Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Preparation
2.3. Measurement Methodology
3. Results and Discussion
3.1. Calorimetric Results during Sample Preparation
3.2. Thermoanalytic Properties of Pure Components
3.3. Binary Glucose–Glucopolymer Mixtures
3.4. Ternary Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
xGlu/mol∗mol−1 | xMal/mol∗mol−1 | xMtr/mol∗mol−1 | Tg/°C | Tg,GT/°C | Tg,CK/°C | Tg−Tg,GT/°C | Tg−Tg,CK/°C |
---|---|---|---|---|---|---|---|
2/3 | 1/6 | 1/6 | 58.52 ± 0.68 | 59.44 | 57.08 | −0.92 | 0.9 |
1/3 | 1/3 | 1/3 | 84.12 ± 0.30 | 83.32; 85.27; 84.34 | 80.61 | 0.79; −1.15; −0.22 | 3.08 |
1/6 | 2/3 | 1/6 | 91.07 ± 1.09 | 90.21 | 88.51 | 0.8 | 2.01 |
1/6 | 1/6 | 2/3 | 106.15 ± 2.03 | 105.95 | 102.33 | 0.20 | 3.97 |
References
- Buera, P.; Schebor, C.; Elizalde, B. Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations. J. Food Eng. 2005, 67, 157–165. [Google Scholar] [CrossRef]
- Kinugawa, K.; Kinuhata, M.; Kagotani, R.; Imanaka, H.; Ishida, N.; Kitamatsu, M.; Nakanishi, K.; Imamura, K. Inhibitory effects of additives and heat treatment on the crystallization of freeze-dried sugar. J. Food Eng. 2015, 155, 37–44. [Google Scholar] [CrossRef]
- Fongin, S.; Alvino Granados, A.E.; Harnkarnsujarit, N.; Hagura, Y.; Kawai, K. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng. 2019, 247, 95–103. [Google Scholar] [CrossRef]
- Tackenberg, M.W.; Thommes, M.; Schuchmann, H.P.; Kleinebudde, P. Solid state of processed carbohydrate matrices from maltodextrin and sucrose. J. Food Eng. 2014, 129, 30–37. [Google Scholar] [CrossRef]
- Sormoli, M.E.; Das, D.; Langrish, T.A.G. Crystallization behavior of lactose/sucrose mixtures during water-induced crystallization. J. Food Eng. 2013, 116, 873–880. [Google Scholar] [CrossRef]
- Truong, V.; Bhandari, B.R.; Howes, T.; Adhikari, B. Glass transition behaviour of fructose. Int. J. Food Sci. Technol. 2004, 39, 569–578. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; Hodnett, M.; Twomey, M.; Cerqueira, P.S.M.; O’Flynn, J.; Roos, Y.H. Glass transition and the flowability and caking of powders containing amorphous lactose. Powder Technol. 2007, 178, 119–128. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Howes, T. Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Langrish, T.A.G. Assessing the rate of solid-phase crystallization for lactose: The effect of the difference between material and glass-transition temperatures. Food Res. Int. 2008, 41, 630–636. [Google Scholar] [CrossRef]
- Das, D.; Wang, E.; Langrish, T.A.G. Solid-phase crystallization of spray-dried glucose powders: A perspective and comparison with lactose and sucrose. Adv. Powder Technol. 2014, 25, 1234–1239. [Google Scholar] [CrossRef]
- Hartmann, M.; Palzer, S. Caking of amorphous powders—Material aspects, modelling and applications. Powder Technol. 2011, 206, 112–121. [Google Scholar] [CrossRef]
- Ibach, A.; Kind, M. Untersuchungen zur Kristallisation von amorphen lactosehaltigen Pulvern. Chem. Ing. Tech. 2007, 79, 303–312. [Google Scholar] [CrossRef]
- Ibach, A.; Kind, M. Crystallization kinetics of amorphous lactose, whey-permeate and whey powders. Carbohydr. Res. 2007, 342, 1357–1365. [Google Scholar] [CrossRef]
- Wallack, D.A.; King, C.J. Sticking and Agglomeration of Hygroscopic, Amorphous Carbohydrate and Food Powders. Biotechnol. Prog. 1988, 4, 31–35. [Google Scholar] [CrossRef]
- Keshani, S.; Daud, W.R.W.; Nourouzi, M.M.; Namvar, F.; Ghasemi, M. Spray drying: An overview on wall deposition, process and modeling. J. Food Eng. 2015, 146, 152–162. [Google Scholar] [CrossRef]
- Gordon, M.; Taylor, J.S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J. Appl. Chem. 1952, 2, 493–500. [Google Scholar] [CrossRef]
- Couchman, P.R.; Karasz, F.E. A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures. Macromolecules 1978, 11, 117–119. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Blanshard, J.M.V.; Izzard, M.J.; Lillford, P.J.; Ablett, S. Calorimetric study of the glass transition occurring in aqueous glucose: Fructose solutions. J. Sci. Food Agric. 1993, 63, 177–188. [Google Scholar] [CrossRef]
- Imamura, K.; Fukushima, A.; Sakaura, K.; Sugita, T.; Sakiyama, T.; Nakanishi, K. Water sorption and glass transition behaviors of freeze-dried sucrose-dextran mixtures. J. Pharm. Sci. 2002, 91, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Orford, P.D.; Parker, R.; Ring, S.G. Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr. Res. 1990, 196, 11–18. [Google Scholar] [CrossRef]
- Sopade, P.A.; Lee, S.B.; White, E.T.; Halley, P.J. Glass transition phenomena in molasses. LWT-Food Sci. Technol. 2007, 40, 1117–1122. [Google Scholar] [CrossRef]
- Seo, J.A.; Kim, S.J.; Kwon, H.J.; Yang, Y.S.; Kim, H.K.; Hwang, Y.H. The glass transition temperatures of sugar mixtures. Carbohydr. Res. 2006, 341, 2516–2520. [Google Scholar] [CrossRef]
- Thorat, A.A.; Forny, L.; Meunier, V.; Taylor, L.S.; Mauer, L.J. Effects of Mono-, Di-, and Tri-Saccharides on the Stability and Crystallization of Amorphous Sucrose. J. Food Sci. 2018, 83, 2827–2839. [Google Scholar] [CrossRef]
- Roos, Y.; Karel, M. Water and Molecular Weight Effects on Glass Transitions in Amorphous Carbohydrates and Carbohydrate Solutions. J. Food Sci. 1991, 56, 1676–1681. [Google Scholar] [CrossRef]
- Li, R.; Roos, Y.H.; Miao, S. Characterization of Physical and Mechanical Properties of Miscible Lactose-Sugars Systems. J. Food Sci. 2017, 82, 2105–2112. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Grajales-Lagunes, A.; González-García, R.; Toxqui-Terán, A.; Pérez-García, S.A.; Abud-Archila, M.A.; Ruiz-Cabrera, M.A. Glass Transition Study in Model Food Systems Prepared with Mixtures of Fructose, Glucose, and Sucrose. J. Food Sci. 2012, 77, E118–E126. [Google Scholar] [CrossRef]
- Roos, Y. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr. Res. 1993, 238, 39–48. [Google Scholar] [CrossRef]
- Ruiz-Cabrera, M.A.; Schmidt, S.J. Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. J. Food Eng. 2015, 146, 36–43. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Alvarez-Salas, C.; Esneider-Alcalá, M.A.; Toxqui-Terán, A.; Pérez-García, S.A.; Ruiz-Cabrera, M.A. Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. CyTA-J. Food 2012, 10, 258–267. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Y.; Bhandari, B.; Zhou, W. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: Chemical analyses. J. Agric. Food Chem. 2008, 56, 5138–5147. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, E.J.; Neal, C.H.; Lee, S.-Y.; Schmidt, S.J. Glass transition prediction strategies based on the Couchman-Karasz equation in model confectionary systems. J. Food Eng. 2017, 214, 287–302. [Google Scholar] [CrossRef]
- Saavedra-Leos, Z.; Leyva-Porras, C.; Araujo-Díaz, S.B.; Toxqui-Terán, A.; Borrás-Enríquez, A.J. Technological Application of Maltodextrins According to the Degree of Polymerization. Molecules 2015, 20, 21067–21081. [Google Scholar] [CrossRef] [Green Version]
- Truong, V.; Bhandari, B.R.; Howes, T.; Adhikari, B. Analytical model for the prediction of glass transition temperature of food systems. In Amorphous Food and Pharmaceutical Systems; Levine, H., Ed.; Royal Society of Chemistry: Cambridge, UK, 2002; pp. 31–47. ISBN 978-0-85404-866-3. [Google Scholar]
- Roos, Y.; Karel, M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Prog. 1991, 7, 49–53. [Google Scholar] [CrossRef]
- Wungtanagorn, R.; Schmidt, S.J. Thermodynamic properties and kinetics of the physical ageing of amorphous glucose, fructose, and their mixtures. J. Therm. Anal. Calorim. 2001, 65, 9–35. [Google Scholar] [CrossRef]
- Seo, J.A.; Oh, J.; Kim, D.J.; Kim, H.K.; Hwang, Y.H. Making monosaccharide and disaccharide sugar glasses by using microwave oven. J. Non-Cryst. Solids 2004, 333, 111–114. [Google Scholar] [CrossRef]
- Sablani, S.S.; Syamaladevi, R.M.; Swanson, B.G. A Review of Methods, Data and Applications of State Diagrams of Food Systems. Food Eng. Rev. 2010, 2, 168–203. [Google Scholar] [CrossRef]
- Saavedra–Leos, M.Z.; Leyva-Porras, C.; Alvarez-Salas, C.; Longoria-Rodríguez, F.; López-Pablos, A.L.; González-García, R.; Pérez-Urizar, J.T. Obtaining orange juice–maltodextrin powders without structure collapse based on the glass transition temperature and degree of polymerization. CyTA-J. Food 2018, 16, 61–69. [Google Scholar] [CrossRef] [Green Version]
Material | Trade Name | Supplier |
---|---|---|
Glucose | D(+)-Glucose ≥ 99.5% CELLPURE®, water free | Carl Roth GmbH + Co. KG; Germany |
Maltose | D(+)-Maltose Monohydrate ≥ 97%, CELLPURE® | Carl Roth GmbH + Co. KG; Germany |
Maltotriose | Maltotriose 98% Powder | Thermo Fisher GmbH (Alfa Aesar); Germany |
Maltotetraose | Maltotetraose DP4 (>99% HPLC) | ELICITYL Oligotech; France |
Maltopentaose | Maltopentaose DP5 (>99% HPLC) | ELICITYL Oligotech; France |
Maltohexaose | Maltohexaose DP6 (>99% HPLC) | ELICITYL Oligotech; France |
Maltoheptaose | Maltoheptaose DP7 (>99% HPLC) | ELICITYL Oligotech; France |
Carbohydrate | Monomer Count | Molecular Weight/g∗mol−1 | Glass Transition Tg/°C | Change in Specific Heat Capacity Δcp/J∗g−1∗K−1 |
---|---|---|---|---|
Glucose | 1 | 180.16 | 38.87 ± 0.15 | 0.74 ± 0.02 |
Maltose | 2 | 342.30 | 97.02 ± 0.58 | 0.53 ± 0.01 |
Maltotriose | 3 | 504.44 | 130.18 ± 1.23 | 0.47 ± 0.01 |
Maltotetraose | 4 | 666.58 | 153.13 ± 2.02 | 0.45 ± 0.16 |
Maltopentaose | 5 | 828.72 | 172.91 ± 0.45 | 0.46 ± 0.04 |
Maltohexaose | 6 | 990.86 | 178.53 ± 1.47 | 0.46 ± 0.08 |
Maltoheptaose | 7 | 1153.00 | 188.44 ± 3.56 | 0.48 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schugmann, M.; Foerst, P. Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation. Foods 2022, 11, 1679. https://doi.org/10.3390/foods11121679
Schugmann M, Foerst P. Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation. Foods. 2022; 11(12):1679. https://doi.org/10.3390/foods11121679
Chicago/Turabian StyleSchugmann, Martin, and Petra Foerst. 2022. "Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation" Foods 11, no. 12: 1679. https://doi.org/10.3390/foods11121679
APA StyleSchugmann, M., & Foerst, P. (2022). Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation. Foods, 11(12), 1679. https://doi.org/10.3390/foods11121679