Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Kombucha Beverages
2.2. Antibacterial Activity of the Kombucha Beverages
2.3. Identification of Kombucha Microflora Using by MALDI-TOF MS Biotyper
2.4. The Determination of Kombucha Beverages Polyphenols Profile
2.5. The Determination of the Kombucha Beverages Mineral Content by Atomic Emission Spectroscopy with Inductively Coupled Plasma (ICP-OES)
2.6. The Determination of pH in Kombucha Beverages
2.7. The Determination of Kombucha Alcohol Content
2.8. The Determination of Sugar Content
2.9. Organoleptic Evaluation
- appearance;
- colour;
- aroma;
- taste;
- sweetness;
- acidity.
2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Antibacterial Properties of a Kombucha Beverages
3.2. Identification of Kombucha Microflora Using by MALDI-TOF MS Biotyper
3.3. Identification of Bioactive Compounds Using UPLC-PDA-ESI-MS/MS
3.4. Determination of the Mineral Content by Atomic Emission Spectroscopy with Inductively Coupled Plasma (ICP-OES)
3.5. The Analysis of pH, Augar and Alcohol Content in Kombucha Beverages during Fermentation
3.6. Organoleptic Evaluation Was Performed after 14-Day Fermentation Period in a Group of 15 People
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea–microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comp. Rev. Food Sci. Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.F.; Hikal, M.S.; Abou-Taleb, K.A. Biological, chemical and antioxidant activities of different types Kombucha. Ann. Agric. Sci. 2020, 65, 35–41. [Google Scholar] [CrossRef]
- Morales, D. Biological activities of kombucha beverages: The need of clinical evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Sinir, G.Ö.; Tamer, C.E.; Suna, S. Kombucha Tea: A Promising Fermented Functional Beverage. Fermented Beverages 2019, 5, 401–432. [Google Scholar]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017, 93, fix048. [Google Scholar] [CrossRef] [PubMed]
- Martínez Leal, J.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Abutro, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Jakubczyk, K.P.; Piotrowska, G.; Janda, K. Characteristics and biochemical composition of kombucha–fermented tea. Med. Ogólna I Nauk. O Zdrowiu 2020, 26, 94–96. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Nguyen, P.B.; Nguyen, H.T.; Le, P.H. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT Food Sci. Technol. 2015, 64, 1149–1155. [Google Scholar] [CrossRef]
- Yuniarto, A.; Anggadiredja, K.; Aqidah, R.A.N. Antifungal activity of kombucha tea against human pathogenic fungi. Asian J. Pharm. Clin. Res. 2016, 9, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Coelho, R.M.D.; Almeida, A.L.D.; Amaral, R.Q.G.D.; Mota, R.N.D.; Sousa, P.H.M.D. Kombucha: Review. Int. J. Gastron. Food Sci. 2020, 22, 100272. [Google Scholar] [CrossRef]
- Chandrakala, S.K.; Lobo, R.O.; Dias, F.O. Kombucha (Bio-Tea): An Elixir for Life? Nutr. Beverages 2019, 12, 591–616. [Google Scholar]
- Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant activities and volatile flavor components of selected single-origin and blend chocolates. Molecules 2020, 25, 3648. [Google Scholar] [CrossRef]
- Tu, Y.Y.; Xia, H.L. Antimicrobial activity of fermented green tea liquid. Int. J. Tea Sci. 2018, 6, 29–35. [Google Scholar]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; Dos Santos D’Almeida, C.T.; Do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.; Cameron, L.C.; Ferreira, M.S.; De Barros, F.A. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Soares, M.G.; De Lima, M.; Reolon Schmidt, V.C. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci. Technol. 2021, 110, 539–550. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Bhattacharya, S.; Patra, M.M.; Chakravorty, S.; Sarkar, S.; Chakraborty, W.; Koley, H.; Gachhui, R. Antibacterial activity of polyphenolic fraction of Kombucha against Enteric bacterial pathogens. Curr. Microbiol. 2016, 73, 885–896. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J.-B. Impact of time and temperature on the physicochemical, microbiological, and nutraceutical properties of laver kombucha (Porphyra dentata) during fermentation. LWT 2021, 154, 112643. [Google Scholar] [CrossRef]
- Shahbazi, H.; Hashemi Gahruie, H.; Golmakani, M.T.; Eskandari, M.H.; Movahedi, M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci. Nutr. 2018, 6, 2568–2577. [Google Scholar] [CrossRef]
- Ivanišová, E.; Meňhartová, K.; Terenjeva, M.; Harangozo, Ĺ.; Kántor, A.; Kačániová, M. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J. Food Sci. Technol. 2019, 57, 1840–1846. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Sui, Y.; Wu, H.; Zhou, C.; Hu, X.; Zhang, J. Flavour chemical dynamics during fermentation of Kombucha tea Emirates. J. Food Agric. 2018, 30, 732–741. [Google Scholar]
- Roda, G.; Marinello, C.; Grassi, A.; Picozzi, C.; Aldini, G.; Carini, M.; Regazzoni, L. Ripe and raw pu-erh tea: LC–MS profiling, antioxidant capacity and enzyme inhibition activities of aqueous and hydro-alcoholic extracts. Molecules 2019, 24, 473. [Google Scholar] [CrossRef] [Green Version]
- Vargas, B.K.; Fabricio, M.F.; Záchia Ayub, M.A. Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef]
- Vitas, J.S.; Cvetanovic, A.D.; Maškovič, P.Z.; Švarc-Gajič, J.V.; Malbaša, R.V. Chemical composition and biological activity of novel types kombucha beverages with yarrow. J. Funct. Foods 2018, 44, 95–102. [Google Scholar] [CrossRef]
- Massoud, R.; Jafari-Dastjerdeh, R.; Naghavi, N.; Khosravi-Darani, K. All aspects of antioxidant properties of kombucha drink. Biointerface Res. Appl. Chem. 2022, 12, 4018–4027. [Google Scholar]
- Muhialdin, B.J.; Osman, F.A.; Muhamad, R.; Che Wan Sapawi, C.W.N.S.; Anzian, A.; Voon, W.W.Y.; Meor Hussein, A.S. Effects of sugar sources and fermentation time on the properties of tea fungus (kombucha) beverage. Int. Food Res. J. 2019, 26, 481–487. [Google Scholar]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.P.; Taillandier, P.; Beaufor, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Qi, X.; Ren, L.; Qiang, T. Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618. Food Sci. Biotechnol. 2018, 27, 705–713. [Google Scholar] [CrossRef]
- Antolak, H.; Kręgiel, D. Acetic acid bacteria-taxonomy, ecology, and industrial application. Zywnosc Nauka Technol. Jakosc 2015, 101, 21–35. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Vitas, J.S.; Popovic´, L.M.; Čakarević Malbaša, R.V.; Vukmanović, S.Z. In vitro assessment of bioaccessibility of the antioxidant activity of kombucha beverages after gastric and intestinal digstion. Food Feed. Res. 2020, 47, 33–41. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Kunze, A.; Bertsch, A.; Giugliano, M.; Renaud, P. Microfluidic hydrogel layers with multiple gradients to stimulate and perfuse three-dimensional neuronal cell cultures. Procedia Chem. 2009, 1, 369–372. [Google Scholar] [CrossRef]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibiton of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef] [Green Version]
- Pure, A.E.; Pure, M.E. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Appl. Food Biotechnol. 2016, 3, 125–130. [Google Scholar] [CrossRef]
- Marsh, G.E. Interglacials, Milankovitch cycles, solar activity, and carbon dioxide. J. Climatol. 2014, 2014, 345482. [Google Scholar] [CrossRef] [Green Version]
- Watawana, M.I.; Jayawardena, N.; Ranasinghe, S.J.; Waisundara, V.Y. Evaluation of the effect of different sweetening agents on the polyphenol contents and antioxidant and starch hydrolase inhibitory properties of Kombucha. J. Food Process. Preserv. 2017, 41, e12752. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Amarasinghe, H.; Weerakkody, N.S.; Waisundaza, V.Y. Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus”. Food Sci. Nutr. 2018, 6, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Zubaidah, E.; Ifadah, R.A.; Afgani, C.A. Changes in chemical characteristics of kombucha from various cultivars of snake fruit during fermentation. E&ES 2019, 230, 012098. [Google Scholar]
- Bauer-Petrovska, B.; Petrushevska-Tozi, L. Mineral and water soluble vitamins content in Kombucha drink. Int. J. Food Sci. Tech. 2000, 35, 201–205. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical profile and antioxidant activity of the kombucha beverage derived from White, green, black and red tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Malbaša, R.V.; Loncar, E.S.; Vitas, J.S.; Canadanovic’-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malini, K.; Sathishkumar, M.; Swaminathan, K.; Yun, S.-E. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol. 2010, 19, 843–847. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CYTA J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef] [Green Version]
No. Trials | The Composition of the Beverage |
---|---|
1 | Black tea + Cane sugar |
2 | Black tea + Coconut sugar |
3 | Green tea + Cane sugar |
4 | Green tea + Coconut sugar |
5 | White tea + Cane sugar |
6 | White tea + Coconut sugar |
Element | Measurement Linse (nm) | Recovery by CRM (%) | Recovery by (%) |
---|---|---|---|
Al | 167.079 | 98 | 100 |
Ca | 317.933 | 101 | 99 |
Cu | 324.754 | 98 | 99 |
K | 766.490 | 102 | 98 |
Mg | 279.533 | 102 | 101 |
P | 177.495 | 101 | 99 |
S | 180.731 | 97 | 100 |
Zn | 213.856 | 99 | 97 |
Gram-Negative Bacteria | Gram-Positive Bacteria | Yeasts | ||||||
---|---|---|---|---|---|---|---|---|
Type of Beverage | ST | EC | LM | SA | CG | CA | CK | CT |
Black tea + cane sugar | 1.3 a ± 0.6 | 1.0 a ± 0.0 | 3.0 c ± 0.0 | 1.0 a ± 0.0 | 2.0 b ± 0.0 | 2.0 b ± 0.0 | 6.3 d ± 0.6 | 9.7 e ± 0.6 |
Black tea + coconut sugar | 3.6 c ± 0.6 | 3.0 c ± 0.0 | 3.0 c ± 0.0 | 1.0 a ± 0.0 | 2.0 b ± 0.0 | 3.0 c ± 0.0 | 7.5 d ± 0.6 | 8.4 d ± 0.6 |
Green tea + cane sugar | 9.0 c± 0.2 | 7.0 b± 0.5 | 8.0 c ± 0.1 | 5.3 a ± 0.6 | 7.3 b ± 0.6 | 6.7 b ± 0.0 | 9.7 d ± 0.2 | 6.0 a ± 0.0 |
Green tea + coconut sugar | 4.3 a ± 0.6 | 6.1 b ± 0.1 | 6.0 b ± 0.5 | 7.7 c ± 0.6 | 7.8 c ± 1.0 | 8.3 c ± 0.7 | 4.7 a ± 0.6 | 7.3 c ± 0.3 |
White tea + cane sugar | 5.3 a± 0.6 | 7.7 b ± 0.5 | 8.0 b ± 1.0 | 10.3 c ± 0.6 | 8.0 b ± 1.0 | 10.0 c ± 0.3 | 5.3 a ± 0.6 | 7.7 b ± 0.5 |
White tea + coconut sugar | 5.2 a ± 1.0 | 7.1 b ± 0.0 | 7.5 b ± 0.1 | 11.0 d ± 0.5 | 9.0 c ± 0.4 | 9.0 c ± 0.1 | 5.4 a± 1.0 | 6.5 a ± 0.3 |
Microorganism | Gram Negative | Gram Positive | Black Tea + Cane Sugar | Black Tea + Coconut Sugar | Green Tea + Cane Sugar | Green Tea + Coconut Sugar | White Tea + Cane Sugar | White Tea + Coconut Sugar |
---|---|---|---|---|---|---|---|---|
Gluconacetobacter xylinus | + | − | − | + | − | + | − | + |
Acetobacter xylinum | + | − | + | − | + | − | + | − |
Bacterium gluconicum | + | − | + | − | + | − | + | − |
Gluconobacter oxydans | + | − | + | + | + | + | − | − |
Leuconostoc mesenteroides | − | + | + | + | + | + | − | − |
Propionibacterium spp. | − | + | + | + | − | − | + | + |
Acetobacter nitrogenifigens | + | − | − | − | + | + | + | + |
Gluconacetobacter kombucha | + | − | + | + | + | + | + | + |
Microorganism | Black Tea + Cane Sugar | Black Tea + Coconut Sugar | Green Tea + Cane Sugar | Green Tea + Coconut Sugar | White Tea + Cane Sugar | White Tea + Coconut Sugar |
---|---|---|---|---|---|---|
Saccharomyces cerevisiae | + | + | + | + | + | + |
Candida vini | + | − | + | − | + | − |
Schizosaccharomyces pombe | − | + | − | + | − | + |
Pichia membranefaciens | − | + | − | + | − | + |
Kloeckera apiculate | + | − | + | − | + | − |
Kluyveromyces marxianus | + | + | − | + | − | + |
Pichia kluyveri | + | − | − | − | + | − |
No. | Compound | Rt * (min) | UV–Vis * λmax | [M−H]− m/z * | MS/MS * |
---|---|---|---|---|---|
1 | Neochlorogenic acid | 2.79 | 299, 327 | 353 | 191 |
2 | Chlorogenic acid | 3.55 | 299, 327 | 353 | 191 |
3 | Cryptochlorogenic acid | 3.72 | 299, 327 | 353 | 191 |
4 | Catechin | 4.24 | 274 | 289 | 151 |
5 | Gallocatechin 3-O-gallate | 4.33 | 274 | 457 | 305 |
6 | Coumaroyl quinic acid | 4.44 | 299, 311 | 337 | 191 |
7 | Quercetin 3-O-rutinoside-7-O-rhamnoside | 4.74 | 255, 350 | 755 | 609, 301 |
8 | Kaempferol 3-O-rhamnoside-7-O-pentoside | 4.83 | 264, 355 | 563 | 447, 285 |
9 | Kaempferol 3-O-rhamnoside-7-O-pentoside | 4.89 | 264, 355 | 563 | 447, 285 |
10 | Quercetin 3-O-rutinoside-7-O-galactoside | 5.2 | 255, 350 | 771 | 609, 301 |
11 | Kaempferol 3-O-rutinoside | 5.35 | 264, 355 | 593 | 285 |
12 | Quercetin 3-O-rutinoside | 4.46 | 255, 355 | 609 | 301 |
13 | Epicatechin 3-O-gallate | 5.56 | 278 | 441 | 305 |
14 | Procyanidin A1 | 5.88 | 274 | 577 | 289 |
15 | Kaempferol 3-O-rutinoside-7-O-rhamnoside | 5.97 | 264, 350 | 739 | 593, 285 |
16 | Kaempferol 3-O-glucoside-rhamnoside | 6.08 | 264, 355 | 593 | 285 |
17 | Kaempferol 3-O-rhamnoside | 6.39 | 265, 352 | 447 | 285 |
Sample | Day | Al | Ca | Fe | K | Mg | Na | P | S |
---|---|---|---|---|---|---|---|---|---|
Black tea + Cane sugar | 1 | 1.52 e | 3.119 cd | 0.1281 g | 79.01 d | 5.323 h | 5.652 h | 6.637 d | 5.362 c |
±0.033 | ±0.027 | ±0.012 | ±0.68 | ±0.053 | ±0.064 | ±0.08 | ±0.026 | ||
14 | 2.102 f | 8.087 e | 0 d | 69.6 ef | 6.066 g | 3.12 g | 6.448 d | 5.406 cd | |
±0.217 | ±0.047 | ±0.072 | ±0.24 | ±0.4 | ±0.031 | ±0.061 | ±0.003 | ||
Black tea + Coconut sugar | 1 | 1.678 bc | 9.268 f | 0.1032 i | 84.38 g | 6.499 e | 1.859 e | 6.634 d | 9.567 fg |
±0.101 | ±0.062 | ±0.0066 | ±0.46 | ±0.036 | ±0.013 | ±0.024 | ±0.074 | ||
14 | 2.51 d | 10.75 i | 0.0692 i | 95.9 j | 7.428 f | 2.203 f | 8.859 e | 11.16 i | |
±0.105 | ±0.16 | ±0.0269 | ±0.0015 | ±0.1104 | ±0.024 | ±0.051 | ±0.02 | ||
Green tea + Cane sugar | 1 | 1.559 b | 2.119 a | 0.0466 a | 50.28 a | 2.65 a | 0.658 a | 4.201 a | 4.012 a |
±0.128 | ±0.02 | ±0.0002 | ±0.51 | ±0.031 | ±0.011 | ±0.054 | ±0.013 | ||
14 | 2.617 d | 2.525 b | 0.0334 b | 56.05 b | 3.002 bcd | 1.014 bcd | 5.332 b | 4.531 b | |
±0.167 | ±0.056 | ±0.0337 | ±0.84 | ±0.051 | ±0.018 | ±0.037 | ±0.017 | ||
Green tea + Coconut sugar | 1 | 1.918 c | 10.21 g | 0.1393 c | 68.24 c | 4.652 ab | 0.8265 ab | 5.323 b | 9.302 f |
±0.14 | ±0.08 | ±0.0308 | ±0.24 | ±0.069 | ±0.0122 | ±0.062 | ±0.029 | ||
14 | 3.068 e | 11.37 j | 0.1067 e | 75.49 d | 5.143 abc | 0.8538 abc | 6.111 c | 9.997 h | |
±0.236 | ±0.13 | ±0.0446 | ±0.57 | ±0.016 | ±0.0158 | ±0.39 | ±0.051 | ||
White tea + Cane sugar | 1 | 0.874 a | 2.905 c | 0.063 fg | 78.93 e | 5.806 d | 1.225 d | 8.865 e | 5.697 d |
±0.145 | ±0.11 | ±0.0861 | ±0.78 | ±0.04 | ±0.009 | ±0.028 | ±0.028 | ||
14 | 1.572 b | 3.201 d | 0.087 h | 83.85 f | 6.156 cd | 1.148 cd | 10.31 g | 6.108 e | |
±0.129 | ±0.042 | ±0.0301 | ±1.01 | ±0.103 | ±0.016 | ±0.07 | ±0.014 | ||
White tea + Coconut sugar | 1 | 1.04 a | 10.57 hi | 0.1597 f | 78.67 h | 6.647 d | 1.223 d | 9.042 e | 9.686 g |
±0.117 | ±0.041 | ±0.0523 | ±0.55 | ±0.064 | ±0.026 | ±0.033 | ±0.07 | ||
14 | 1.456 b | 10.41 gh | 0.0726 h | 83.64 i | 6.943 ef | 2.109 ef | 9.641 f | 10.09 h | |
±0.16 | ±0.052 | ±0.0637 | ±0.16 | ±0.039 | ±0.004 | ±0.062 | ±0.02 |
Sample | Day | Alcohol (%) | pH | Saccharose [Brix-g/100 mL] |
---|---|---|---|---|
Black tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.87 ± 0.02 | 7.04 ± 0.09 |
1 | 0.3 ± 0.00 | 3.35 ± 0.01 | 6.95 ± 0.35 | |
7 | 3.5 ± 0.50 | 2.60 ± 0.02 | 6.78 ± 0.00 | |
14 | 4.85 ± 0.50 | 2.44 ± 0.02 | 5.64 ± 0.00 | |
Black tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.54 ± 0.02 | 7.06 ± 0.02 |
1 | 0.4 ± 0.00 | 3.51 ± 0.04 | 6.65 ± 0.25 | |
7 | 3.25 ± 0.00 | 2.63 ± 0.03 | 6.22 ± 0.00 | |
14 | 4.00 ± 0.00 | 2.58 ± 0.02 | 5.59 ± 0.00 | |
Green tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.87 ± 0.03 | 7.13 ± 0.09 |
1 | 0.3 ± 0.50 | 3.54 ± 0.04 | 6.73 ± 0.35 | |
7 | 3.4 ± 0.00 | 2.61 ± 0.03 | 6.35 ± 0.00 | |
14 | 4.00 ± 0.00 | 2.40 ± 0.02 | 5.72 ± 0.00 | |
Green tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.62 ± 0.04 | 7.11 ± 0.09 |
1 | 0.2 ± 0.00 | 3.75 ± 0.03 | 6.79 ± 0.35 | |
7 | 3.50 ± 0.50 | 2.60 ± 0.02 | 6.46 ± 0.00 | |
14 | 4.95 ± 0.50 | 2.56 ± 0.02 | 5.70 ± 0.00 | |
White tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.64 ± 0.04 | 7.15 ± 0.09 |
1 | 0.4 ± 0.00 | 3.72 ± 0.02 | 6.59 ± 0.35 | |
7 | 3.0 ± 0.00 | 2.81 ± 0.01 | 6.47 ± 0.00 | |
14 | 4.50 ± 0.00 | 2.72 ± 0.02 | 5.64 ± 0.00 | |
White tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.70 ± 0.09 | 7.17 ± 0.09 |
1 | 0.2 ± 0.50 | 3.25 ± 0.35 | 6.63 ± 0.35 | |
7 | 3.25 ± 0.50 | 2.74 ± 0.09 | 6.29 ± 0.00 | |
14 | 4.75 ± 0.00 | 2.65 ± 0.35 | 5.84 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluz, M.I.; Pietrzyk, K.; Pastuszczak, M.; Kacaniova, M.; Kita, A.; Kapusta, I.; Zaguła, G.; Zagrobelna, E.; Struś, K.; Marciniak-Lukasiak, K.; et al. Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods 2022, 11, 1523. https://doi.org/10.3390/foods11101523
Kluz MI, Pietrzyk K, Pastuszczak M, Kacaniova M, Kita A, Kapusta I, Zaguła G, Zagrobelna E, Struś K, Marciniak-Lukasiak K, et al. Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods. 2022; 11(10):1523. https://doi.org/10.3390/foods11101523
Chicago/Turabian StyleKluz, Maciej Ireneusz, Karol Pietrzyk, Miłosz Pastuszczak, Miroslava Kacaniova, Agnieszka Kita, Ireneusz Kapusta, Grzegorz Zaguła, Edyta Zagrobelna, Katarzyna Struś, Katarzyna Marciniak-Lukasiak, and et al. 2022. "Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars" Foods 11, no. 10: 1523. https://doi.org/10.3390/foods11101523
APA StyleKluz, M. I., Pietrzyk, K., Pastuszczak, M., Kacaniova, M., Kita, A., Kapusta, I., Zaguła, G., Zagrobelna, E., Struś, K., Marciniak-Lukasiak, K., Stanek-Tarkowska, J., Timar, A. V., & Puchalski, C. (2022). Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods, 11(10), 1523. https://doi.org/10.3390/foods11101523