Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design and Bird Management
2.3. Sample Collection
2.4. Egg Quality Assessment
2.5. Histology and Jejunal Morphometric Analysis
2.6. Determination of Hematological and Serum Indices
2.7. Apparent Fecal Amino Acid Digestibility
2.8. Statistical Analysis
3. Results
3.1. Performance
3.2. Egg Quality
3.3. Antioxidant Capacity and Immune Indices of Serum
3.4. Hematology Indices
3.5. Organ Indexes and Jejunum Morphology
3.6. Apparent Fecal Amino Acid Digestibility
3.7. Principal Component Analysis (PCA)
4. Discussion
4.1. Effects of Fructooligosaccharides on Laying Performance
4.2. Effects of Fructooligosaccharides on Egg Quality of Laying Hens
4.3. Effect of Fructooligosaccharides on the Antioxidant and Immune Capacity, and Hematology of Laying Hens
4.4. Effect of Fructooligosaccharides on the Jejunal Villi Morphology of Laying Hens
4.5. Effects of Fructooligosaccharides on the Apparent Fecal Digestibility of Amino Acids
4.6. Principal Component Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, H.R.; Kiyono, T. Novel anticancer activity of the autocleaved ovotransferrin against human colon and breast cancer cells. J. Agric. Food Chem. 2009, 57, 11383–11390. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Ahn, D.U. An economic and simple purification procedure for the large-scale production of ovotransferrin from egg white. Poult. Sci. 2008, 87, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Karamanidou, A.; Kallithraka, S.; Hatzidimitriou, E. Fining of red wines: Effects on their analytical and sensory parameters. J. Int. Sci. Vinge Vin. 2011, 45, 47–60. [Google Scholar] [CrossRef]
- Xie, L.; Nishijima, N.; Oda, Y.; Handa, A.; Majumder, K.; Xu, C.; Zhang, Y. Utilization of egg white solids to improve the texture and cooking quality of cooked and frozen pasta. LWT 2020, 122, 109031. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Sugimoto, Y.; Aoki, T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim. Biophys. Acta 2000, 1523, 196–205. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Méndez, P.; Reyes, W.; Romero, H.; Pinto, A.; Carrillo, W. Antibacterial activity of hen egg white lysozyme denatured by thermal and chemical treatments. Sci. Pharm. 2018, 86, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, M.; Liang, W.; Geng, Z.; Chen, X. Green tea powder suppleme Sci Pharm.ntation increased viscosity and decreased lysozyme activity of egg white during storage of eggs from Huainan partridge chicken. Ital. J. Anim. Sci. 2020, 19, 586–592. [Google Scholar] [CrossRef]
- Zhu, Y.-W.; Lu, L.; Li, W.-X.; Zhang, L.-Y.; Ji, C.; Lin, X.; Liu, H.-C.; Odle, J.; Luo, X.-G. Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br. J. Nutr. 2015, 114, 1965–1974. [Google Scholar] [CrossRef] [Green Version]
- Barton, M.D. Antibiotic use in animal feed and its impact on human healt. Nutr. Res. Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Kostadinović, L.; Lević, J. Effects of phytoadditives in poultry and pigs diseases. J. Agro. 2018, 1, 1–7. [Google Scholar]
- Dong, X.; Gao, W.; Tong, J.; Jia, H.; Sa, R.; Zhang, Q. Effect of polysavone (alfalfa extract) on abdominal fat deposition and immunity in broiler chickens. Poult. Sci. 2007, 86, 1955–1959. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.; Kocher, A.; Mikkelsen, L.; Choct, M. Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br. Poult. Sci. 2008, 49, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Cosby, D.E.; Cox, N.A.; Franca, M.S.; Williams, S.M.; Gogal, R.M., Jr.; Ritz, C.W.; Kim, W.K. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella enteritidis. Poult. Sci. 2018, 97, 2525–2533. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Quiroga, C.; Camarinha-Silva, A.; Borda-Molina, D.; Atxaerandio, R.; Ruiz, R.; García-Rodríguez, A. Feeding broilers with dry whey powder and whey protein concentrate affected productive performance, ileal digestibility of nutrients and cecal microbiota community. Animal 2018, 12, 692–700. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, C.; Xia, M.; Zhan, X.; Wang, M. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Donalson, L.; McReynolds, J.; Kim, W.; Chalova, V.; Woodward, C.; Kubena, L.; Nisbet, D.; Ricke, S. The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and intestinal shedding in laying hens. Poult. Sci. 2008, 87, 1253–1262. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.-H.; Pan, Z.-Y.; An, L.-L.; Balasubramanian, B.; Liu, W.-C. New insights into the role of dietary marine-derived polysaccharides on productive performance, egg quality, antioxidant capacity, and jejunal morphology in late-phase laying hens. Poult. Sci. 2020, 99, 2100–2107. [Google Scholar] [CrossRef]
- Xu, Q.; Azzam, M.M.M.; Zou, X.; Dong, X. Effects of chitooligosaccharide supplementation on laying performance, egg quality, blood biochemistry, antioxidant capacity and immunity of laying hens during the late laying period. Ital. J. Anim. Sci. 2020, 19, 1180–1187. [Google Scholar] [CrossRef]
- Li, D.; Ding, X.; Zhang, K.; Bai, S.; Wang, J.; Zeng, Q.; Su, Z.; Kang, L. Effects of dietary xylooligosaccharides on the performance, egg quality, nutrient digestibility and plasma parameters of laying hens. Anim. Feed Sci. Technol. 2017, 225, 20–26. [Google Scholar] [CrossRef]
- Yan, L.; Lee, J.; Meng, Q.; Ao, X.; Kim, I. Evaluation of dietary supplementation of delta-aminolevulinic acid and chito-oligosaccharide on production performance, egg quality and hematological characteristics in laying hens. Asian-Australa J. Anim. Sci. 2010, 23, 1028–1033. [Google Scholar] [CrossRef]
- Meng, Q.; Yan, L.; Ao, X.; Jang, H.; Cho, J.; Kim, I. Effects of chito-oligosaccharide supplementation on egg production, nutrient digestibility, egg quality and blood profiles in laying hens. Asian-Australa J. Anim. Sci. 2010, 23, 1476–1481. [Google Scholar] [CrossRef]
- Park, S.-O.; Park, B.-S. Effect of feeding inulin oligosaccharides on cecum bacteria, egg quality and egg production in laying hens. Afri. J. Biotechnol. 2012, 11, 9516–9521. [Google Scholar]
- Jahanian, R.; Ashnagar, M. Effect of dietary supplementation of mannan-oligosaccharides on performance, blood metabolites, ileal nutrient digestibility, and gut microflora in Escherichia coli-challenged laying hens. Poult. Sci. 2015, 94, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Ajakaiye, J.J.; Perez-Bello, A.; Mollineda-Trujillo, A. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Vet. Arh. 2011, 81, 119–132. [Google Scholar]
- Yuan, Z.H.; Zhang, K.Y.; Ding, X.M.; Luo, Y.H.; Bai, S.P.; Zeng, Q.F.; Wang, J.P. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets. Poult. Sci. 2016, 95, 1709–1717. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Zhang, H.-J.; Wu, S.-G.; Qiu, K.; Fu, Y.; Qi, G.-H.; Wang, J. Supplemental xylooligosaccharide modulates intestinal mucosal barrier and cecal microbiota in laying hens fed oxidized fish oil. Front. Microbiol. 2021, 12, 179. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Li, K.; Hao, K.; Xu, C. Effect of fructooligosaccharides and antibiotics on laying performance of chickens and cholesterol content of egg yolk. Br. Poult. Sci. 2007, 48, 185–189. [Google Scholar] [CrossRef]
- Forte, C.; Acuti, G.; Manuali, E.; Proietti, P.C.; Pavone, S.; Trabalza-Marinucci, M.; Moscati, L.; Onofri, A.; Lorenzetti, C.; Franciosini, M.P. Effects of two different probiotics on microflora, morphology, and morphometry of gut in organic laying hens. Poult. Sci. 2016, 95, 2528–2535. [Google Scholar] [CrossRef]
- Varzaru, I.; Untea, A.E.; Martura, T.; Olteanu, M.; Panaite, T.D.; Schitea, M.; Van, I. Development and validation of an RP-HPLC method for methionine, cystine and lysine separation and determination in corn samples. Ilie. Van. Rev. Chem. 2013, 64, 673–679. [Google Scholar]
- Abdelqader, A.; Al-Fataftah, A.-R.; Daş, G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim. Feed Sci. Technol. 2013, 179, 103–111. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Ijaz, A.; Ashraf, K.; Rashid, M.; Hafeez, A.; Zaneb, H.; Dar, E.; Naseer, R.; Rabbani, I.; Zentek, J. Comparative effects of different dietary concentrations of β-galacto-oligosaccharides on growth performance, feed conversion efficiency and organs development in broilers. J. Anim. Plant. Sci. 2016, 26, 1603–1608. [Google Scholar]
- Roberts, S.A.; Xin, H.; Kerr, B.J.; Russell, J.R.; Bregendahl, K. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poult. Sci. 2007, 86, 1625–1632. [Google Scholar] [CrossRef]
- Phuoc, T.; Dung, N.; Manh, L. Effects of dietary total sulphur amino acids to lysine ratio on performance, nitrogen utilization of Ac layers (black-boned chicken). S. Afr. J. Anim. Sci. 2019, 49, 156–165. [Google Scholar] [CrossRef]
- Geng, S.; Huang, S.; Ma, Q.; Li, F.; Gao, Y.; Zhao, L.; Zhang, J. Alterations and correlations of the gut microbiome, performance, egg quality, and serum biochemical indexes in laying hens with low-protein amino acid-deficient diets. ACS Omega 2021, 6, 13094–13104. [Google Scholar] [CrossRef]
- Scappaticcio, R.; García, J.; Fondevila, G.; de Juan, A.; Cámara, L.; Mateos, G. Influence of the energy and digestible lysine contents of the diet on performance and egg quality traits of brown-egg laying hens from 19 to 59 weeks of age. Poult. Sci. 2021, 100, 101211. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Koreleski, J.; Arczewska, A. Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acids. Czech J. Anim. Sci. 2010, 55, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Nakthong, C.; Chen, T. Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin. Int. J. Poult. Sci. 2005, 4, 103–108. [Google Scholar]
- Kim, S.; Jang, M.J.; Kim, S.Y.; Yang, Y.; Pavlidis, H.O.; Ricke, S.C. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front. Microbiol. 2019, 10, 91. [Google Scholar] [CrossRef]
- Kyu, M.T.; Dar, B.; San AYE, S.; MATSUDA, T. Prebiotic Oligosaccharides Prepared by Enzymatic Degradation of Dietary Fibers in Rice Grains. J. Nutr. Sci. Vit. 2019, 65, S143–S147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, B.; Moran, E., Jr.; Kidd, M. Effect of supplementary tryptophan prior to marketing on carcass quality in broilers. J. Appl. Poult. Res. 2005, 14, 306–314. [Google Scholar] [CrossRef]
- Çabuk, M.; Bozkurt, M.; Alcicek, A.; Çatli, A.; Baser, K. Effect of a dietary essential oil mixture on performance of laying hens in the summer season. S. Afr. J. Anim. Sci. 2006, 36, 215–221. [Google Scholar]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Hu, T.; Lu, Y.; Wu, H. Effects of inulin on performance, egg quality, gut microflora and serum and yolk cholesterol in laying hens. Br. Poult. Sci. 2010, 51, 791–796. [Google Scholar] [CrossRef]
- Vlčková, J.; Tůmová, E.; Míková, K.; Englmaierová, M.; Okrouhlá, M.; Chodová, D. Changes in the quality of eggs during storage depending on the housing system and the age of hens. Poult. Sci. 2019, 98, 6187–6193. [Google Scholar] [CrossRef]
- Liu, W.-C.; Guo, Y.; Zhao, Z.-H.; Jha, R.; Balasubramanian, B. Algae-derived polysaccharides promote growth performance by improving antioxidant capacity and intestinal barrier function in broiler chickens. Front. Vet. Sci. 2020, 7, 601336. [Google Scholar] [CrossRef]
- Watanabe, K.; Shimoyamada, M.; Onizuka, T.; Akiyama, H.; Niwa, M.; Ido, T.; Tsuge, Y. Amino acid sequence of a-subunit in hen egg white ovomucin deduced from cloned cDNA. DNA Seq. 2004, 15, 251–261. [Google Scholar] [CrossRef]
- Parenteau, I.A.; Stevenson, M.; Kiarie, E.G. Egg production and quality responses to increasing isoleucine supplementation in Shaver white hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age. Poult. Sci. 2020, 99, 1444–1453. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Johnstone, C.P.; Lill, A.; Reina, R.D. Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: A review and appraisal. Biol. Rev. 2017, 92, 150–168. [Google Scholar] [CrossRef]
- Yin, J.; Ren, W.; Liu, G.; Duan, J.; Yang, G.; Wu, L.; Li, T.; Yin, Y. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free. Radic. Res. 2013, 47, 1027–1035. [Google Scholar] [CrossRef]
- Bozkurt, M.; Tokuşoğlu, Ö.; Küçükyilmaz, K.; Akşit, H.; Çabuk, M.; Uğur Çatli, A.; Seyrek, K.; Çinar, M. Effects of dietary mannan oligosaccharide and herbal essential oil blend supplementation on performance and oxidative stability of eggs and liver in laying hens. Ital. J. Anim. Sci. 2012, 11, e41. [Google Scholar] [CrossRef]
- Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011, 25, 170–179. [Google Scholar] [CrossRef]
- Elnesr, S.; Elwan, H.; Xu, Q.; Xie, C.; Dong, X.; Zou, X. Effects of in ovo injection of sulfur-containing amino acids on heat shock protein 70, corticosterone hormone, antioxidant indices, and lipid profile of newly hatched broiler chicks exposed to heat stress during incubation. Poult. Sci. 2019, 98, 2290–2298. [Google Scholar] [CrossRef]
- Ohashi, Y.; Hiraguchi, M.; Ushida, K. The composition of intestinal bacteria affects the level of luminal IgA. Biosci. Biotechnol. Biochem. 2006, 70, 3031–3035. [Google Scholar] [CrossRef] [PubMed]
- Janardhana, V.; Broadway, M.M.; Bruce, M.P.; Lowenthal, J.W.; Geier, M.S.; Hughes, R.J.; Bean, A.G. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr. 2009, 139, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, D.; Bai, S.; Wang, J.; Zeng, Q.; Su, Z.; Xuan, Y.; Zhang, K. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult. Sci. 2018, 97, 874–881. [Google Scholar] [CrossRef]
- Bos, N.; Jiang, H.; Cebra, J. T cell control of the gut IgA response against commensal bacteria. Gut 2001, 48, 762–764. [Google Scholar] [CrossRef] [Green Version]
- Beski, S.S.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Yaqoob, M.; Ali, M. Growth and immune response of broilers in relation to varying dietary levels of methionine and threonine. Int. J. Biotech. Recent Adv. 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Silva, V.; da Silva, J.D.T.; Torres, K.; de Faria Filho, D.; Hada, F.H.; De Moraes, V.B. Humoral immune response of broilers fed diets containing yeast extract and prebiotics in the prestarter phase and raised at different temperatures. J. Appl. Poult. Res. 2009, 18, 530–540. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.; Yu, H.; Zhang, Y.; Liu, G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.E. Review of a histological intestinal approach to assessing the intestinal function in chickens and pigs. Anim. Sci. J. 2007, 78, 356–370. [Google Scholar] [CrossRef]
- Teirlynck, E.; Bjerrum, L.; Eeckhaut, V.; Huygebaert, G.; Pasmans, F.; Haesebrouck, F.; Dewulf, J.; Ducatelle, R.; Van Immerseel, F. The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. Br. J. Nutr. 2009, 102, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Yason, C.V.; Summers, B.; Schat, K. Pathogenesis of rotavirus infection in various age groups of chickens and turkeys: Pathology. Amer. J. Veter. Res. 1987, 48, 927–938. [Google Scholar]
- Dankowiakowska, A.; Kozłowska, I.; Bednarczyk, M. Probiotics, prebiotics and snybiotics in Poultry–mode of action, limitation, and achievements. J. Cent. Eur. Agric. 2013, 14, 467–478. [Google Scholar] [CrossRef]
- Zou, X.; Ji, J.; Qu, H.; Wang, J.; Shu, D.; Wang, Y.; Liu, T.; Li, Y.; Luo, C. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult. Sci. 2019, 98, 4449–4456. [Google Scholar] [CrossRef]
- Breedveld, A.; Van Egmond, M. IgA and FcαRI: Pathological roles and therapeutic opportunities. Front. Immunol. 2019, 10, 553. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Rochell, S.; Applegate, T. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci. 2018, 97, 937–945. [Google Scholar] [CrossRef]
- Lien, K.; Sauer, W.; Fenton, M. Mucin output in ileal digesta of pigs fed a protein-free diet. Zeitschrift für Ernährungswissenschaft 1997, 36, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wei, Y.; Lv, Y.; Wang, Y.; Hu, T. Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livest. Sci. 2015, 180, 172–176. [Google Scholar] [CrossRef]
- Kumar, S.; Shang, Y.; Kim, W.K. Insight into dynamics of gut microbial community of broilers fed with fructooligosaccharides supplemented low calcium and phosphorus diets. Front. Vet. Sci. 2019, 6, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.; Mallet, S.; Leconte, M.; Lessire, M.; Gabriel, I. The effects of fructo-oligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. Br. Poult. Sci. 2008, 49, 329–339. [Google Scholar] [CrossRef]
- Gottardo, E.; Prokoski, K.; Horn, D.; Viott, A.; Santos, T.; Fernandes, J. Regeneration of the intestinal mucosa in Eimeria and E. Coli challenged broilers supplemented with amino acids. Poult. Sci. 2016, 95, 1056–1065. [Google Scholar] [CrossRef]
Ingredients | T1 | T2 | T3 |
---|---|---|---|
Corn | 63.4 | 62.79 | 62.15 |
Soybean meal | 25.46 | 25.58 | 25.71 |
Oil | 0.00 | 0.19 | 0.40 |
Stone powder | 8.76 | 8.76 | 8.76 |
DL-methionine | 0.18 | 0.18 | 0.18 |
Dicalcium phosphate | 1.6 | 1.6 | 1.6 |
Salt | 0.16 | 0.16 | 0.16 |
Premix (choline chloride) | 0.25 | 0.25 | 0.25 |
FOS | 0.0 | 0.3 | 0.6 |
Sodium sulfate | 0.17 | 0.17 | 0.17 |
Phytase | 0.02 | 0.02 | 0.02 |
Total | 100 | 100 | 100 |
Nutrient Content | % | ||
Crude protein | 16.50 | 16.50 | 16.50 |
Calcium | 3.50 | 3.50 | 3.50 |
Total phosphorus | 0.60 | 0.60 | 0.60 |
Available phosphorus | 0.39 | 0.39 | 0.39 |
Metabolizable energy | 11.23 | 11.23 | 11.23 |
SID methionine | 0.434 | 0.434 | 0.433 |
SID lysine | 0.796 | 0.796 | 0.798 |
SID tryptophan | 0.176 | 0.176 | 0.176 |
SID threonine | 0.560 | 0.560 | 0.561 |
SID methionine+ cysteine | 0.653 | 0.652 | 0.651 |
SID isoleucine | 0.666 | 0.666 | 0.667 |
SID cysteine | 0.240 | 0.239 | 0.239 |
SID valine | 0.746 | 0.746 | 0.746 |
SID arginine | 1.030 | 1.031 | 1.033 |
SID leucine | 1.414 | 1.412 | 1.410 |
SID serine | 0.776 | 0.776 | 0.776 |
SID glycine | 0.616 | 0.616 | 0.616 |
Items | Weeks | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|---|
AEG (g) | 1–4 | 61.42 | 60.58 | 60.89 | 0.89 | 0.359 |
5–8 | 61.85 | 61.66 | 61.45 | 0.61 | 0.625 | |
9–12 | 59.98 | 60.10 | 60.51 | 0.68 | 0.489 | |
1–12 | 61.08 | 60.78 | 60.95 | 0.60 | 0.747 | |
Egg mass (g) | 1–4 | 58.33 | 58.09 | 59.20 | 0.98 | 0.213 |
5–8 | 57.63 | 58.36 | 59.30 | 1.66 | 0.340 | |
9–12 | 58.83 b | 55.42 ab | 58.16 a | 1.91 | 0.017 | |
1–12 | 56.59 b | 57.29 ab | 58.90 a | 1.18 | 0.026 | |
HDP % | 1–4 | 93.33 | 94.39 | 94.89 | 1.33 | 0.730 |
5–8 | 95.11 b | 95.93 ab | 97.22 a | 3.12 | 0.710 | |
9–12 | 89.75 b | 92.06 b | 96.13 a | 2.42 | 0.006 | |
1–12 | 92.73 b | 94.13 ab | 96.08 a | 1.51 | 0.014 | |
Damaged eggs % | 1–4 | 0.09 | 0.08 | 0.02 | 0.05 | 0.139 |
5–8 | 0.10 | 0.05 | 0.10 | 0.06 | 0.355 | |
9–12 | 0.08 | 0.02 | 0.10 | 0.06 | 0.172 | |
1–12 | 0.09 | 0.03 | 0.02 | 0.05 | 0.139 | |
Mortality rate % | 1–4 | 0.01 | 0.00 | 0.00 | 0.00 | 0.391 |
5–8 | 0.02 | 0.00 | 0.00 | 0.01 | 0.116 | |
9–12 | 0.01 | 0.00 | 0.00 | 0.00 | 0.391 | |
1–12 | 0.01 | 0.00 | 0.00 | 0.00 | 0.116 | |
Feed intake (g) | 1–4 | 116.58 | 119.80 | 119.18 | 3.30 | 0.435 |
5–8 | 112.82 | 113.79 | 113.74 | 3.28 | 0.905 | |
9–12 | 121.18 c | 126.26 b | 132.41 a | 3.47 | 0.001 | |
1–12 | 116.86 b | 119.95 ab | 121.78 a | 2.09 | 0.013 | |
FCR | 1–4 | 2.00 | 2.06 | 2.01 | 0.06 | 0.364 |
5–8 | 1.96 | 1.95 | 1.92 | 0.06 | 0.604 | |
9–12 | 2.25 | 2.28 | 2.28 | 0.11 | 0.911 | |
1–12 | 2.09 | 2.07 | 2.05 | 0.06 | 0.541 |
Items | Weeks | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|---|
Relative albumen weight % | 1–4 | 60.15 | 59.08 | 60.59 | 1.28 | 0.29 |
5–8 | 59.58 b | 60.75 b | 62.70 a | 1.26 | 0.01 | |
9–12 | 58.24 b | 63.50 a | 62.71 a | 1.26 | 0.01 | |
1–12 | 59.32 b | 61.11 a | 61.99 a | 0.36 | 0.02 | |
Relative yolk weight % | 1–4 | 29.01 a | 27.49 b | 28.21 ab | 0.69 | 0.02 |
5–8 | 28.48 a | 28.10 a | 26.30 b | 0.72 | 0.01 | |
9–12 | 31.48 a | 27.54 b | 26.95 b | 0.61 | 0.01 | |
1–12 | 29.66 a | 27.71 b | 27.15 c | 0.27 | 0.01 | |
Relative shell weight % | 1–4 | 10.74 | 10.71 | 10.60 | 0.44 | 0.86 |
5–8 | 10.82 a | 10.21 b | 10.12 b | 0.31 | 0.01 | |
9–12 | 10.31 | 10.29 | 10.24 | 0.53 | 0.98 | |
1–12 | 10.63 | 10.40 | 10.32 | 0.06 | 0.17 | |
Shell thickness (mm) | 1–4 | 44.88 b | 45.15 b | 47.03 a | 1.17 | 0.02 |
5–8 | 46.88 | 47.05 | 46.94 | 0.70 | 0.93 | |
9–12 | 44.33 b | 45.80 ab | 46.13 a | 1.20 | 0.09 | |
1–12 | 45.37 b | 45.99 ab | 46.70 a | 0.21 | 0.03 | |
Shell strength (N) | 1–4 | 40.61 | 42.76 | 41.00 | 3.85 | 0.68 |
5–8 | 45.40 | 45.71 | 47.53 | 3.40 | 0.63 | |
9–12 | 39.05 | 39.20 | 38.25 | 2.57 | 0.83 | |
1–12 | 41.69 | 42.55 | 42.25 | 0.44 | 0.74 | |
Yolk color | 1–4 | 5.72 | 5.61 | 6.11 | 0.68 | 0.56 |
5–8 | 7.11 | 6.72 | 6.61 | 0.39 | 0.14 | |
9–12 | 5.72 b | 6.22 ab | 6.72 a | 0.47 | 0.02 | |
1–12 | 6.18 | 6.18 | 6.48 | 0.09 | 0.32 | |
Albumen height (mm) | 1–4 | 6.81 | 6.73 | 6.77 | 0.49 | 0.98 |
5–8 | 7.80 b | 8.64 a | 8.66 a | 0.49 | 0.03 | |
9–12 | 6.19 c | 7.89 b | 8.58 a | 0.36 | 0.01 | |
1–12 | 6.93 b | 7.75 a | 8.00 a | 0.08 | 0.01 | |
Haugh units | 1–4 | 80.23 | 77.92 | 78.83 | 3.55 | 0.62 |
5–8 | 86.95 | 91.69 | 81.84 | 3.20 | 0.10 | |
9–12 | 76.16 c | 88.62 b | 95.16 a | 2.53 | 0.01 | |
1–12 | 81.11 c | 86.07 b | 88.60 a | 0.83 | 0.01 | |
Thick-to-thin albumen ratio | 1–4 | 1.00 | 1.20 | 1.13 | 0.14 | 0.13 |
5–8 | 1.08 | 1.10 | 1.24 | 0.17 | 0.39 | |
9–12 | 1.14 | 1.49 | 1.75 | 0.14 | 0.01 | |
1–12 | 1.07 | 1.26 | 1.37 | 0.03 | 0.01 |
Items | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|
MDA (nmol/mL) | 8.54 a | 3.5 b | 2.56 b | 0.83 | 0.01 |
CAT (U/mL) | 9.67 c | 12.06 b | 15.295 a | 0.31 | 0.01 |
T-SOD (U/mL) | 107.41 c | 130.89 b | 148.79 a | 5.88 | 0.01 |
T-AOC (U/mL) | 11.50 | 12.20 | 14.32 | 2.27 | 0.17 |
GSH-Px (ng/mL) | 53.45 b | 56.53 b | 78.61 a | 5.34 | 0.01 |
GST (ng/mL) | 16.57 c | 17.45 b | 19.56 a | 0.59 | 0.01 |
IgG (ug/mL) | 58.33 b | 61.68 b | 66.85 a | 5.67 | 0.093 |
IgM (ng/mL) | 2372.50 b | 3935.00 a | 4080.83 a | 392.70 | 0.01 |
IgA (ng/mL) | 4762.78 b | 5471.11 a | 5918.33 a | 335.71 | 0.01 |
C3 (mg/mL) | 0.073 b | 0.081 ab | 0.085 a | 0.01 | 0.05 |
C4 (mg/mL) | 0.044 | 0.045 | 0.045 | 0.00 | 0.86 |
Items | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|
WBC (×109/L) | 12.1 c | 19.97 a | 16.54 b | 1.933 | 0.01 |
RBC (×1012/L) | 2.26 | 2.31 | 2.42 | 0.138 | 0.22 |
Hb (g/L) | 71 | 73.3 | 74.667 | 5.209 | 0.57 |
PCV (%) | 35 | 35.5 | 37.65 | 2.26 | 0.24 |
MCV (fL) | 155 | 154 | 155.72 | 4.923 | 0.82 |
MCH (Pg) | 31.4 | 31.8 | 30.917 | 1.588 | 0.72 |
MCHC (g/L) | 203 | 207 | 198.33 | 5.407 | 0.10 |
Platelets (×109/L) | 11.7 | 12 | 12 | 2.49 | 0.97 |
Heterophil (×109/L) | 6.25 b | 9.9 a | 8.555 ab | 1.87 | 0.03 |
Lymphocytes (×109/L) | 5.19 b | 7.18 a | 4.6367 b | 1.338 | 0.02 |
H/L | 1.34 | 1.45 | 1.97 | 0.35 | 0.25 |
Monocyte (×109/L) | 0.16 | 1.15 | 0.80 | 0.517 | 0.12 |
Eosinophil (×109/L) | 0.05 | 0.32 | 0.27 | 0.244 | 0.28 |
Basophil (×109/L) | 0.98 | 1.42 | 2.25 | 0.927 | 0.17 |
Items | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|
VH | 938.80 b | 1199.45 a | 1298.98 a | 38.20 | 0.000 |
VW | 141.20 b | 165.08 a | 155.91 ab | 4.36 | 0.070 |
CD | 155.60 a | 118.65 b | 117.18 b | 5.74 | 0.002 |
VH:CD | 6.35 b | 10.36 a | 8.55 a | 0.53 | 0.002 |
VSA | 0.43 b | 0.62 a | 0.65 a | 0.02 | 0.001 |
Items (%) | T1 | T2 | T3 | SEM | p-Value |
---|---|---|---|---|---|
Crude protein | 59.20 b | 69.24 a | 71.98 a | 5.26 | 0.01 |
Asparagine | 75.29 b | 79.05 ab | 81.23 a | 3.05 | 0.03 |
Threonine | 69.48 b | 72.79 ab | 76.73 a | 3.83 | 0.03 |
Serine | 77.63 b | 79.45 ab | 83.41 a | 3.07 | 0.03 |
Glutamine | 84.57 b | 87.17 ab | 88.62 a | 2.08 | 0.03 |
Proline | 80.42 | 81.93 | 86.43 | 4.30 | 0.11 |
Glycine | −3.14 b | 4.96 ab | 23.71 a | 15.48 | 0.05 |
Alanine | 65.77 | 69.73 | 71.22 | 5.00 | 0.24 |
Cysteine | 73.58 | 76.54 | 76.51 | 3.72 | 0.38 |
Valine | 73.91 | 78.12 | 77.34 | 3.72 | 0.21 |
Methionine | 83.01 c | 90.12 a | 85.96 b | 2.09 | 0.01 |
Met + Cys | 79.28 b | 85.75 a | 82.34 ab | 2.62 | 0.01 |
Isoleucine | 74.16 b | 79.33 a | 79.23 a | 3.47 | 0.06 |
Leucine | 80.21 | 83.28 | 83.43 | 2.71 | 0.14 |
Tyrosine | 80.54 b | 85.78 a | 85.69 a | 3.71 | 0.08 |
Phenylalanine | 89.25 | 92.55 | 90.69 | 2.55 | 0.18 |
Histidine | 51.02 | 62.59 | 52.71 | 10.76 | 0.26 |
Lysine | 73.19 b | 77.87 a | 79.27 a | 3.30 | 0.03 |
Arginine | 83.97 | 85.65 | 86.89 | 1.98 | 0.10 |
Tryptophan | 73.55 b | 85.17 a | 83.93 a | 2.94 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obianwuna, U.E.; Chang, X.-Y.; Wang, J.; Zhang, H.-J.; Qi, G.-H.; Qiu, K.; Wu, S.-G. Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens. Foods 2022, 11, 1828. https://doi.org/10.3390/foods11131828
Obianwuna UE, Chang X-Y, Wang J, Zhang H-J, Qi G-H, Qiu K, Wu S-G. Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens. Foods. 2022; 11(13):1828. https://doi.org/10.3390/foods11131828
Chicago/Turabian StyleObianwuna, Uchechukwu Edna, Xin-Yu Chang, Jing Wang, Hai-Jun Zhang, Guang-Hai Qi, Kai Qiu, and Shu-Geng Wu. 2022. "Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens" Foods 11, no. 13: 1828. https://doi.org/10.3390/foods11131828
APA StyleObianwuna, U. E., Chang, X. -Y., Wang, J., Zhang, H. -J., Qi, G. -H., Qiu, K., & Wu, S. -G. (2022). Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens. Foods, 11(13), 1828. https://doi.org/10.3390/foods11131828