Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Sample Preparation and Measuring Setup
2.4. Data Analysis
2.5. Panel Test Methodology
3. Results and Discussion
3.1. Panel Test Classification
3.2. EOS Analysis
3.3. Quality Assessment by the EOS
3.4. Aroma Intensity Assessment by the EOS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aparicio, R.; Harwood, J. Handbook of Olive Oil: Analysis and Properties; Springer: New York, NY, USA; Spanish National Research Council, Instituto de la Grasa (CSIC): Sevilla, Spain, 2013; ISBN 9781461477778/9781461477761. [Google Scholar]
- Angerosa, F.; Lanza, B.; Marsilio, V. Biogenesis of «fusty» defect in virgin olive oils. Grasas Aceites 1996, 47, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Esposto, S.; Montedoro, G.; Selvaggini, R.; Riccò, I.; Agnese, T.; Urbani, S.; Servili, M. Monitoring of virgin olive oil volatile compounds evolution during olive malaxation by an array of metal oxide sensors. Food Chem. 2009, 113, 345–350. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- International Olive Council. Trade Standard Applying to Olive Oils and Olive-Pomace Oils. COI/T.15/NC No. 3/Rev. 16. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-T15-NC3-REV-16-2021-_ENG.pdf (accessed on 1 October 2021).
- Ranzani, C. Olive oil quality and EEC regulations. Grasas Aceites 1994, 45, 1–4. [Google Scholar] [CrossRef]
- Escuderos, M.E.; Uceda, M.; Sánchez, S.; Jiménez, A.; Sánchez, S.; Jiménez, A. Instrumental technique evolution for olive oil sensory analysis. Eur. J. Lipid Sci. Technol. 2007, 109, 536–546. [Google Scholar] [CrossRef]
- Bentivenga, G.; D’Auria, M.; De Luca, E.; De Bona, A.; Mauriello, G. The use of SPME-GC-MS in the analysis of flavor of virgin olive oil. Riv. Ital. Sostanze Grasse 2001, 78, 157–162. [Google Scholar]
- López-Feria, S.; Cárdenas, S.; García-Mesa, J.A.; Valcárcel, M. Simple and rapid instrumental characterization of sensory attributes of virgin olive oil based on the direct coupling headspace-mass spectrometry. J. Chromatogr. A 2008, 1188, 308–313. [Google Scholar] [CrossRef]
- Sales, C.; Cervera, M.I.; Gil, R.; Portolés, T.; Pitarch, E.; Beltran, J. Quality classification of Spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chem. 2017, 216, 365–373. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Dobao-Prieto, M.D.M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Jurado-Campos, N.; Arce, L.; Arroyo-Manzanares, N. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chem. 2019, 288, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Toschi, T.G.; Vichi, S.; Tres, A. Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT 2020, 121, 108936. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R. Sensors: From biosensors to the electronic nose. Grasas Aceites 2002, 53, 96–114. [Google Scholar] [CrossRef]
- Valli, E.; Bendini, A.; Berardinelli, A.; Ragni, L.; Riccò, B.; Grossi, M.; Gallina Toschi, T. Rapid and innovative instrumental approaches for quality and authenticity of olive oils. Eur. J. Lipid Sci. Technol. 2016, 118, 1601–1619. [Google Scholar] [CrossRef] [Green Version]
- Savarese, M.; Caporaso, N.; Parisini, C.; Paduano, A.; De Marco, E.; Sacchi, R. Application of an Electronic Nose for the Evaluation of Rancidity and Shelf life in Virgin Olive Oil. Electron. Int. Interdiscip. Conf. 2013, 12, 361–366. [Google Scholar]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Cano, M.; Roales, J.; Castillero, P.; Mendoza, P.; Calero, A.M.; Jiménez-Ot, C.; Pedrosa, J.M. Improving the training and data processing of an electronic olfactory system for the classification of virgin olive oil into quality categories. Sens. Actuators B 2011, 160, 916–922. [Google Scholar] [CrossRef]
- Escuderos, M.E.; García, M.; Jiménez, A.; Horrillo, M.C. Edible and non-edible olive oils discrimination by the application of a sensory olfactory system based on tin dioxide sensors. Food Chem. 2013, 136, 1154–1159. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R. Virgin Olive Oil Quality Classification Combining Neural Network and MOS Sensors. J. Agric. Food Chem. 2003, 51, 3515–3519. [Google Scholar] [CrossRef]
- Taurino, A.; Capone, S.; Distante, C.; Epifani, M.; Rella, R.; Siciliano, P. Recognition of olive oils by means of an integrated sol–gel SnO2 Electronic Nose. Thin Solid Films 2002, 418, 59–65. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Cerretani, L.; Cevoli, C.; Simó-Alfonso, E.F.; Bendini, A.; Toschi, T.G. Use of electronic nose to determine defect percentage in oils. Comparison with sensory panel results. Sens. Actuators B 2010, 147, 283–289. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R. Detection of vinegary defect in virgin olive oils by metal oxide sensors. J. Agric. Food Chem. 2002, 50, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- García-González, D.L.; Aparicio, R. Detection of defective virgin olive oils by metal-oxide sensors. Eur. Food Res. Technol. 2002, 215, 118–123. [Google Scholar] [CrossRef]
- Cosio, M.S.; Ballabio, D.; Benedetti, S.; Gigliotti, C. Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks. Anal. Chim. Acta 2006, 567, 202–210. [Google Scholar] [CrossRef]
- Falasconi, M.; Pardo, M.; Sberveglieri, G.; Riccò, I.; Bresciani, A. The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. Sens. Actuators B 2005, 110, 73–80. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R. Classification of different quality virgin olive oils by metal-oxide sensors. Eur. Food Res. Technol. 2004, 218, 484–487. [Google Scholar] [CrossRef]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Krishnaiah, K.R., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Manly, B.F.J. Multivariate Statistical Methods: A Primer; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition. Part 1. Principle component and cluster analysis. Sens. Actuators B 2003, 93, 77–83. [Google Scholar] [CrossRef]
- Natale, C.D.; Paolesse, R.; D’Amico, A. Food and beverage quality assurance. In Handbook of Machine Olfaction; Wiley: Hoboken, NJ, USA, 2003; pp. 505–524. [Google Scholar]
- Yüzay, I.E.; Selke, S. Development of electronic nose method for evaluation of residual solvents in low-density polyethylene films. Packag. Technol. Sci. 2007, 20, 99–112. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Asociación Nacional de Industriales Envasadores y Refinadores de Aceites Comestibles (ANIERAC); Asociación Española de la Industria y el Comercio Exportador del Aceite de Oliva (ASOLIVA). Los Falsos Mitos Sobre el Aceite de Oliva Virgen Español. Available online: https://www.agrodigital.com/wp-content/uploads/2021/09/falsosmitosc.pdf (accessed on 9 March 2022).
- Barbieri, S.; Bubola, K.B.; Bendini, A.; Bučar-Miklavčič, M.; Lacoste, F.; Tibet, U.; Winkelmann, O.; García-González, D.L.; Toschi, T.G. Alignment and proficiency of virgin olive oil sensory panels: The oleum approach. Foods 2020, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Cano, M.; Borrego, V.; Roales, J.; Idígoras, J.; Lopes-Costa, T.; Mendoza, P.; Pedrosa, J.M. Rapid discrimination and counterfeit detection of perfumes by an electronic olfactory system. Sens. Actuators B 2011, 156, 319–324. [Google Scholar] [CrossRef]
Characteristics | Panel 1 | Panel 2 | Panel 3 | |
---|---|---|---|---|
B1 | Fruity | 4.8 | 5.3 | 4.9 |
Defects | 0 | 0 | 0 | |
Classification | Extra virgin | Extra virgin | Extra virgin | |
B2 | Fruity | 2.3 | 4.9 | 3.9 |
Defects | 2.2 | 0 | 1.9 | |
Classification | Virgin | Extra virgin | Virgin | |
B3 | Fruity | 3 | 3.2 | 4 |
Defects | 1.5 | 2.2 | 1.3 | |
Classification | Virgin | Virgin | Virgin | |
B4 | Fruity | 1.9 | 3.2 | 3.5 |
Defects | 2.5 | 2.2 | 2.7 | |
Classification | Virgin | Virgin | Virgin | |
B5 | Fruity | 1.6 | 2.5 | 2.9 |
Defects | 3.6 | 2.8 | 3.2 | |
Classification | Lampante | Virgin | Virgin | |
B6 | Fruity | 0 | 2.5 | 3.4 |
Defects | 4 | 2.8 | 2.8 | |
Classification | Lampante | Virgin | Virgin |
Panel 1 | Panel 2 | Panel 3 | Average Quality | Standard Deviation | |
---|---|---|---|---|---|
B1 | 9.8 | 10.3 | 9.9 | 10 | 0.265 |
B2 | 5.1 | 9.9 | 7 | 7.33 | 2.417 |
B3 | 6.5 | 6 | 7.7 | 6.73 | 0.874 |
B4 | 4.4 | 6 | 5.8 | 5.4 | 0.872 |
B5 | 3 | 4.7 | 4.7 | 4.13 | 0.982 |
B6 | 1 | 4.7 | 5.82 | 3.97 | 2.522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, I.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M. Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose. Foods 2022, 11, 1477. https://doi.org/10.3390/foods11101477
Chacón I, Roales J, Lopes-Costa T, Pedrosa JM. Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose. Foods. 2022; 11(10):1477. https://doi.org/10.3390/foods11101477
Chicago/Turabian StyleChacón, Irene, Javier Roales, Tânia Lopes-Costa, and José M. Pedrosa. 2022. "Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose" Foods 11, no. 10: 1477. https://doi.org/10.3390/foods11101477
APA StyleChacón, I., Roales, J., Lopes-Costa, T., & Pedrosa, J. M. (2022). Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose. Foods, 11(10), 1477. https://doi.org/10.3390/foods11101477