Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Extract Preparation
2.1.2. Extraction and Analysis of Nutmeg Essential Oils
2.1.3. Product Preparation
2.2. In Vitro Antioxidant Activity
2.3. In Vitro Hepatoprotective and Anti-Inflammatory Studies
2.3.1. Cell Culture
2.3.2. Cell Viability Assay
2.3.3. Hepatoprotective Effects
2.3.4. Anti-Inflammatory Effects
Nitric Oxide Production Assay
Cytokines Generation Assay
2.4. In Vivo Anti-Inflammatory Studies
2.4.1. Animals
2.4.2. Sensitization and Inhalation Exposure
2.4.3. Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.4.4. Cytokines Generation Assay
2.5. Statistical Analysis
3. Results
3.1. In Vitro Antioxidant and Hepatoprotective Effects of Mixture
3.2. Anti-Inflammatory Effects of Mixture
3.3. Antiasthmatic Effects of M4
3.4. Sulfur Flavor-Reduction Effects Using Essential Oil of Nutmeg Seed
3.5. Anti-Inflammatory Effects of Product
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruce, S.; Bochner, M.D.; Willian, W.; Busse, M.D. Allergy and asthma. J. Allergy Clin. Immunol. 2005, 115, 953–959. [Google Scholar]
- Yang, X.; Sun, Q.; Asim, M.B.; Jiang, X.; Zhong, B.; Shahzad, M.; Zhang, F.; Han, Y.; Lu, S. Nitric Oxide in Both Bronchoalveolar Lavage Fluid and Serum Is Associated with Pathogenesis and Severity of Antigen-Induced Pulmonary Inflammation in Rats. J. Asthma. 2010, 47, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, D.; Hirata, F.; Gao, X.; Kannan, R.; Kerr, J.; Doyon-Reale, N.; Wilson, S.; LiehLai, M. Reversal of methylprednisolone effects in allergen-exposed female BALB/c mice. J. Toxicol. Environ. Health 2010, 73, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.T.; Abdel-Aziz, M.M.; Zalata, K.R.; Tel-D, A.A. Effect of dexamethasone and Nigella sativa on peripheral blood eosinophil count, IgG1 and IgG2a, cytokine profiles and lung inflammation in murine model of allergic asthma. Egypt. J. Immunol. 2005, 12, 95–102. [Google Scholar]
- Sharif, M.; Anjum, I.; Shabbir, A.; Mushtaq, M.N. Immunomodulatory and anti-inflammatory effects of Aerva lanata in ovalbumin induced allergic asthmatic mice. J. Ethnopharmacol. 2022, 289, 115087. [Google Scholar] [CrossRef]
- Komlósi, Z.I.; van de Veen, W.; Kovács, N.; Szűcs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med. 2022, 85, 100995. [Google Scholar] [CrossRef]
- Gorai, A.K.; Tchounwou, P.B.; Tuluri, F. Association between Ambient Air Pollution and Asthma Prevalence in Different Population Groups Residing in Eastern Texas, USA. Int. J. Environ. Res. Public Health. 2016, 13, 378. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.Y.; Ma, A.; Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, H.; Choi, D.H.; Park, K.; Kim, H.J.; Park, M. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci. Rep. 2021, 11, 2232. [Google Scholar] [CrossRef] [PubMed]
- Glencross, D.A.; Ho, T.R.; Camina, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Seddighfar, M.; Mirghazanfari, S.M.; Dadpay, M. Analgesic and anti-inflammatory properties of hydroalcoholic extracts of Malva sylvestris, Carum carvi or Medicago sativa, and their combination in a rat model. J. Integr. Med. 2020, 18, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Graziose, R.; Lila, M.A.; Raskin, I. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr. Drug. Discov. Technol. 2010, 7, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, Z.; Wang, C.; Si, H.; Yu, H.; Li, L.; Fu, S.; Tan, L.; Li, P.; Liu, J.; et al. Comprehensive phytochemical analysis and sedative-hypnotic activity of two Acanthopanax species leaves. Food Funct. 2021, 12, 2292–2311. [Google Scholar] [CrossRef]
- Yang, C.; An, Q.; Xiong, Z.; Song, Y.; Yu, K.; Li, F. Triterpenes from Acanthopanax sessiliflorus fruits and their antiplatelet aggregation activities. Planta Med. 2009, 75, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Yoshizumi, K.; Hirano, K.; Ando, H.; Hirai, Y.; Ida, Y.; Tsuji, T.; Tanaka, T.; Satouchi, K.; Terao, J. Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J. Agric. Food Chem. 2006, 54, 335–341. [Google Scholar] [CrossRef]
- Hossen, M.J.; Kim, M.Y.; Kim, J.H.; Cho, J.Y. Codonopsis lanceolata: A Review of Its Therapeutic Potentials. Phytother. Res. 2016, 30, 347–356. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Cho, D.Y.; Su-Kim, I.; Choi, D.K. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants 2020, 9, 962. [Google Scholar] [CrossRef]
- Park, S.Y.; Karthivashan, G.; Ko, H.M.; Cho, D.Y.; Kim, J.; Cho, D.J.; Ganesan, P.; Su-Kim, I.; Choi, D.K. Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson’s Mouse Model. Oxid. Med. Cell. Longev. 2018, 2018, 3175214. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Kang, H.B.; Kim, J.H.; Kwak, S.; Sung, G.J.; Park, S.H.; Jeong, J.H.; Kim, H.; Lee, J.; Jun, W.; et al. Antiobesity and Cholesterol-Lowering Effects of Dendropanax morbifera Water Extracts in Mouse 3T3-L1 Cells. J. Med. Food. 2018, 21, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Kim, N.H.; Heo, J.D.; Rho, J.R.; Ock, K.J.; Shin, E.C.; Jeong, E.J. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods. Evid. Based Complement. Alternat. Med. 2017, 2017, 2436927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.Y.; Lee, M.J.; You, B.R.; Jin, J.S.; Lee, S.H.; Yun, Y.R.; Kim, H.J. Allium hookeri root extract exerts anti-inflammatory effects by nuclear factor-κB down-regulation in lipopolysaccharide-induced RAW264.7 cells. BMC. Complement. Altern. Med. 2017, 17, 126. [Google Scholar]
- Jun, H.I.; Yang, J.H.; Choi, J.Y.; Lee, S.H.; Song, G.S.; Kim, K.S.; Kim, Y.S. Changes in volatile flavor compounds in steam-dried Allium hookeri root. Food. Sci. Biotechnol. 2016, 25, 1327–1331. [Google Scholar] [CrossRef]
- Baek, S.H.; Park, M.; Suh, J.H.; Choi, H.S. Protective effects of an extract of young radish (Raphanus sativus L) cultivated with sulfur (sulfur-radish extract) and of sulforaphane on carbon tetrachloride-induced hepatotoxicity. Biosci. Biotechnol. Biochem. 2008, 72, 1176–1182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.W.; Xiang, C.P.; Mei, S.Y. Cloning and characterization of a novel sulfate transporter gene from radish (Raphanus sativus L.). DNA Seq. 2006, 17, 237–241. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, J.C.; Na, S.L.; Jung, H.Y.; Lim, K.T. Effects on mammalian tissues and cells by sulfur containing compounds. J. Toxicol. Pub. Health 1999, 15, 79–87. [Google Scholar]
- Yan, J.K.; Zhu, J.; Liu, Y.; Chen, X.; Wang, W.; Zhang, H.; Li, L. Recent advances in research on Allium plants: Functional ingredients, physiological activities, and applications in agricultural and food sciences. Crit. Rev. Food Sci. Nutr. 2022, 2056132. [Google Scholar] [CrossRef]
- Qiao, L.; Shiff, S.J.; Rigas, B. Sulindac sulfide inhibits the proliferation of colon cancer cell: Diminished expression of the proliferation markers PCVA and KI-67. Cancer Lett. 1997, 115, 229–234. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.; Zoumpoulakis, P.; Sinanoglou, V. Antioxidant Capacity of Selected PlantExtracts and their Essential Oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: Implication redox and detoxification. Clin. Chim. Acta 2003, 333, 19–39. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Kim, H.J.; Lee, S.J. The effect of antioxidant and whitening action on Plantago asiatica L. leaf ethanol extract for health care. Technol. Health Care 2019, 27, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Investig. 2008, 118, 3546–3556. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, D.B.; Lee, S.; Park, J.; Shin, D.; Yoo, M. Profiling of organosulphur compounds using HPLC-PDA and GC/MS system and antioxidant activities in hooker chive (Allium hookeri). Nat. Prod. Res. 2016, 30, 2798–2804. [Google Scholar] [CrossRef] [PubMed]
- Calva, J.; Cartuche, L.; González, S.; Montesinos, J.V.; Morocho, V. Chemical composition, enantiomeric analysis and anticholinesterase activity of Lepechinia betonicifolia essential oil from Ecuador. Pharm. Biol. 2022, 60, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G.A. New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. [Google Scholar] [CrossRef]
- Wu, W. GC-MS analysis of chemical components in essential oil from Flos magnoliae. Zhong Yao Cai 2000, 23, 538–541. [Google Scholar]
- Wu, M.; Zhang, J.Y.; Zhang, X. Clinical observation of Flos magnoliae volatile oil nano-liposome nasal drops in treating pediatric allergic rhinitis. Chin. J. Integr. Tradit. West. Med. 2009, 29, 740–742. [Google Scholar]
- Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef]
Primer | Forward | Reverse |
---|---|---|
IL-1β | 5′-ATGGCAACTGTTCCTGAACTCAACT-3′ | 5′-CAGGACAGGTATAGATTCTTTCCTTT-3′ |
IL-6 | 5′-TTGCCTTCTTGGGACTGATG-3′ | 5′-CAGAATTGCCATTGCACAACT-3′ |
TNF-α | 5′-CCACATCTCCCTCCAGAAAA-3′ | 5′-AGGGTCTGGGCCATAGAACT-3′ |
GAPDH | 5′-AACGGCACAGTCATGGCTGA-3′ | 5′-ACGCCAGTAGACTGCACGACAT-3′ |
Sample Name | Source | Ratio of Mixture |
---|---|---|
M1 | RS root:AH whole plant:AS stem:CL root | 50:20:10:20 |
M2 | RS root:AH whole plant:AS stem:DM root and leaves | 20:30:20:30 |
M3 | RS root:AH whole plant:AS stem:CL root | 40:30:10:20 |
M4 | RS root:AH whole plant:AS stem:DM root and leaves | 30:30:10:30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-D.; Shim, S.-Y. Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods 2022, 11, 1910. https://doi.org/10.3390/foods11131910
Lee K-D, Shim S-Y. Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods. 2022; 11(13):1910. https://doi.org/10.3390/foods11131910
Chicago/Turabian StyleLee, Kyung-Dong, and Sun-Yup Shim. 2022. "Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection" Foods 11, no. 13: 1910. https://doi.org/10.3390/foods11131910
APA StyleLee, K. -D., & Shim, S. -Y. (2022). Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods, 11(13), 1910. https://doi.org/10.3390/foods11131910