Consideration of Maintenance in Wine Fermentation Modeling
Abstract
:1. Introduction
2. The Proposed Model
3. Calibration of the Model
4. Validation of the Model on Synthetic Data
4.1. Validation on Simulations of a Model with Transporter
4.1.1. Estimation of the Contois Function
4.1.2. Estimation of the Variable Yield Function
4.1.3. Estimation of the Other Parameters and Comparison of the Models
4.2. Validation on the SOFA Model
4.2.1. Estimation of the Contois Function
4.2.2. Estimation of the Variable Yield Function
4.2.3. Estimation of the Other Parameters and Comparison of the Models
5. Calibration of the Model on Real Data
- -
- Height measurement points for X.
- -
- No measurement point for N, S or E.
- -
- About 400 measurement points for CO and .
6. Fitting Comparisons
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malherbe, S.; Fromion, V.; Hilgert, N.; Sablayrolles, J.M. Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnol. Bioeng. 2004, 86, 261–272. [Google Scholar] [CrossRef]
- Goelzer, A.; Charnomordic, B.; Colombié, S.; Fromion, V.; Sablayrolles, J. Simulation and optimization software for alcoholic fermentation in winemaking conditions. Food Control 2009, 20, 635–642. [Google Scholar] [CrossRef]
- David, R.; Dochain, D.; Mouret, J.R.; Vande Wouwer, A.; Sablayrolles, J.M. Nitrogen-backboned modeling of wine-making in standard and nitrogen-added fermentations. Bioprocess Biosyst. Eng. 2014, 37, 5–16. [Google Scholar] [CrossRef]
- Elbing, K.; Larsson, C.; Bill, R.M.; Albers, E.; Snoep, J.L.; Boles, E.; Hohmann, S.; Gustafsso, L. Role of Hexose Transport in Control of Glycolytic Flux in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 5323–5330. [Google Scholar] [CrossRef] [Green Version]
- Clement, T.; Perez, M.; Mouret, J.; Sablayrolles, J.; Camarasa, C. Use of a continuous multistage bioreactor to mimic winemaking fermentation. Int. J. Food Microbiol. 2011, 150, 42–49. [Google Scholar] [CrossRef]
- Goma, G.; Moletta, R.; Novak, M. Comments on the “Maintenance coefficient” changes during alcohol fermentation. Biotechnol. Lett. 1979, 1, 415–420. [Google Scholar] [CrossRef]
- Schulze, U.; Lidèn, G.; Nielsen, J.; Villadsen, J. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiology 1996, 142, 2299–2310. [Google Scholar] [CrossRef] [Green Version]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl. Environ. Microbiol. 2011, 70, 3392–3400. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F.; Pizarro, F.; Pérez-Correa, J.; Agosin, E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst. Biol. 2011, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Henriques, D.; Minebois, R.; Mendoza, S.; Macías, L.; Pérez-Torrado, R.; Barrio, E.; Teusink, B.; Querol, A.; Balsa-Canto, E. A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation. mSystems 2021, 6, e00260-21. [Google Scholar] [CrossRef]
- Henriques, D.; Balsa-Canto, E. The Monod Model Is Insufficient To Explain Biomass Growth in Nitrogen-Limited Yeast Fermentation. Appl. Environ. Microbiol. 2021, 87, e0108421. [Google Scholar] [CrossRef]
- Pirt, S. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. Ser. B 1965, 163, 224–231. [Google Scholar]
- Pirt, S.J. Principles of Microbe and Cell Cultivation; Blackwell Science Ltd.: Hoboken, NJ, USA, 1985. [Google Scholar]
- Rapaport, A.; Nidelet, T.; El Aida, S.; Harmand, J. About biomass overyielding of mixed cultures in batch processes. Math. Biosci. 2020, 322, 108322. [Google Scholar] [CrossRef] [Green Version]
- Heijnen, J.; Roels, J. A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol. Bioeng. 1981, 23, 739–763. [Google Scholar] [CrossRef]
- Beeftink, H.; van der Heijden, R.; Heijnen, J. Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiol. Lett. 1990, 73, 203–209. [Google Scholar] [CrossRef]
- Wang, G.; Post, W.M. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol. Ecol. 2012, 81, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Leão, C.; van Uden, N. Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1982, 24, 2601–2604. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Sa-Correia, I.; Novais, J. Synergistic inhibition of the growth of Saccharomyces bayanus by ethanol and octanoic or decanoic acids. Biotechnol. Lett. 1985, 7, 611–614. [Google Scholar] [CrossRef]
- Caro, I.; Pérez, L.; Cantero, D. Development of a kinetic model for the alcoholic fermentation of must. Biotechnol. Bioeng. 1991, 38, 742–748. [Google Scholar] [CrossRef]
- Salmon, J.M.; Vincent, O.; Mauricio, J.C.; Bely, M.; Barre, P. Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. Am. J. Enol. Vitic. 1993, 44, 56–64. [Google Scholar]
- Cramer, A.C.; Vlassides, S.; Block, D.E. Kinetic model for nitrogen-limited wine fermentations. Biotechnol. Bioeng. 2002, 77, 49–60. [Google Scholar] [CrossRef] [PubMed]
- El Haloui, N.; Picque, D.; Corrieu, G. Alcoholic fermentation in winemaking: On-line measurement of density and carbon dioxide evolution. J. Food Eng. 1988, 8, 17–30. [Google Scholar] [CrossRef]
- VanBriesen, J. Evaluation of methods to predict bacterial yield using thermodynamics. Biodegradation 2002, 13, 171–190. [Google Scholar] [CrossRef]
- Mouret, J.; Farines, V.; Sablayrolles, J.; Trelea, I. Prediction of the production kinetics of the main fermentative aromas in winemaking fermentations. Biochem. Eng. J. 2015, 103, 211–218. [Google Scholar] [CrossRef]
- Conacher, C.; Luyt, N.; Naidoo, R.; Rossouw, D.; Setati, M.; Bauer, F. The ecology of wine fermentation: A model for the study of complex microbial ecosystems. Appl. Microbiol. Biotechnol. 2021, 105, 3027–3043. [Google Scholar] [CrossRef]
0.02 g·L | |
0.071–0.57 g·L | |
200 g·L | |
time horizon | 350 h |
temperature | constant equal to |
others | no initial transporter |
no nitrogen addition |
0.103 h | |
0.0381 g·L |
a | |
b | 0.808 g·L |
0.176 g·L |
k | |
0.197 h | |
21.1 g·L | |
72.7 g·L |
0.270 h | |
0.00952 g·L |
a | 15.1 g·L |
b | |
0.465 g·L |
k | |
0.197 h | |
17.6 g·L | |
36.4 g·L |
0.175 h | |
g·L | |
0.393 h | |
g·L | |
g·L |
Data | Tr Model | SOFA Model | Exp. |
---|---|---|---|
RSE |
Data | Tr Model | SOFA Model | Exp. |
---|---|---|---|
RMSE () | - | ||
RMSE (CO) | 0.0519 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapaport, A.; David, R.; Dochain, D.; Harmand, J.; Nidelet, T. Consideration of Maintenance in Wine Fermentation Modeling. Foods 2022, 11, 1682. https://doi.org/10.3390/foods11121682
Rapaport A, David R, Dochain D, Harmand J, Nidelet T. Consideration of Maintenance in Wine Fermentation Modeling. Foods. 2022; 11(12):1682. https://doi.org/10.3390/foods11121682
Chicago/Turabian StyleRapaport, Alain, Robert David, Denis Dochain, Jérôme Harmand, and Thibault Nidelet. 2022. "Consideration of Maintenance in Wine Fermentation Modeling" Foods 11, no. 12: 1682. https://doi.org/10.3390/foods11121682
APA StyleRapaport, A., David, R., Dochain, D., Harmand, J., & Nidelet, T. (2022). Consideration of Maintenance in Wine Fermentation Modeling. Foods, 11(12), 1682. https://doi.org/10.3390/foods11121682