef]
- Jia, M.; Zhen, L. Analysis of Food Production and Consumption Based on the Emergy Method in Kazakhstan. Foods 2021, 10, 1520. [Google Scholar] [CrossRef]
- Duan, J.; Xu, Y.; Jiang, H. Trade vulnerability Assessment in the Grain-Importing Countries: A Case Study of China. PLoS ONE 2021, 16, e0257987. [Google Scholar] [CrossRef]
- Crist, E.; Mora, C.; Engelman, R. The Interaction of Human Population, Food Production, and Biodiversity Protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Liu, Y.; Liu, Y.; Zhang, Y. Simulated Responses of Global Rice Trade to Variations in Yield under Climate Change: Evidence from Main Rice-Producing Countries. J. Clean. Prod. 2021, 281, 124690. [Google Scholar] [CrossRef]
- Poczta-Wajda, A.; Sapa, A.; Stępień, S.; Borychowski, M. Food Insecurity among Small-Scale Farmers in Poland. Agriculture 2020, 10, 295. [Google Scholar] [CrossRef]
- Fusco, G.; Coluccia, B.; De Leo, F. Effect of trade openness on food security in the EU: A dynamic panel analysis. Int. J. Environ. Res. Public Health 2020, 17, 4311. [Google Scholar] [CrossRef]
- Dithmer, J.; Abdulai, A. Does trade openness contribute to food security? A dynamic panel analysis. Food Policy 2017, 69, 218–230. [Google Scholar] [CrossRef]
- Dudek, H.; Myszkowska-Ryciak, J.; Wojewódzka-Wiewiórska, A. Profiles of Food Insecurity: Similarities and Differences across Selected CEE Countries. Energies 2021, 14, 5070. [Google Scholar] [CrossRef]
- Banik, D. Achieving Food Security in a Sustainable Development Era. Food Ethics 2019, 4, 117–121. [Google Scholar] [CrossRef]
- Huan, Y.; Liang, T.; Li, H.; Zhang, C. A systematic method for assessing progress of achieving sustainable development goals: A case study of 15 countries. Sci. Total Environ. 2021, 752, 141875. [Google Scholar] [CrossRef] [PubMed]
- Saint Ville, A.; Po, J.Y.T.; Sen, A.; Bui, A.; Melgar-Quiñonez, H. Food security and the Food Insecurity Experience Scale (FIES): Ensuring progress by 2030. Food Secur. 2019, 11, 483–491. [Google Scholar] [CrossRef]
Region | Countries |
---|---|
China, Mongolia, and Russia | China, Mongolia, Russia |
11 Countries in Southeast Asia | Indonesia, Thailand, Malaysia, Vietnam, Singapore, Philippines, Myanmar, Cambodia, Laos, Brunei, Timor-Leste |
8 Countries in South Asia | India, Pakistan, Bangladesh, Sri Lanka, Afghanistan, Nepal, Maldives, Bhutan |
5 Countries in Central Asia | Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan |
19 Countries in West Asia and the Middle East | Turkey, Iran, Syria, Iraq, UAE, Saudi Arabia, Qatar, Bahrain, Kuwait, Lebanon, Oman, Yemen, Jordan, Israel, Palestine, Armenia, Georgia, Azerbaijan, Egypt |
19 Countries in Central and Eastern Europe | Poland, Czech Republic, Slovakia, Hungary, Slovenia, Croatia, Romania, Bulgaria, Serbia, Montenegro, Macedonia, Bosnia and Herzegovina, Albania, Estonia, Lithuania, Latvia, Ukraine, Belarus, Moldova |
2001 | 2008 | ||||||||||
Country | DC | Country | BC | Country | E.C. | Country | DC | Country | BC | Country | E.C. |
Thailand | 14 | Thailand | 542.47 | Thailand | 1.00 | Russia | 14 | India | 527.27 | Russia | 1.00 |
India | 10 | Hungary | 380.51 | China | 0.49 | Thailand | 13 | Russia | 515.36 | Kazakhstan | 0.80 |
Hungary | 9 | India | 363.35 | India | 0.45 | India | 12 | Thailand | 498.61 | India | 0.52 |
Russia | 9 | Russia | 343.42 | Malaysia | 0.39 | Kazakhstan | 12 | Hungary | 473.33 | Ukraine | 0.41 |
Kazakhstan | 8 | Saudi Arabia | 321.44 | Indonesia | 0.36 | Hungary | 9 | Pakistan | 398.97 | Bangladesh | 0.38 |
Vietnam | 7 | Romania | 298.70 | Vietnam | 0.35 | Pakistan | 9 | Kazakhstan | 288.89 | Lebanon | 0.38 |
China | 6 | Kazakhstan | 198.01 | Iran | 0.35 | Ukraine | 9 | Ukraine | 229.22 | Mongolia | 0.38 |
Pakistan | 6 | Vietnam | 191.31 | Iraq | 0.35 | Vietnam | 5 | Albania | 220.47 | Azerbaijan | 0.38 |
Ukraine | 6 | China | 190.53 | Singapore | 0.33 | Bangladesh | 4 | Romania | 190.71 | Georgia | 0.38 |
Belarus | 5 | Iran | 188.17 | Bahrain | 0.31 | China | 4 | Oman | 161.87 | Turkmenistan | 0.38 |
2013 | 2019 | ||||||||||
Country | DC | Country | BC | Country | EC | Country | DC | Country | BC | Country | EC |
India | 20 | India | 1013.46 | India | 1.00 | Russia | 19 | Russia | 653.02 | Russia | 1.00 |
Russia | 15 | Saudi Arabia | 674.09 | Russia | 0.44 | Ukraine | 14 | Ukraine | 515.32 | Ukraine | 0.80 |
Ukraine | 10 | Russia | 628.80 | Pakistan | 0.42 | India | 13 | Turkey | 373.41 | Turkey | 0.46 |
Pakistan | 8 | Ukraine | 389.05 | Saudi Arabia | 0.42 | China | 8 | Romania | 360.77 | India | 0.41 |
Saudi Arabia | 8 | Hungary | 227.62 | Iran | 0.40 | Kazakhstan | 8 | Hungary | 338.99 | Egypt | 0.37 |
Thailand | 8 | Vietnam | 165.66 | Vietnam | 0.38 | Pakistan | 8 | Pakistan | 300.92 | Indonesia | 0.35 |
Vietnam | 7 | Romania | 163.65 | United Arab Emirates | 0.33 | Thailand | 7 | India | 291.16 | Bangladesh | 0.35 |
China | 6 | Serbia | 159.37 | Ukraine | 0.31 | Turkey | 7 | China | 285.31 | Israel | 0.35 |
Iran | 6 | Iran | 141.47 | Malaysia | 0.28 | Hungary | 6 | Thailand | 186.11 | China | 0.33 |
Kazakhstan | 6 | China | 138.98 | Yemen | 0.26 | Romania | 6 | Kazakhstan | 129.92 | Armenia | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, H. Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach. Foods 2022, 11, 1468. https://doi.org/10.3390/foods11101468
Chen W, Zhang H. Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach. Foods. 2022; 11(10):1468. https://doi.org/10.3390/foods11101468
Chicago/Turabian StyleChen, Wei, and Haipeng Zhang. 2022. "Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach" Foods 11, no. 10: 1468. https://doi.org/10.3390/foods11101468
APA StyleChen, W., & Zhang, H. (2022). Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach. Foods, 11(10), 1468. https://doi.org/10.3390/foods11101468