A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Processing Conditions
2.3. In Vitro Simulated Gastrointestinal Digestion
2.4. HPLC-PAD-ESI-MSn Analysis of the Quantitative Glucosinolate and Phenolic Profiles
2.5. UHPLC-ESI-3Q-MS/MS Analysis of Glucosinolate’s Breakdown Products: Isothiocyanates and Indoles
2.6. Statistical Analysis
3. Results and Discussion
3.1. (Poly)Phenolic Content of Broccoli Stalk’s Fractions
3.2. Organosulfur Compounds of Broccoli Stalk, Core, and Bark
3.3. Effect of Processing Broccoli Stalk on the Phytochemical Composition
3.3.1. Modification of the Quantitative (Poly)Phenolic Profile
3.3.2. Modification of the Quantitative Profile of Organosulfur Compounds
3.4. Bioaccessibility of Phenolic Compounds and Glucosinolates from the Different Matrices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-Derived By-Products-A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef] [PubMed]
- López, R.; D’Amato, R.; Trabalza-Marinucci, M.; Regni, L.; Proietti, P.; Maratta, A.; Cerutti, S.; Pacheco, P. Green and simple extraction of free seleno-amino acids from powdered and lyophilized milk samples with natural deep eutectic solvents. Food Chem. 2020, 326, 126965. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Waking Up from Four Decades’ Long Dream of Valorizing Agro-Food Byproducts: Toward Practical Applications of the Gained Knowledge. J. Agric. Food Chem. 2018, 66, 3069–3073. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Analysis of the tumoral cytotoxicity of green tea-infusions enriched with broccoli. Food Chem. 2012, 132, 1197–1206. [Google Scholar] [CrossRef]
- Medina, S.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C.; Ferreres, F.; Gil, J.I.; Gil-Izquierdo, Á. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chem. 2015, 173, 1187–1194. [Google Scholar] [CrossRef]
- Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Bigdeloo, M.; Teymourian, T.; Kowsari, E.; Ramakrishna, S.; Ehsani, A. Sustainability and Circular Economy of Food Wastes: Waste Reduction Strategies, Higher Recycling Methods, and Improved Valorization. Mater. Circ. Econ. 2021, 3, 3. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Martinez-Ballesta, M.C.; Riquelme, F.; Carvajal, M.; Garcia-Viguera, C.; Moreno, D.A. Novel varieties of broccoli for optimal bioactive components under saline stress. J. Sci. Food Agric. 2011, 91, 1638–1647. [Google Scholar] [CrossRef]
- Dominguez-Perles, R.; Garcia-Viguera, C.; Moreno, D.A. Bioactives from broccoli by-products. Food Eng. Ingred. 2010, 35, 22–25. [Google Scholar]
- Zhang, X.L.; Shu, X.O.; Xiang, Y.B.; Yang, G.; Li, H.L.; Gao, J.; Cai, H.; Gao, Y.-T.; Zheng, W. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am. J. Clin. Nutr. 2011, 94, 240–246. [Google Scholar] [CrossRef]
- Dominguez-Perles, R.; Medina, S.; Moreno-Fernández, D.; Garcia-Viguera, C.; Ferreres, F.; Gil-Izquierdo, Á. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chem. 2014, 143, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 2011, 33, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abellán, Á.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion. Int. J. Mol. Sci. 2021, 22, 11046. [Google Scholar] [CrossRef] [PubMed]
- Sikora, E.; Cieślik, E.; Filipiak-Florkiewicz, A.; Leszczyńska, T. Effect of hydrothermal processing on phenolic acids and flavonols contents in selected brassica vegetables. Acta Sci. Pol. Technol. Aliment. 2012, 11, 45–51. [Google Scholar]
- Nguyen, V.P.T.; Stewart, J.D.; Ioannou, I.; Allais, F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery from Biomass, and Biological Activities. Front. Chem. 2021, 9, 350. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Baenas, N.; García-Viguera, C. New Insights in (Poly)phenolic Compounds: From Dietary Sources to Health Evidence. Foods 2020, 9, 543. [Google Scholar] [CrossRef]
- Abellán, Á.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients 2021, 13, 4140. [Google Scholar] [CrossRef]
- Corona-Leo, L.S.; Meza-Márquez, O.G.; Hernández-Martínez, D.M. Effect of in vitro digestion on phenolic compounds and antioxidant capacity of different apple (Malus domestica) varieties harvested in Mexico. Food Biosci. 2021, 43, 101311. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupon, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 3–44. [Google Scholar] [CrossRef]
- Maltini, E.; Torreggiani, D.; Venir, E.; Bertolo, G. Water activity and the preservation of plant foods. Food Chem. 2003, 82, 79–86. [Google Scholar] [CrossRef]
- Baenas, N.; Suárez-Martínez, C.; García-Viguera, C.; Moreno, D.A. Bioavailability and new biomarkers of cruciferous sprouts consumption. Food Res. Int. 2017, 100, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Moreno, D.A.; García-Viguera, C. Selecting Sprouts of Brassicaceae for Optimum Phytochemical Composition. J. Agric. Food Chem. 2012, 60, 11409–11420. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M.; Ali, M.; Ferreres, F.; Moreno, D.A.; Velasco, P.; Soengas, P. Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea. Front. Plant Sci. 2015, 6, 1240. [Google Scholar] [CrossRef] [Green Version]
- Velasco, P.; Francisco, M.; Moreno, D.A.; Ferreres, F.; García-Viguera, C.; Cartea, M.E. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem. Anal. 2011, 22, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Chadni, M.; Flourat, A.L.; Reungoat, V.; Mouterde, L.M.M.; Allais, F.; Ioannou, I. Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by acting on pH: Toward a High Antioxidant Activity Rich Extract. Molecules 2021, 26, 212. [Google Scholar] [CrossRef]
- Martinović, N.; Abramovič, H.; Ulrih, N.P. Inhibition of copper-induced lipid peroxidation by sinapic acid and its derivatives in correlation to their effect on the membrane structural properties. Biochim. Biophys. Acta (BBA) Biomembr. 2019, 1861, 1–8. [Google Scholar] [CrossRef]
- Challice, J.S. Phenolic compounds of the genus pyrus. VI. Distribution of phenols amongst the various tissues of the pyrus stem. J. Sci. Food Agric. 1973, 24, 285–293. [Google Scholar] [CrossRef]
- González-Molina, E.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Conference on Harmonization (ICH). Validation of Analytical Method: Definitions and Terminology; ICH Q2A: Geneva, Switzerland, 1994. [Google Scholar]
- Domínguez-Perles, R.; Teixeira, A.; Rosa, E.; Barros, A. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology. Food Chem. 2014, 164, 339–346. [Google Scholar] [CrossRef]
- Mrkìc, V.; Cocci, E.; Rosa, M.D.; Sacchetti, G. Effect of drying conditions on bioactive compounds and antioxidant activity of broccoli (Brassica oleracea L.). J. Sci. Food Agric. 2006, 86, 1559–1566. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.; Garcia-Viguera, C. Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J. Sci. Food Agric. 2003, 83, 1511–1516. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Z.; Wang, Y.; Fu, L. Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 3589–3615. [Google Scholar] [CrossRef]
- Giuberti, G.; Rocchetti, G.; Lucini, L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview. Curr. Opin. Food Sci. 2020, 31, 102–113. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Monteiro, F.; Passos, C.P.; Silva, A.M.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Res. Int. 2020, 132, 109055. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.; Cardoso, S.M.; Wessel, D.F.; Coimbra, M.A. Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chem. 2018, 246, 386–393. [Google Scholar] [CrossRef]
- Martinović, N.; Ulrih, N.P.; Abramovič, H. Sinapic Acid and its Derivatives Increase Oxidative Stability in Different Model Lipid Systems. Eur. J. Lipid Sci. Technol. 2019, 121, 1800326. [Google Scholar] [CrossRef]
- Latté, K.P.; Appel, K.-E.; Lampen, A. Health benefits and possible risks of broccoli—An overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y. Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway. Oxidative Med. Cell. Longev. 2018, 2018, 5438179. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Gao, Q.; Zhao, P.; Gao, Y.; Xi, Y.; Wang, X.; Liang, Y.; Shi, H.; Ma, Y. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav. Brain Res. 2016, 301, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Li, X.; Wang, Y.; Lu, Y. The protective effect of sulforaphane on type II diabetes induced by high-fat diet and low-dosage streptozotocin. Food Sci. Nutr. 2021, 9, 747–756. [Google Scholar] [CrossRef]
- Subedi, L.; Lee, J.; Yumnam, S.; Ji, E.; Kim, S. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation. Cells 2019, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.-Y.; Zhang, J.-K.; Zheng, L.; Chen, Y. The functional role of sulforaphane in intestinal inflammation: A review. Food Funct. 2021, 13, 514–529. [Google Scholar] [CrossRef]
Compound | Intact Broccoli Stalk | Broccoli Stalk’s Core | Broccoli Stalk’s Bark | p-Value |
---|---|---|---|---|
5-caffeoylquinic acid | 4.30 ± 0.24 b | 4.36 ± 1.01 b | 0.06 ± 0.02 a | *** |
Caffeoyl derivative | 1.73 ± 0.23 ab | 2.24 ± 0.65 b | 1.00 ± 0.03 a | * |
Caffeoyl-hexose derivative | 1.87 ± 0.24 c | 0.72 ± 0.14 b | 0.11 ± 0.02 a | *** |
p-coumaroylquinic acid | 0.55 ± 0.01 b | 1.54 ± 0.21 c | 0.08 ± 0.01 a | *** |
Sinapoyl-gentibioside | 0.85 ± 0.03 b | 1.98 ± 0.42 c | 0.08 ± 0.01 a | *** |
Sinapoyl hexoside | 0.59 ± 0.10 b | 0.77 ± 0.19 b | 0.03 ± 0.01 a | ** |
Feruloyl-caffeoyl derivative | 4.89 ± 0.83 b | 3.72 ± 0.87 b | 1.80 ± 0.09 a | ** |
Di-sinapoyl-gentiobioside I | 0.70 ± 0.10 a | 5.06 ± 0.53 b | 0.78 ± 0.06 a | *** |
3-O-feruloylquinic acid | 0.82 ± 0.23 b | 1.12 ± 0.23 b | 0.05 ± 0.02 a | ** |
Feruloyl-caffeoyl derivative | 6.45 ± 0.8 b | 7.37 ± 1.60 b | 1.00 ± 0.08 a | *** |
Di-sinapoyl-diglucose | 2.26 ± 0.10 | 4.37 ± 0.89 | 3.15 ± 0.02 | N.s. |
Di-caffeoylquinic acid derivative | 1.76 ± 1.30 | 2.44 ± 0.53 | 1.58 ± 0.01 | N.s. |
Di-sinapoyl-gentiobioside II | 4.69 ± 0.20 b | 6.23 ± 0.97 b | 0.72 ± 0.01 a | *** |
1-Di-sinapoyl-2-feruloyl-gentiobioside | 0.70 ± 0.07 b | 1.00 ± 0.21 b | 0.21 ± 0.01 a | *** |
1-Di-sinapoyl-2-feruloyl-gentiobioside (isomer) | 1.25 ± 0.05 b | 1.40 ± 0.25 b | 0.16 ± 0.02 a | *** |
1,2,2′-Tri-sinapoyl-gentiobioside | 12.70 ± 0.12 c | 8.77 ± 0.65 b | 0.73 ± 0.02 a | *** |
1,2′-Di-sinapoyl-2-feruloyl-gentiobioside | 1.94 ± 0.04 b | 2.95 ± 0.68 c | 0.17 ± 0.01 a | *** |
Compound | Intact Broccoli Stalk | Broccoli Stalk’s Core | Broccoli Stalk’s Bark | p-Value |
---|---|---|---|---|
Aliphatic glucosinolates | ||||
Glucoiberin (GI) | 0.403 ± 0.083 a | 0.269 ± 0.038 a | 0.762 ± 0.025 b | *** |
Glucoraphanin (GR) | 2.634 ± 0.691 b | 1.273 ± 0.144 a | 0.185 ± 0.091 a | ** |
Glucoerucin (GE) | 0.227 ± 0.046 a | 0.125 ± 0.012 a | 0.570 ± 0.096 b | *** |
Indolic glucosinolates | ||||
Hydroxy-glucobrassicin (HGB) | 0.108 ± 0.013 b | 0.043 ± 0.007 a | 0.092 ± 0.006 b | *** |
Glucobrassicin (GB) | 0.110 ± 0.023 b | 0.100 ± 0.002 b | 0.046 ± 0.010 a | ** |
Methoxy-glucobrassicin (MGB) | 0.449 ± 0.067 c | 0.099 ± 0.012 a | 0.182 ± 0.006 b | *** |
Neo-Glucobrassicin (NGB) | 0.091 ± 0.014 a | 0.216 ± 0.047 b | 0.141 ± 0.012 a | ** |
Aromaticc glucosinolate | ||||
Gluconasturtiin (PE) | 0.652 ± 0.093 | 0.673 ± 0.112 | 0.510 ± 0.064 | N.s. |
Isothyocianates and indoles | ||||
Sulforaphane (SFN) | 0.91 ± 0.16 b | 0.31 ± 0.05 a | 0.92 ± 0.14 b | ** |
Indole-3-carbinol (I3C) | 1.87 ± 0.32 a | 2.27 ± 0.15 a | 7.36 ± 0.76 b | *** |
Compound | Intact Broccoli Stalk | Core | Bark | Comparison of Materials (LSD p < 0.05) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | |
Caffeoylquinic acid derivatives | |||||||||||||||
5-caffeoylquinic acid | 4.30 B c | 1.89 C b | 0.46 A a | 0.49 | 4.36 B b | 0.23 B a | <LOQ A a | 1.17 | 0.12 A a | <LOQ A a | <LOQ A a | 0.14 | 1.19 | 0.53 | 0.43 |
Caffeoyl derivative | 1.73 AB b | 0.46 A a | 0.69 B a | 0.13 | 2.24 B b | 0.37 A a | <LOQ A a | 0.76 | 0.71 A a | 1.45 B a | 0.77 B a | 0.67 | 0.96 | 0.33 | 0.14 |
Caffeoyl-hexose derivative | 1.87 C c | 0.50 A b | 0.27 B a | 0.36 | 0.42 B b | 0.42 A b | <LOQ A a | 0.20 | 0.01 A a | 0.33 A b | 0.20 B b | 0.18 | 0.20 | 0.40 | 0.09 |
p-coumaroylquinic acid | 0.55 B c | 0.38 A b | 0.09 B a | 0.06 | 1.03 C b | 1.12 B b | <LOQ A a | 0.21 | 0.06 A a | 0.37 B c | 0.20 C b | 0.06 | 0.53 | 0.14 | <0.01 |
Feruloyl-caffeoyl derivative | 4.89 B c | 0.46 A a | 3.87 B b | 1.07 | 3.72 B b | 0.98 B a | 1.20 A a | 1.01 | 1.20 A a | 2.36 C c | 1.05 A b | 0.19 | 1.07 | 0.17 | 1.02 |
3-O-feruloylquinic acid | 0.63 B b | 0.43 B a | 0.38 B a | 0.11 | 1.12 B b | 0.04 A a | 0.06 A a | 0.26 | 0.03 A a | 0.57 B b | 0.56 C b | 0.14 | 0.29 | 0.40 | 0.40 |
Feruloyl-caffeoyl derivative | 6.45 B c | 3.84 B b | 1.02 A a | 0.59 | 7.37 B b | 0.56 A a | 0.42 A a | 1.85 | 1.00 A a | 4.78 C b | 3.75 B b | 1.11 | 1.87 | 0.43 | 1.16 |
Di-caffeoylquinic acid derivative | 3.06 B b | 6.59 B c | <LOQ A a | 0.14 | 2.01 A a | 4.29 A a | 8.31 C b | 2.13 | 1.05 A a | 4.56 A a | 4.04 B a | 3.31 | 0.50 | 2.46 | 3.03 |
Sinapoyl derivatives | |||||||||||||||
Sinapoyl-gentibioside | 0.05 A a | 0.95 B b | 0.05 A a | 0.26 | 1.16 B c | 0.87 B b | 0.53 C a | 0.12 | 0.05 A a | <LOQ A a | 0.38 B b | 0.06 | 0.06 | 0.36 | <0.01 |
Sinapoyl hexoside | 0.59 B ab | 0.52 A a | 0.65 B b | 0.16 | 0.77 B b | 0.48 A ab | 0.21 A a | 0.25 | 0.03 A a | 0.79 B b | 0.88 B b | 0.17 | 0.22 | 0.21 | 0.17 |
Di-sinapoyl-gentiobioside I | 0.70 A a | 1.73 B b | 5.17 B c | 0.77 | 4.41 B b | 0.99 A a | 1.63 A a | 1.39 | 0.52 A a | 1.11 A a | 2.05 A b | 0.41 | 1.38 | 0.28 | 0.85 |
Di-sinapoyl-diglucose | 3.89 AB a | 9.07 B b | 14.93 A c | 2.95 | 4.37 B a | 8.13 B b | 21.13 B c | 2.68 | 2.10 A a | 5.58 A b | 11.96 A c | 1.95 | 1.25 | 1.50 | 3.99 |
Di-sinapoyl-gentiobioside II | 4.69 B b | 5.17 B b | 1.01 A a | 0.48 | 6.23 B b | 1.05 A a | 0.93 A a | 1.16 | 0.48 A a | 7.19 C c | 2.66 B b | 1.01 | 1.13 | 0.88 | 0.74 |
1-Di-sinapoyl-2-feruloyl-gentiobioside | 1.96 B b | 1.50 B ab | 0.70 A a | 0.77 | 2.72 B b | 0.46 A a | 0.42 A a | 0.92 | 0.25 A a | 2.55 C c | 1.38 B b | 0.36 | 0.90 | 0.62 | 0.62 |
s | 2.58 B c | 1.48 B b | 0.22 A a | 0.06 | 2.95 B a | 0.25 A a | 0.71 A a | 1.88 | 0.14 A a | 2.50 C c | 1.01 A b | 0.22 | 0.69 | 0.13 | 1.79 |
1,2′-Di-sinapoyl-2-feruloyl-gentiobioside | 27.96 B b | 26.00 B ab | 23.85 A a | 1.52 | 32.84 B c | 12.87 A a | 26.26 A b | 2.95 | 4.20 A a | 30.44 C c | 24.40 A b | 2.20 | 3.00 | 0.86 | 2.07 |
Compound | Intact Broccoli Stalk | Core | Bark | Comparison of Materials (LSD p < 0.05) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | LSD (p < 0.05) | Lyo | LT | Grad | |
Aliphatic and aromatic glucosinolates | |||||||||||||||
Gluciberin | 403.02 B a | 566.64 B b | 407.99 A a | 123.58 | 268.87 A a | 823.08 C b | 1871.79 B c | 373.42 | 762.23 C b | 241.46 A a | 226.10 A a | 50.98 | 79.89 | 140.78 | 362.09 |
Glucoraphanin | 2633.89 B a | 2212.52 AB a | 2157.00 A a | 675.54 | 1272.52 A a | 2683.17 B b | 11,447.19 B c | 845.76 | 1184.84 A a | 2021.38 A c | 1655.10 A b | 254.50 | 597.15 | 431.46 | 832.88 |
Glucoerucin | 277.30 A a | 244.20 B a | 280.28 A a | 56.86 | 125.45 A a | 395.04 C a | 1821.21 B b | 401.50 | 570.28 B b | 134.40 A a | 138.82 A a | 115.16 | 117.95 | 55.63 | 400.86 |
Gluconasturtin | 652.00 A b | 375.36 A a | 740.53 A b | 155.77 | 672.77 A a | 435.58 AB a | 2910.78 B b | 385.59 | 510.22 A a | 559.30 C ab | 771.34 A b | 192.02 | 158.91 | 116.28 | 413.58 |
Indolic glucosinolates | |||||||||||||||
Hydroxy-glucobrassicin | 107.91 B b | <LOQ A a | <LOQ A a | 10.65 | 43.33 A b | 59.86 B c | <LOQ A a | 13.12 | 91.76 B a | 66.95 B a | 74.44 B a | 24.28 | 15.13 | 13.76 | 21.33 |
Glucobrassicin | 109.81 B b | 113.27 B b | 57.92 A a | 32.98 | 100.47 B a | 60.94 A a | 481.77 B b | 54.53 | 46.19 A a | 193.26 C c | 89.98 A b | 27.43 | 29.51 | 26.68 | 56.84 |
Methoxy-glucobrassicin | 449.05 A b | 416.89 B ab | 327.92 B a | 78.57 | 99.47 C a | 275.13 A b | 496.99 C c | 37.76 | 182.17 B a | 279.09 A b | 155.05 A a | 29.14 | 55.66 | 43.28 | 58.97 |
Neoglucobrassicin | 90.73 A a | 106.94 A a | 168.13 A b | 22.77 | 215.96 B a | 143.64 A a | 626.96 B b | 80.69 | 140.97 AB a | 497.12 B b | 186.63 A a | 81.12 | 75.16 | 72.01 | 58.67 |
Isothiocyanates and indoles | |||||||||||||||
Sulforaphane | 1.09 B c | 0.35 A a | 0.62 B b | 0.16 | 0.41 A c | 0.10 A a | 0.23 A b | 0.06 | 1.10 B a | 0.71 A a | 0.77 C a | 47.48 | 0.24 | 0.48 | 0.08 |
Erucin | <LOQ | <LOQ | <LOQ | N.d. | <LOQ | <LOQ | <LOQ | N.d. | <LOQ | <LOQ | <LOQ | N.d. | N.d. | N.d. | N.d. |
Indole-3-carbinol | 1.50 A b | 3.95 A c | <LOQ A a | 1.13 | 1.94 A a | 3.33 A b | 6.20 C c | 0.85 | 7.48 B b | 10.58 B c | 4.94 B a | 1.26 | 1.01 | 1.46 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa-Pérez, A.; Moreno, D.A.; Periago, P.M.; García-Viguera, C.; Domínguez-Perles, R. A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods 2022, 11, 1734. https://doi.org/10.3390/foods11121734
Costa-Pérez A, Moreno DA, Periago PM, García-Viguera C, Domínguez-Perles R. A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods. 2022; 11(12):1734. https://doi.org/10.3390/foods11121734
Chicago/Turabian StyleCosta-Pérez, Antonio, Diego A. Moreno, Paula M. Periago, Cristina García-Viguera, and Raúl Domínguez-Perles. 2022. "A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks" Foods 11, no. 12: 1734. https://doi.org/10.3390/foods11121734
APA StyleCosta-Pérez, A., Moreno, D. A., Periago, P. M., García-Viguera, C., & Domínguez-Perles, R. (2022). A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods, 11(12), 1734. https://doi.org/10.3390/foods11121734