Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch and Amylose Isolation
2.3. Collection of Leached Starch during Rice Cooking
2.4. Molecular Size Distribution of Fully Branched Parent Starch, Leached Starch, and Isolated Amylose
2.5. Starch Debranching and Measuring of the CLD of Debranched Parent Starch, Leached Starch, and Isolated Amylose by Size-Exclusion Chromatography
2.6. Fitting Amylopectin CLD with a Biosynthesis Model
2.7. Dynamic Rheological Properties of Amylose Sol
2.8. Preparation of Amylose Gel
2.9. Texture Profile Analysis (TPA) of Amylose Gel and Cooked Rice
2.10. X-ray Diffraction (XRD)
2.11. Digestion Analysis and Model Fitting
2.12. Statistical Analysis
3. Results and Discussion
3.1. Molecular Size Distributions of Parent Starch, Leached Starch, and Isolated Amylose
3.2. Model Fitting Parameters for Debranched Starch
3.3. Order in Amylose Gel
3.4. Dynamic Rheological Properties of Amylose
3.5. Texture of Cooked Rice and Amylose Gel
3.6. Amylose Digestion Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juliano, B.O.; Hicks, P.A. Rice functional properties and rice food products. Food Rev. Int. 1996, 12, 71–103. [Google Scholar] [CrossRef]
- Li, H.Y.; Lei, N.Y.; Yan, S.; Gao, M.Y.; Yang, J.Y.; Wang, J.; Sun, B.G. Molecular causes for the effect of cooking methods on rice stickiness: A mechanism explanation from the view of starch leaching. Int. J. Biol. Macromol. 2019, 128, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Chemistry, structure, functionality and applications of rice starch. J. Cereal Sci. 2016, 70, 291–300. [Google Scholar] [CrossRef]
- Panlasigui, L.N.; Thompson, L.U.; Juliano, B.O.; Perez, C.M.; Yiu, S.H.; Greenberg, G.R. Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am. J. Clin. Nutr. 1991, 54, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Guraya, H.S.; Kadan, R.S.; Champagne, E.T. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chem. 1997, 74, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.E.; Normand, F.L.; Goynes, W.R. Effects of lipid and protein removal on starch gelatinization in whole grain milled rice. Cereal Chem. 1990, 67, 458–463. [Google Scholar]
- Mestres, C.; Ribeyre, F.; Pons, B.; Fallet, V.; Matencio, F. Sensory texture of cooked rice is rather linked to chemical than to physical characteristics of raw grain. J. Cereal Sci. 2011, 53, 81–89. [Google Scholar] [CrossRef]
- Gong, B.; Cheng, L.; Li, C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll. 2019, 96, 634–643. [Google Scholar] [CrossRef]
- Gidley, M.J. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules 1989, 22, 351–358. [Google Scholar] [CrossRef]
- Miles, M.; Morris, V.; Ring, S. Gelation of amylose. Carbohydr. Res. 1985, 135, 257–269. [Google Scholar] [CrossRef]
- Atkin, N.J.; Cheng, S.L.; Abeysekera, R.M.; Robards, A.W. Localisation of amylose and amylopectin in starch granules using enzyme-gold labelling. Starch Stärke 1999, 51, 163–172. [Google Scholar] [CrossRef]
- Jenkins, P.J.; Donald, A.M. The influence of amylose on starch granule structure. Int. J. Biol. Macromol. 1995, 17, 315–321. [Google Scholar] [CrossRef]
- Kasemsuwan, T.; Jane, J. Location of amylose in normal starch granules. II. Locations of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem. 1994, 71, 282–287. [Google Scholar]
- Jane, J.; Xu, A.; Radosavljevic, M.; Seib, P.A. Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 1992, 69, 405–409. [Google Scholar]
- Takeda, Y.; Hizukuri, S.; Juliano, B.O. Purification and structure of amylose from rice starch. Carbohydr. Res. 1986, 148, 299–308. [Google Scholar] [CrossRef]
- Wang, K.; Vilaplana, F.; Wu, A.; Hasjim, J.; Gilbert, R.G. The size dependence of the average number of branches in amylose. Carbohydr. Polym. 2019, 223, 115134. [Google Scholar] [CrossRef]
- Takeda, Y.; Tomooka, S.; Hizukuri, S. Structures of branched and linear molecules of rice amylose. Carbohydr. Res. 1993, 246, 267–272. [Google Scholar] [CrossRef]
- Ong, M.H.; Blanshard, J.M.V. Texture determinants of cooked, parboiled rice. II: Physicochemical properties and leaching behavior of rice. J. Cereal Sci. 1995, 21, 261–269. [Google Scholar] [CrossRef]
- Li, H.; Fitzgerald, M.A.; Prakash, S.; Nicholson, T.M.; Gilbert, R.G. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Sci. Rep. 2017, 7, 43713. [Google Scholar] [CrossRef] [Green Version]
- Crowe, T.C.; Seligman, S.A.; Copeland, L. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. J. Nutr. 2000, 130, 2006–2008. [Google Scholar] [CrossRef]
- Takase, S.; Goda, T.; Watanabe, M. Monostearoylglycerol-starch complex: Its digestibility and effects on glycemic and lipogenic responses. J. Nutr. Sci. Vitaminol. 1994, 40, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcan, S.; Jackson, D.S. The impact of thermal events on amylose-fatty acid complexes. Starch Stärke 2002, 54, 593–602. [Google Scholar] [CrossRef]
- Cui, R.; Oates, C.G. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem. 1999, 65, 417–425. [Google Scholar] [CrossRef]
- Putseys, J.; Lamberts, L.; Delcour, J. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238–247. [Google Scholar] [CrossRef]
- Banks, W.; Greenwood, C.T. The conformation of amylose in dilute solution. Starch Stärke 1971, 23, 374. [Google Scholar] [CrossRef]
- Rundle, R.E.; Daasch, L.; French, D. The structure of the “B” modification of starch from film and fiber diffraction diagrams1. J. Am. Chem. Soc. 1944, 66, 130–134. [Google Scholar] [CrossRef]
- Lii, C.-Y.; Tsai, M.-L.; Tseng, K.-H. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415–420. [Google Scholar]
- Li, H.; Prakesh, S.; Nicholson, T.H.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T.; Bett, K.L.; Vinyard, B.T.; McClung, A.M.; Barton, F.E.; Moldenhauer, K.; Linscombe, S.; McKenzie, K. Correlation between cooked rice texture and Rapid Visco Analyses measurements. Cereal Chem. 1999, 76, 764–771. [Google Scholar] [CrossRef]
- Jauregui, B.; Mun, M.; Santamaria, A. The onset of entangled behaviour in amylose solutions. Polymer 1993, 34, 1776–1779. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Li, E.; Hasjim, J. Extraction and dissolution of starch from cereal grains for accurate structural analysis. Carbohydr. Polym. 2010, 82, 14–20. [Google Scholar] [CrossRef]
- Klucinec, J.D.; Thompson, D.B. Fractionation of high-amylose maize starches by differential alcohol precipitation and chromatography of the fractions. Cereal Chem. 1998, 75, 887–896. [Google Scholar] [CrossRef]
- Berek, D. Size exclusion chromatography—A blessing and a curse of science and technology of synthetic polymers. J. Sep. Sci. 2010, 33, 315–335. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, X.; Wu, G.; Gilbert, R.G. Using Molecular Fine Structure to Identify Optimal Methods of Extracting Starch. Starch Stärke 2020, 72, 1900214. [Google Scholar] [CrossRef]
- Liu, W.-C.; Halley, P.J.; Gilbert, R.G. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 2010, 43, 2855–2864. [Google Scholar] [CrossRef]
- Witt, T.; Gidley, M.J.; Gilbert, R.G. Starch digestion mechanistic information from the time evolution of molecular size distributions. J. Agric. Food Chem. 2010, 58, 8444–8452. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cao, P.; Wu, P.; Yu, W.; Gilbert, R.G.; Li, E. Effects of endogenous proteins on rice digestion during small intestine (in vitro) digestion. Food Chem. 2021, 344, 128687. [Google Scholar] [CrossRef]
- Nada, S.S.; Zou, W.; Li, C.; Gilbert, R.G. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Anal. Bioanal. Chem. 2017, 409, 6813–6819. [Google Scholar] [CrossRef]
- Vilaplana, F.; Hasjim, J.; Gilbert, R.G. Amylose content in starches: Towards optimal definition and validating experimental methods. Carbohydr. Polym. 2012, 88, 103–111. [Google Scholar] [CrossRef]
- Hoover, R.; Ratnayake, W.S. Determination of Total Amylose Content of Starch. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. E2.3.1–E2.3.5. [Google Scholar]
- Zhang, Z.; Fan, X.; Yang, X.; Li, C.; Li, E. Effects of amylose and amylopectin fine structure on sugar-snap cookie dough rheology and cookie quality. Carbohydr. Polym. 2020, 241, 116371. [Google Scholar] [CrossRef]
- Saric, B.; Dapcevic-Hadnadev, T.; Hadnadev, M.; Sakac, M.; Mandic, A.; Misan, A.; Skrobot, D. Fiber concentrates from raspberry and blueberry pomace in gluten-free cookie formulation: Effect on dough rheology and cookie baking properties. J. Texture. Stud. 2019, 50, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Rahman, S.; Utsumi, Y.; Li, Z.Y.; Mukai, Y.; Yamamoto, M.; Ugaki, M.; Harada, K.; Satoh, H.; Konik-Rose, C.; et al. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene in supports a direct role for isoamylase1 amylopectin biosynthesis. Plant Physiol. 2005, 137, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Dhital, S.; Gidley, M.J.; Gilbert, R.G. A more general approach to fitting digestion kinetics of starch in food. Carbohydr. Polym. 2019, 225, 115244. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, J.; Yan, S.; Lei, N.; Wang, J.; Sun, B. Molecular causes for the increased stickiness of cooked non-glutinous rice by enzymatic hydrolysis of the grain surface protein. Carbohydr. Polym. 2019, 216, 197–203. [Google Scholar] [CrossRef]
- Clark, A.H.; Gidley, M.J.; Richardson, R.K.; Ross-Murphy, S.B. Rheological studies of aqueous amylose gels: The effect of chain length and concentration on gel modulus. Macromolecules 1989, 22, 346–351. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, J.; Ding, X. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: A statistical investigation. J. Agric. Food Chem. 2002, 50, 7420–7425. [Google Scholar] [CrossRef]
- Miles, M.J.; Morris, V.J.; Orford, P.D.; Ring, S.G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 1985, 135, 271–281. [Google Scholar] [CrossRef]
- Tsai, M.L.; Li, C.F.; Lii, C.Y. Effects of granular structures on the pasting behaviors of starches 1. Cereal Chem. 1997, 74, 750–757. [Google Scholar] [CrossRef]
- López, O.V.; García, M.A. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1931–1940. [Google Scholar] [CrossRef]
- Wu, P.; Li, C.F.; Bai, Y.M.; Yu, S.Y.; Zhang, X.A. A starch molecular basis for aging-induced changes in pasting and textural properties of waxy rice. Food Chem. 2019, 284, 270–278. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, E.; Fan, X.; Yang, C.; Gilbert, R.G. The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocoll. 2019, 101, 105563. [Google Scholar] [CrossRef]
- Jane, J.L.; Chen, J.F. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 1992, 69, 60–65. [Google Scholar]
- Ellis, H.S.; Ring, S.G. A study of some factors influencing amylose gelation. Carbohydr. Polym. 1985, 5, 201–213. [Google Scholar] [CrossRef]
- De Gennes, P.G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572–579. [Google Scholar] [CrossRef]
- Li, C.; Ji, Y.; Li, E. Understanding the influences of rice starch fine structure and protein content on cooked rice texture. Starch Stärke 2021, 2100253. [Google Scholar] [CrossRef]
- Dipnaik, K.; Kokare, P. Ratio of Amylose and Amylopectin as indicators of glycaemic index and in vitro enzymatic hydrolysis of starches of long, medium and short grain rice. Int. J. Res. Med. Sci. 2017, 5, 4502. [Google Scholar] [CrossRef] [Green Version]
- Syahariza, Z.A.; Sar, S.; Tizzotti, M.; Hasjim, J.; Gilbert, R.G. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem. 2013, 136, 742–749. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Q.; Wilson, J.D.; Gu, M.; Shi, Y. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydr. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- Okuda, M.; Aramaki, I.; Koseki, T.; Satoh, H.; Hashizume, K. Structural characteristics, properties, and in vitro digestibility of rice. Cereal Chem. 2005, 82, 361–368. [Google Scholar] [CrossRef]
Sample | Model Fitting Parameters for Parent Starch | Model Fitting Parameters for Leached Starch | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
βAmP,i/10−3 | hAmP,i/10−3 | βAmP,ii/10−3 | hAmP,ii/10−3 | βAmL,i/10−3 | hAmL,i/10−3 | βAmL,ii/10−3 | hAmL,ii/10−3 | βAmL,iii/10−3 | hAmL,iii/10−3 | |
TaiZhou 0206 | 14.4 ± 4.5 ab | 20.2 ± 3.9 bc | 1.8 ± 0.0 a | 148.4 ± 2.4 d | 18.0 ± 0.6 a | 31.1 ± 3.1 b | 2.0 ± 0.1 a | 171.1 ± 9.7 c | 0.6 ± 0.0 b | 86.7 ± 0.5 b |
XiangGeng111 | 13.6 ± 2.5 ab | 8.1 ± 1.4 ab | 2.1 ± 0.1 b | 48.2 ± 2.5 b | 11.8 ± 0.1 a | 13.2 ± 1.0 a | 2.1 ± 0.0 a | 36.0 ± 0.3 a | 0.5 ± 0.0 a | 20.6 ± 1.3 a |
SanLuZhan7 | 16.7 ± 0.9 ab | 101.2 ± 2.5 d | 3.0 ± 0.0 e | 264.6 ± 1.2 f | 24.4 ± 0.9 a | 148.3 ± 12.9 c | 2.7 ± 0.0 c | 437.5 ± 4.8 d | 0.8 ± 0.0 c | 85.9 ± 1.4 b |
Koshihikari | 8.9 ± 5.4 a | 3.7 ± 1.9 a | 2.1 ± 0.1 b | 71.2 ± 0.1 c | 18.6 ± 1.6 a | 11.4 ± 0.3 a | 2.5 ± 0.1 b | 52.8 ± 0.4 b | 0.5 ± 0.0 ab | 27.3 ± 0.1 a |
Sample | Degree of Crystallinity (%) |
---|---|
AmTaiZhou0206 | 14.0 ± 0.2 b |
AmXiangGeng111 | 7.1 ± 0.1 a |
AmSanLuZhan7 | 16.3 ± 0.3 b |
AmKoshihikari | 24.4 ± 2.1 c |
Sample | logK′/10−2 | n′ | logK″10−2 | n″ |
---|---|---|---|---|
AmTaizhou0206 | −162.0 ± 4.1 b | 2.2 ± 0.0 b | −97.4 ± 0.0 b | 0.4 ± 0.0 b |
AmXiangGeng111 | −107.3 ± 0.4 a | 0.9 ± 0.1 a | −84.2 ± 1.5 a | 0.1 ± 0.0 a |
AmSanluZhan7 | −161.1 ± 1.6 b | 2.2 ± 0.1 b | −97.6 ± 0.1 b | 0.5 ± 0.0 c |
AmKoshihikari | −191.9 ± 5.9 c | 2.9 ± 0.0 c | −99.1 ± 0.1 c | 0.8 ± 0.0 d |
Sample | Cooked Rice | Amylose Gel | |
---|---|---|---|
Hardness (N/104) | Stickiness (N.s/102) | Hardness (g/102) | |
TaiZhou0206 | 1.4 ± 0.1 | 2.6 ± 0.4 d | 0.4 ± 0.1 b |
XiangGeng111 | 1.0 ± 0.0 e | 5.0 ± 1.0 e | 0.1 ± 0.0 a |
SanLuZhan7 | 1.5 ± 0.1 g | 0.6 ± 0.1 b | 1.3 ± 0.1 c |
Koshihikari | 1.2 ± 0.1 f | 7.8 ± 0.4 f | 1.9 ± 0.1 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Ji, Y.; Zhang, S.; Yang, X.; Gilbert, R.G.; Li, S.; Li, E. Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality. Foods 2022, 11, 1516. https://doi.org/10.3390/foods11101516
Li C, Ji Y, Zhang S, Yang X, Gilbert RG, Li S, Li E. Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality. Foods. 2022; 11(10):1516. https://doi.org/10.3390/foods11101516
Chicago/Turabian StyleLi, Changfeng, Yi Ji, Shaobo Zhang, Xiaoyan Yang, Robert G. Gilbert, Songnan Li, and Enpeng Li. 2022. "Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality" Foods 11, no. 10: 1516. https://doi.org/10.3390/foods11101516
APA StyleLi, C., Ji, Y., Zhang, S., Yang, X., Gilbert, R. G., Li, S., & Li, E. (2022). Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality. Foods, 11(10), 1516. https://doi.org/10.3390/foods11101516