Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solid-State Fermentation (SSF)
2.3. Determination of SDF
2.3.1. SDF Extraction Yield
2.3.2. Molecular Weight Distribution
2.4. Determination of Nutritional Compounds
2.4.1. Total Flavonoid Content (TFC)
2.4.2. Total Phenolic Content (TPC)
2.4.3. Alkylresorcinols Content (ARC)
2.4.4. pH Value
2.5. Determination of Physical Properties
2.5.1. Water Holding Capacity (WHC)
2.5.2. Swelling Capacity (SC)
2.5.3. Oil Absorption Capacity (OAC)
2.6. Microstructure
2.7. In Vitro Antioxidant Activity Assays
2.7.1. Total Antioxidant Capacity (T-AOC)
2.7.2. DPPH Radical Scavenging Assay
2.7.3. Hydroxyl Radical Scavenging Assay
2.7.4. ABTS Radical Scavenging Assay
2.8. Flavor
2.8.1. Electronic Nose Analysis
2.8.2. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields and Molecular Weight Distributions of Soluble Dietary Fibers
3.2. Nutritional Properties of Wheat Brans
3.3. Functional Properties
3.4. Morphology
3.5. In Vitro Antioxidant Activities
3.6. Flavor
3.6.1. Electronic Nose Analysis
3.6.2. GC–MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org (accessed on 6 May 2022).
- Patil, R.; Chawla, R. Soluble Dietary Fiber. Compr. Rev. Food Sci. Food Saf. 2010, 9, 178–196. [Google Scholar]
- Sonnenburg, J.L.; Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Vuksan, V.; Vidgen, E.; Parker, T.; Faulkner, D.; Mehling, C.C.; Garsetti, M.; Testolin, G.; Cunnane, S.C.; et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: Serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am. J. Clin. Nutr. 2002, 75, 834–839. [Google Scholar]
- Ramasamy, U.S.; Venema, K.; Schols, H.A.; Gruppen, H. Effect of soluble and insoluble fibers within the in vitro fermentation of chicory root pulp by human gut bacteria. J. Agric. Food Chem. 2014, 62, 6794–6802. [Google Scholar] [CrossRef]
- Li, Q.; Liu, R.; Wu, T.; Wang, M.; Zhang, M. Soluble Dietary Fiber Fractions in Wheat Bran and Their Interactions with Wheat Gluten Have Impacts on Dough Properties. J. Agric. Food Chem. 2016, 64, 8735–8744. [Google Scholar] [CrossRef]
- Han, S.; Jiao, J.; Zhang, W.; Xu, J.; Wan, Z.; Zhang, W.; Gao, X.; Qin, L. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci. Rep. 2015, 5, 15256. [Google Scholar] [CrossRef]
- Tanasković, S.J.; Šekuljica, N.; Jovanović, J.; Gazikalović, I.; Grbavčić, S.; Đorđević, N.; Sekulić, M.V.; Hao, J.; Luković, N.; Knežević-Jugović, Z. Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: A way to valorize wheat bran for nutrition. J. Cereal Sci. 2021, 99, 103159. [Google Scholar] [CrossRef]
- Salim, A.A.; Grbavcic, S.; Sekuljica, N.; Stefanovic, A.; Jakovetic Tanaskovic, S.; Lukovic, N.; Knezevic-Jugovic, Z. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour. Technol. Rep. 2017, 228, 193–200. [Google Scholar] [CrossRef]
- Tang, B.; Xu, H.; Xu, Z.Q.; Xu, C.; Xu, Z.; Lei, P.; Qiu, Y.B.; Liang, J.F.; Feng, X.H. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation. Bioresour. Technol. 2015, 181, 351–354. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Zhao, H.M.; Guo, X.N.; Zhu, K.X. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef]
- Verni, M.; De Mastro, G.; De Cillis, F.; Gobbetti, M.; Rizzello, C.G. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res. Int. 2019, 125, 108571. [Google Scholar] [CrossRef]
- Yin, Z.N.; Wu, W.J.; Sun, C.Z.; Liu, H.F.; Chen, W.B.; Zhan, Q.P.; Lei, Z.G.; Xin, X.; Ma, J.J.; Yao, K.; et al. Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger. Biomed. Environ. Sci. 2019, 32, 11–21. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, J.; Liu, G.H.; Tang, C.Y.; Han, Y.H.; Cao, X.T.; Jia, J.Q.; Ji, G.S.; Xiao, H. Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products. Food Chem. 2020, 328, 127046. [Google Scholar] [CrossRef]
- Xu, Z.C.; Lin, R.Y.; Hou, X.H.; Wu, J.; Zhao, W.B.; Ma, H.H.; Fan, Z.Y.; Li, S.J.; Zhu, Y.; Zhang, D.Y. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-kappaB signaling pathway. Int. J. Biol. Macromol. 2020, 164, 4329–4338. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zou, Y.; Zheng, Q.W.; Lu, F.X.; Li, D.H.; Guo, L.Q.; Lin, J.F. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Res. Int. 2021, 142, 110211. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Y.; Cui, Y.; Liu, H.; Dong, C.; Sun, Y. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohydr. Polym. 2020, 235, 115969. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zheng, W.F. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J. Ethnopharmacol. 2021, 265, 113321. [Google Scholar] [CrossRef]
- Sun, J.E.; Ao, Z.H.; Lu, Z.M.; Xu, H.Y.; Zhang, X.M.; Dou, W.F.; Xu, Z.H. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J. Ethnopharmacol. 2008, 118, 7–13. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, X.; Zhang, Z.S. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, J.G.; Dai, X.L.; Chen, X.F. Flavonoid Contents and Free Radical Scavenging Activity of Extracts from Leaves, Stems, Rachis and Roots of Dryopteris erythrosora. Iran. J. Pharm. Res. 2012, 11, 991–997. [Google Scholar]
- Bartkiene, E.; Bartkevics, V.; Krungleviciute, V.; Juodeikiene, G.; Zadeike, D.; Baliukoniene, V.; Bakutis, B.; Zelvyte, R.; Santini, A.; Cizeikiene, D. Application of hydrolases and probiotic Pediococcus acidilactici BaltBio01 strain for cereal by-products conversion to bioproduct for food/feed. Int. J. Food Sci. Nutr. 2018, 69, 165–175. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Vattuone, M.A.; Catalán, C.A.N. A new colorimetric method for determination of alkylresorcinols in ground and whole-cereal grains using the diazonium salt Fast Blue RR. Food Chem. 2009, 115, 1170–1174. [Google Scholar] [CrossRef]
- Kong, F.; Wang, L.; Gao, H.F.; Chen, H.Z. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. Powder Technol. 2020, 371, 154–160. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef]
- Zhou, K.Q.; Yu, L.L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT 2004, 37, 717–721. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S. Antioxidative properties of 34 green leafy vegetables. J. Funct. Foods 2016, 26, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.G.; Jia, S.R.; Wu, Y.K.; Yan, R.R.; Lin, Y.H.; Zhao, D.X.; Han, P.P. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydr. Polym. 2018, 198, 426–433. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Chen, M.; Gu, J.; Zhou, J.; Duan, Y.; Zhang, H.; Ma, H. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int. J. Biol. Macromol. 2019, 134, 172–179. [Google Scholar] [CrossRef]
- Wang, M.; Lei, M.; Samina, N.; Chen, L.L.; Liu, C.L.; Yin, T.T.; Yan, X.T.; Wu, C.L.; He, H.L.; Yi, C.P. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem. 2020, 330, 127156. [Google Scholar] [CrossRef]
- Hu, L.; Liu, R.; Wu, T.; Sui, W.J.; Zhang, M. Structural Properties of Homogeneous Polysaccharide Fraction Released from Wheat Germ by Hydrothermal Treatment. Carbohydr. Polym. 2020, 240, 116238. [Google Scholar] [CrossRef]
- Chu, J.X.; Zhao, H.Z.; Lu, Z.X.; Lu, F.X.; Bie, X.M.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Smith, C.; Li, W.L. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res. Int. 2014, 65, 423–436. [Google Scholar] [CrossRef]
- Mao, M.L.; Wang, P.; Shi, K.X.; Lu, Z.X.; Bie, X.M.; Zhao, H.Z.; Zhang, C.; Lv, F.X. Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J. Cereal Sci. 2020, 94, 102997. [Google Scholar] [CrossRef]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [Green Version]
- Li, M.X.; Liu, Y.X.; Yang, G.; Sun, L.Y.; Song, X.S.; Chen, Q.H.; Bao, Y.H.; Luo, T.; Wang, J.L. Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and its total dietary fiber. LWT Food Sci. Technol. 2022, 153, 112478. [Google Scholar] [CrossRef]
- Luna-Valdez, J.G.; Balandrán-Quintana, R.R.; Azamar-Barrios, J.A.; Ramos Clamont-Montfort, G.; Mendoza-Wilson, A.M.; Mercado-Ruiz, J.N.; Madera-Santana, T.J.; Rascon-Chu, A.; Chaquilla-Quilca, G. Structural and physicochemical characterization of nanoparticles synthesized from an aqueous extract of wheat bran by a cold-set gelation/desolvation approach. Food Hydrocoll. 2017, 62, 165–173. [Google Scholar] [CrossRef]
- Leite, P.; Silva, C.; Salgado, J.M.; Belo, I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crops Prod. 2019, 137, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.Z.; Gao, Q.D.; Hadiatullah, H.; Zhang, J.; Zhang, A.L.; Yao, Y.P. Effect of wheat bran steam explosion pretreatment on flavors of nonenzymatic browning products. LWT Food Sci. Technol. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Jin, X.X.; Lin, S.Y.; Gao, J.; Wang, Y.; Ying, J.; Dong, Z.Z.; Zhou, W.B. How manipulation of wheat bran by superfine-grinding affects a wide spectrum of dough rheological properties. J. Cereal Sci. 2020, 96, 103081. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Özkaya, B.; Turksoy, S.; Özkaya, H.; Duman, B. Dephytinization of wheat and rice brans by hydrothermal autoclaving process and the evaluation of consequences for dietary fiber content, antioxidant activity and phenolics. Innov. Food Sci. Emerg. Technol. 2017, 39, 209–215. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Compos. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Saharan, P.; Sadh, P.K.; Singh Duhan, J. Comparative assessment of effect of fermentation on phenolics, flavanoids and free radical scavenging activity of commonly used cereals. Biocatal. Agric. Biotechnol. 2017, 12, 236–240. [Google Scholar] [CrossRef]
Samples | WHC (g/g) | SC (mL/g) | OAC (g/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
IC-WB | CM-WB | IO-WB | IC-WB | CM-WB | IO-WB | IC-WB | CM-WB | IO-WB | |
0 d | 3.06 ± 0.07 Aa | 3.06 ± 0.07 Ab | 3.06 ± 0.07 Ad | 2.27 ± 0.05 Abc | 2.27 ± 0.05 Ad | 2.27 ± 0.05 Ad | 2.24 ± 0.03 Ad | 2.24 ± 0.03 Ac | 2.24 ± 0.03 Ad |
2 d | 3.15 ± 0.03 Ba | 3.47 ± 0.08 Aa | 3.54 ± 0.03 Aa | 2.25 ± 0.02 Bc | 2.51 ± 0.01 Ac | 2.52 ± 0.06 Ac | 2.27 ± 0.02 Ad | 2.36 ± 0.04 Ab | 2.27 ± 0.04 Ad |
4 d | 3.10 ± 0.05 Ba | 3.43 ± 0.02 Aa | 3.48 ± 0.03 Aab | 2.34 ± 0.02 Bb | 2.62 ± 0.01 Ab | 2.64 ± 0.04 Ab | 2.54 ± 0.05 Ac | 2.35 ± 0.05 Bb | 2.48 ± 0.02 Ac |
6 d | 3.10 ± 0.06 Ba | 3.40 ± 0.04 Aa | 3.44 ± 0.02 Abc | 2.52 ± 0.07 Ba | 2.78 ± 0.05 Aa | 2.76 ± 0.04 Aa | 3.10 ± 0.04 Ab | 2.45 ± 0.01 Ca | 2.69 ± 0.01 Bb |
8 d | 2.52 ± 0.02 Bb | 3.39 ± 0.04 Aa | 3.38 ± 0.05 Ac | 1.43 ± 0.03 Cd | 2.81 ± 0.08 Aa | 2.56 ± 0.04 Bbc | 3.28 ± 0.03 Aa | 2.40 ± 0.03 Cb | 2.78 ± 0.01 Ba |
RT | CAS | Compounds | Relative Content (%) | |||
---|---|---|---|---|---|---|
US-WB | IC-WB | CM-WB | IO-WB | |||
Alcohols | 34.86 | 22.01 | 45.87 | 34.79 | ||
1.524 | 64-17-5 | Ethanol | 1.00 | — | 1.83 | — |
1.7 | 75-65-0 | 2-Propanol, 2-methyl- | 2.61 | 8.35 | 4.31 | 4.04 |
2.871 | 107-98-2 | 2-Propanol, 1-methoxy- | 3.82 | — | 0.96 | 2.20 |
3.914 | 763-32-6 | 3-Buten-1-ol, 3-methyl- | 1.32 | 4.65 | 2.01 | 1.75 |
4.825 | 71-41-0 | 1-Pentanol | — | — | 2.08 | 2.80 |
5.172 | 107-41-5 | Hexylene glycol | 1.00 | — | — | — |
7.631 | 98-00-0 | 2-Furanmethanol | 1.14 | — | — | — |
8.153 | 111-27-3 | 1-Hexanol | 0.68 | 6.67 | 5.94 | 5.51 |
8.6 | 19550-89-1 | 2,2-Dimethyl-5-hexen-3-ol | 1.17 | — | — | — |
8.616 | 59562-82-2 | 1,2-Butanediol, 3,3-dimethyl- | — | — | 2.37 | 2.51 |
11.909 | 54004-46-5 | 2H-Pyranmethanol, tetrahydro-2,5-dimethyl- | 14.13 | — | 16.50 | 15.98 |
12.514 | 3391-86-4 | 1-Octen-3-ol | 1.25 | — | 1.43 | — |
15.639 | 2050-95-5 | 1-Butanol, 3-methyl-, carbonate (2:1) | 1.76 | — | — | — |
21.095 | 41902-42-5 | 3-Pentanol, 3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl- | 4.98 | — | 6.97 | — |
30.12 | 2425-77-6 | 1-Decanol, 2-hexyl- | — | 2.34 | 1.47 | — |
Ketones | 1.24 | 10.69 | 2.56 | 2.95 | ||
2.029 | 78-94-4 | Methyl vinyl ketone | — | 2.54 | 1.09 | 1.34 |
10.394 | 110-13-4 | 2,5-Hexanedione | 1.24 | 3.45 | 1.47 | 1.61 |
17.185 | 1123-09-7 | 2-Cyclohexen-1-one, 3,5-dimethyl- | — | 2.17 | — | — |
24.788 | 112-12-9 | 2-Undecanone | — | 2.53 | — | — |
Acids | 30.00 | 8.95 | 3.71 | 3.92 | ||
2.028 | 64-19-7 | Acetic acid | 10.87 | — | — | — |
7.168 | 503-74-2 | Butanoic acid, 3-methyl- | 0.98 | — | — | — |
12.609 | 504-85-8 | 3-Pentenoic acid, 4-methyl- | 3.63 | 8.95 | 3.71 | 3.92 |
12.882 | 142-62-1 | Hexanoic acid | 13.46 | — | — | — |
23.849 | 112-05-0 | Nonanoic acid | 1.06 | — | — | — |
Esters | 0.91 | 7.53 | 7.68 | 9.45 | ||
9.362 | 4435-53-4 | 1-Butanol, 3-methoxy-, acetate | — | 3.86 | — | — |
12.156 | 595-37-9 | Propanoic acid, 2-methyl-, 3-methylbutyl ester | — | — | 5.65 | 5.53 |
15.469 | 695-06-7 | 2(3H)-Furanone, 5-ethyldihydro- | 0.91 | — | — | — |
15.653 | 106-27-4 | Butanoic acid, 3-methylbutyl ester | — | 3.67 | 2.03 | 2.31 |
30.128 | 6222-02-2 | Tetradecyl trifluoroacetate | — | — | — | 1.61 |
Aldehydes | 9.45 | 11.01 | 13.47 | 14.61 | ||
3.227 | 110-62-3 | Pentanal | 0.85 | — | 1.66 | 1.85 |
5.7 | 66-25-1 | Hexanal | 3.76 | 1.47 | 5.22 | 5.81 |
6.812 | 98-01-1 | Furfural | 0.84 | — | — | — |
9.344 | 111-71-7 | Heptanal | 0.72 | — | — | — |
16.1 | 107-75-5 | Octanal, 7-hydroxy-3,7-dimethyl- | — | 9.54 | 5.15 | 5.38 |
17.553 | 124-19-6 | Nonanal | 2.10 | — | 1.44 | 1.57 |
27.616 | 13019-16-4 | 2-Octenal, 2-butyl- | 1.18 | — | — | — |
Hydrocarbons | 19.23 | 36.05 | 20.84 | 29.50 | ||
7.384 | 7154-80-5 | Heptane, 3,3,5-trimethyl- | — | 1.78 | 0.92 | — |
7.784 | 100-41-4 | Ethylbenzene | 0.67 | — | — | 0.94 |
8.079 | 108-38-3 | Benzene, 1,3-dimethyl- | 1.20 | 2.40 | 1.19 | 1.38 |
8.885 | 629-20-9 | 1,3,5,7-Cyclooctatetraene | 2.10 | — | — | — |
8.909 | 100-42-5 | Styrene | — | 1.93 | 1.00 | 0.96 |
12.93 | 13475-82-6 | Heptane, 2,2,4,6,6-pentamethyl- | — | — | 0.98 | 2.13 |
13.955 | 20278-85-7 | Heptane, 2,3,5-trimethyl- | — | — | — | 1.01 |
14.303 | 527-84-4 | o-Cymene | 1.58 | 2.79 | 1.91 | 2.11 |
14.48 | 5989-27-5 | D-Limonene | 0.70 | — | 0.97 | 1.53 |
20.184 | 1002-43-3 | Undecane, 3-methyl- | 1.74 | 2.88 | 1.86 | 3.11 |
21.311 | 112-40-3 | Dodecane | 4.72 | 9.20 | 5.39 | 7.85 |
26.286 | 20959-33-5 | Heptadecane, 7-methyl- | — | 1.57 | — | 1.01 |
27.8 | 3856-25-5 | Copaene | 1.46 | — | — | — |
28.485 | 629-59-4 | Tetradecane | 2.88 | 9.66 | 4.75 | 5.55 |
33.961 | 638-36-8 | Hexadecane, 2,6,10,14-tetramethyl- | 0.84 | 3.84 | 1.87 | — |
34.701 | 629-94-7 | Heneicosane | 1.34 | — | — | 1.92 |
Phenols | 0.96 | — | — | — | ||
25.528 | 7786-61-0 | 2-Methoxy-4-vinylphenol | 0.96 | — | — | — |
Other compounds | 4.31 | 3.76 | 5.87 | 4.78 | ||
13.004 | 3777-69-3 | Furan, 2-pentyl- | 1.08 | — | — | — |
20.626 | 91-20-3 | Naphthalene | 1.26 | 3.76 | 1.12 | — |
27.477 | 13187-99-0 | 2-Bromo dodecane | 1.97 | — | 4.75 | 4.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Wang, S.; Wang, T.; Liu, R.; Zhi, Z.; Wu, T.; Sui, W.; Zhang, M. Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods 2022, 11, 1722. https://doi.org/10.3390/foods11121722
Li N, Wang S, Wang T, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods. 2022; 11(12):1722. https://doi.org/10.3390/foods11121722
Chicago/Turabian StyleLi, Ningjie, Songjun Wang, Tianli Wang, Rui Liu, Zijian Zhi, Tao Wu, Wenjie Sui, and Min Zhang. 2022. "Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics" Foods 11, no. 12: 1722. https://doi.org/10.3390/foods11121722
APA StyleLi, N., Wang, S., Wang, T., Liu, R., Zhi, Z., Wu, T., Sui, W., & Zhang, M. (2022). Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods, 11(12), 1722. https://doi.org/10.3390/foods11121722