Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drying Experiments
2.2.1. FD Process
2.2.2. VD Process
2.2.3. HAD Process
2.3. HS-GC-MS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Visual Topographic Plot Comparison
3.2. Effects of the Different Drying Methods on the Volatile Compounds in the AMR Samples
3.3. Compound Identification
3.4. Cluster Analysis of the Fresh and Dried AMR Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Ding, Z.; Wu, Y.; Chen, Q.; Liu, M.; Yu, H.; Wang, D.; Zhang, D.; Wang, T. Effects of Allium mongolicum Regel and its flavonoids on constipation. Biomolecules 2020, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Wang, T.; Chen, R.; Wang, C.; Ao, C. Effects of flavonoids from Allium mongolicum Regel on growth performance and growth-related hormones in meat sheep. Anim. Nutr. 2017, 3, 33–38. [Google Scholar]
- Wang, W.; Li, J.; Zhang, H.; Wang, X.; Fan, J.; Zhang, X. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Sci. Nutr. 2019, 7, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, H.; Zhang, C. Polymorphic microsatellite markers for Allium mongolicum Regel (Amaryllidaceae). Genes Genet. Syst. 2014, 89, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhong, Z.; Ao, C. Effect of feeding Allium mongolicum Regel and oilseed on quality of mutton. J. Inn. Mong. Agicultural Univ. 2007, 28, 6–8. [Google Scholar]
- Xue, J.; Lv, Q.; Khas, E.; Bai, C.; Ma, B.; Li, W.; Cao, Q.; Fan, Z.; Ao, C. Tissue-specific regulatory mechanism of LncRNAs and methylation in sheep adipose and muscle induced by Allium mongolicum Regel extracts. Sci. Rep. 2021, 11, 9186. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Niu, X.; Chen, X.; Tian, J.; Kong, Y.; Zhang, D.; Zhang, L.; Wang, G. Effects of dietary Allium mongolicum Regel polysaccharide on growth, lipopolysaccharide-induced antioxidant responses and immune responses in Channa argus. Mol. Biol. Rep. 2019, 46, 2221–2230. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Wang, Z.; Wang, Y.; Wang, C.; Chang, S.; Zhang, C.; Zhu, W.; Hou, F. Effects of Allium mongolicum Regel supplementation on the digestibility, methane production, and antioxidant capacity of Simmental calves in northwest China. Anim. Sci. J. 2020, 91, e13392. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, W.; Ren, G.; Liu, W.; Liu, Y. Comparative study on the effects and efficiencies of three sublimation drying methods for mushrooms. Int. J. Agric. Biol. Eng. 2015, 8, 91–97. [Google Scholar]
- Blackshaw, K.; Wu, J.; Proschogo, N.; Davies, J.; Oldfield, D.; Schindeler, A.; Banati, R.; Dehghani, F.; Valtchev, P. The effect of thermal pasteurization, freeze-drying, and gamma irradiation on donor human milk. Food Chem. 2022, 373, 131402. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, L.; Zeng, F.; Li, Y.; Li, L.; Duan, X. Effects of hot air drying temperature and tempering time on the properties of maize starch. Int. J. Agric. Biol. Eng. 2020, 13, 236–241. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Wang, Q.; Sun, C.; Xi, H. Drying characteristics, microstructure, glass transition temperature, and quality of ultrasound-strengthened hot air drying on pear slices. J. Food Processing Preserv. 2019, 43, e13899. [Google Scholar] [CrossRef]
- Duan, L.; Duan, X.; Ren, G. Structural characteristics and texture during the microwave freeze drying process of Chinese yam chips. Dry. Technol. 2020, 38, 928–939. [Google Scholar] [CrossRef]
- Parikh, D. Vacuum drying: Basics and application. Chem. Eng. 2015, 122, 48–54. [Google Scholar]
- Xia, A.; Tang, X.; Dong, G.; Lei, S.; Liu, Y.; Tian, X. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS. LWT 2021, 151, 112–153. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, Y.; Gu, S.; Zhu, S.; Zhou, X.; Ding, Y. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res. Int. 2020, 137, 109339. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Ji, X.; Min, W.; Yan, W. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT 2021, 141, 110855. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Zhao, A.; Wu, Y.; Zhang, Y.; Yang, X. Quantitative analyses for several nutrients and volatile components during fermentation of soybean by Bacillus subtilis natto. Food Chem. 2022, 374, 131725. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, F.; Sun, J.; Ni, L. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chem. 2022, 367, 130624. [Google Scholar] [CrossRef]
- Zheng, T.; Su, K.X.; Gao, M.S.; Zhang, D.L.; Chen, X.Y.; Liu, S.M. Chemotaxonomic variation in volatile component contents and their correlation between climate factors in Chinese prickly ash peels (Zanthoxylum bungeanum Maxim.). Food Chem. X 2021, 12, 100176. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Z.; Zheng, S.; Gao, N.; Li, Z.; Li, K. Changes of main nutrient components and volatile flavor substances in processing of canned bamboo shoots. Fermentation 2021, 7, 293. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, X.; Ma, Y.; Wang, Y.; Wang, D. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chem. 2022, 369, 130939. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J. Chromatogr. 2018, 1099, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, J.; He, Y.; Ji, X.J.; Tang, H.; Dong, Y.; Yan, W. HS-GC-IMS detection of volatile organic compounds in Acacia honey powders under vacuum belt drying at different temperatures. Food Sci. Nutr. 2021, 9, 4085–4093. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agric. 2020, 100, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
Count | Compound | CAS | Formula | MW | RI | Rt [s] | Dt [a.u.] |
---|---|---|---|---|---|---|---|
1 | 2-Propanone | C67641 | C3H6O | 58.1 | 536.3 | 108.446 | 1.12414 |
2 | 2-Butanol | C78922 | C4H10O | 74.1 | 548.5 | 113.572 | 1.15347 |
3 | Methyl acetate | C79209 | C3H6O2 | 74.1 | 560.8 | 118.706 | 1.19142 |
4 | 1 | unidentified | * | 0 | 572.6 | 123.67 | 1.2584 |
5 | 2-Butanone | C78933 | C4H8O | 72.1 | 584.7 | 128.747 | 1.24163 |
6 | Butanal | C123728 | C4H8O | 72.1 | 598.9 | 134.743 | 1.28504 |
7 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 607.3 | 138.248 | 1.33671 |
8 | 3-Methyl butanal M | C590863 | C5H10O | 86.1 | 651.5 | 156.814 | 1.19727 |
9 | 3-Methyl butanal D | C590863 | C5H10O | 86.1 | 653.7 | 157.754 | 1.39903 |
10 | 1-Penten-3-one | C1629589 | C5H8O | 84.1 | 652.1 | 157.046 | 1.31 |
12 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 696.1 | 178.41 | 1.35294 |
13 | Ethyl sulphide | C352932 | C4H10S | 90.2 | 697.2 | 179.314 | 1.04603 |
14 | 2-Ethyl furan | C3208160 | C6H8O | 96.1 | 699.5 | 181.214 | 1.30444 |
15 | 1-Butanol | C71363 | C4H10O | 74.1 | 703.9 | 184.755 | 1.37849 |
16 | Ethyl propanoate | C105373 | C5H10O2 | 102.1 | 707.8 | 187.894 | 1.45024 |
17 | Isobutyric acid | C79312 | C4H8O2 | 88.1 | 719.6 | 197.349 | 1.37582 |
18 | Acetoin | C513860 | C4H8O2 | 88.1 | 723.5 | 200.563 | 1.32893 |
19 | 2 | unidentified | * | 0 | 728.8 | 204.801 | 1.29868 |
20 | 3-Methyl-2-butenal | C107868 | C5H8O | 84.1 | 741.8 | 215.293 | 1.34865 |
21 | Dimethyl disulphide | C624920 | C2H6S2 | 94.2 | 743.3 | 216.498 | 1.13845 |
22 | 3-Methyl-2-pentanone | C565617 | C6H12O | 100.2 | 752.8 | 224.139 | 1.47277 |
23 | 3 | unidentified | * | 0 | 768.9 | 237.157 | 1.45924 |
24 | Methyl 3-methyl butanoate | C556241 | C6H12O2 | 116.2 | 769.5 | 237.621 | 1.53098 |
25 | Isopentanol | C123513 | C5H12O | 88.1 | 770.2 | 238.197 | 1.4841 |
26 | 2-Methyl-1-heptene | C15870107 | C8H16 | 112.2 | 782.6 | 248.142 | 1.47952 |
27 | 2-Methyl-1-butanol | C137326 | C5H12O | 88.1 | 792.2 | 258.085 | 1.48073 |
28 | 4 | unidentified | * | 0 | 792.5 | 258.384 | 1.40941 |
29 | Hexanal | C66251 | C6H12O | 100.2 | 793.6 | 259.596 | 1.55782 |
30 | Isovaleric acid | C503742 | C5H10O2 | 102.1 | 813 | 280.561 | 1.4854 |
31 | 2-Methyl-2-pentenal M | C623369 | C6H10O | 98.1 | 826.8 | 295.433 | 1.15696 |
32 | 2-Methyl-2-pentenal D | C623369 | C6H10O | 98.1 | 825.2 | 293.713 | 1.49264 |
34 | (E)-2-Hexenal | C6728263 | C6H10O | 98.1 | 830.7 | 299.661 | 1.18611 |
35 | 5 | unidentified | * | 0 | 838.9 | 308.472 | 1.04637 |
36 | Ethyl trans-2-butenoate | C623701 | C6H10O2 | 114.1 | 838.9 | 308.472 | 1.55657 |
37 | (3E)-Hexenol | C928972 | C6H12O | 100.2 | 841.8 | 311.6 | 1.24037 |
38 | 3-Methyl-1-pentanol | C589355 | C6H14O | 102.2 | 845.2 | 315.253 | 1.60253 |
39 | 2-Hexen-1-ol M | C2305217 | C6H12O | 100.2 | 854.1 | 324.836 | 1.18102 |
40 | 2-Hexen-1-ol D | C2305217 | C6H12O | 100.2 | 852.3 | 322.94 | 1.51239 |
41 | 2-Acetylfuran | C1192627 | C6H6O2 | 110.1 | 853.3 | 324.055 | 1.44499 |
43 | Diallyl sulphide | C592881 | C6H10S | 114.2 | 856.8 | 327.794 | 1.11914 |
44 | 2-Methyl-3-furanthiol | C28588741 | C5H6OS | 114.2 | 870.4 | 342.406 | 1.13906 |
45 | Hexanenitrile | C628739 | C6H11N | 97.2 | 873.3 | 345.59 | 1.56901 |
46 | n-Hexanol | C111273 | C6H14O | 102.2 | 874.8 | 347.211 | 1.63282 |
47 | 2,3-Dimethyl pyrazine M | C5910894 | C6H8N2 | 108.1 | 893.6 | 368.454 | 1.11623 |
48 | 2,3-Dimethyl pyrazine D | C5910894 | C6H8N2 | 108.1 | 892.1 | 365.857 | 1.47291 |
49 | Propyl butyrate M | C105668 | C7H14O2 | 130.2 | 901 | 381.438 | 1.27041 |
50 | Propyl butyrate D | C105668 | C7H14O2 | 130.2 | 900.1 | 379.934 | 1.67426 |
52 | Heptanal | C111717 | C7H14O | 114.2 | 902.1 | 383.523 | 1.34098 |
53 | (Z)-4-Heptenal | C6728310 | C7H12O | 112.2 | 910.6 | 398.436 | 1.61085 |
54 | Methional | C3268493 | C4H8OS | 104.2 | 916.4 | 408.811 | 1.39433 |
55 | Amyl acetate | C628637 | C7H14O2 | 130.2 | 917.4 | 410.432 | 1.3096 |
56 | Methyl propyl disulphide M | C2179604 | C4H10S2 | 122.2 | 918.7 | 412.813 | 1.10294 |
57 | Methyl propyl disulphide D | C2179604 | C4H10S2 | 122.2 | 920.1 | 415.249 | 1.4606 |
58 | Pentanoic acid | C109524 | C5H10O2 | 102.1 | 919.1 | 413.431 | 1.22958 |
60 | Methyl hexanoate | C106707 | C7H14O2 | 130.2 | 923.8 | 421.779 | 1.67884 |
61 | 2-Methyl propyl butanoate | C539902 | C8H16O2 | 144.2 | 938 | 446.968 | 1.33013 |
62 | Dihydro-5-methyl-2(3H)-furanone | C108292 | C5H8O2 | 100.1 | 938.4 | 447.656 | 1.41902 |
63 | 6 | unidentified | * | 0 | 938.9 | 448.447 | 1.17791 |
64 | Gamma-butyro lactone | C96480 | C4H6O2 | 86.1 | 939 | 448.742 | 1.08198 |
65 | 2,6-Dimethyl pyrazine | C108509 | C6H8N2 | 108.1 | 939.9 | 450.31 | 1.13806 |
66 | 3-Hepten-2-one | C1119444 | C7H12O | 112.2 | 954.9 | 476.756 | 1.22602 |
67 | Dimethyl trisulphide | C3658808 | C2H6S3 | 126.3 | 972.5 | 507.975 | 1.30465 |
68 | Heptanol | C53535334 | C7H16O | 116.2 | 973.2 | 509.037 | 1.38823 |
69 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 993.3 | 544.732 | 1.17459 |
70 | Alpha-terpinene M | C99865 | C10H16 | 136.2 | 1000.2 | 557.635 | 1.21973 |
71 | Alpha-terpinene D | C99865 | C10H16 | 136.2 | 997.6 | 552.535 | 1.72939 |
72 | Hexanoic acid | C142621 | C6H12O2 | 116.2 | 997.8 | 552.907 | 1.29923 |
73 | Alpha-phellandrene | C99832 | C10H16 | 136.2 | 998.2 | 553.65 | 1.68527 |
74 | 7 | unidentified | * | 0 | 998.4 | 554.203 | 1.57452 |
76 | Octen-3-ol | C3391864 | C8H16O | 128.2 | 1006.3 | 569.832 | 1.1572 |
77 | Ethyl hexanoate M | C123660 | C8H16O2 | 144.2 | 1007 | 571.264 | 1.34206 |
78 | Ethyl hexanoate D | C123660 | C8H16O2 | 144.2 | 1007.2 | 571.694 | 1.7949 |
79 | 2-Hydroxy-3-methyl-2-cyclopentene-1-one(cyclotene) | C80717 | C6H8O2 | 112.1 | 1007 | 571.28 | 1.51506 |
80 | 1,8-Cineole M | C470826 | C10H18O | 154.3 | 1016.8 | 590.853 | 1.29735 |
81 | 1,8-Cineole D | C470826 | C10H18O | 154.3 | 1016.5 | 590.4 | 1.74455 |
83 | 2,3-Dihydro-4-hydroxy-2,5-dimethyl-3-furanone | C3658773 | C6H8O3 | 128.1 | 1031.7 | 620.69 | 1.19636 |
84 | Butyl 2-methyl butanoate | C15706737 | C9H18O2 | 158.2 | 1036.6 | 630.593 | 1.3765 |
85 | 8 | unidentified | * | 0 | 1042.4 | 642.227 | 1.27137 |
86 | Trimethyl pyrazine | C14667551 | C7H10N2 | 122.2 | 1043.3 | 643.886 | 1.16751 |
87 | 2-Ethyl-1-hexanol | C104767 | C8H18O | 130.2 | 1049.7 | 656.694 | 1.41491 |
88 | Methyl benzoate | C93583 | C8H8O2 | 136.1 | 1055.4 | 668.249 | 1.20613 |
89 | 2,3-Dimethyl-5-ethylpyrazine | C15707343 | C8H12N2 | 136.2 | 1064.8 | 686.901 | 1.23042 |
90 | Ethyl 2-hydroxy-4-methyl pentanoate | C10348477 | C8H16O3 | 160.2 | 1080.3 | 717.964 | 1.31203 |
91 | Diallyl disulphide | C2179579 | C6H10S2 | 146.3 | 1080.4 | 718.281 | 1.63547 |
92 | Propyl hexanoate | C626777 | C9H18O2 | 158.2 | 1081.1 | 719.699 | 1.3934 |
93 | Propyl 1-propenyl disulphide M | C5905464 | C6H12S2 | 148.3 | 1098.5 | 754.348 | 1.19864 |
94 | Propyl 1-propenyl disulphide D | C5905464 | C6H12S2 | 148.3 | 1095.9 | 749.146 | 1.64082 |
95 | Ethyl heptanoate | C106309 | C9H18O2 | 158.2 | 1097.8 | 753.049 | 1.40951 |
97 | Hexyl butanoate | C2639636 | C10H20O2 | 172.3 | 1106.5 | 770.488 | 1.48052 |
98 | Isopulegol | C89792 | C10H18O | 154.3 | 1129.3 | 816.153 | 1.3872 |
99 | N-Nitroso-morpholine | C59892 | C4H8N2O2 | 116.1 | 1129.4 | 816.182 | 1.19266 |
100 | 2,3-Diethyl-5-methyl pyrazine | C18138040 | C9H14N2 | 150.2 | 1129.8 | 817.092 | 1.28369 |
101 | Propyl disulphide | C629196 | C6H14S2 | 150.3 | 1130.6 | 818.6 | 1.46879 |
102 | 9 | unidentified | * | 0 | 1130.7 | 818.918 | 1.5482 |
103 | Methyl propyl trisulphide M | C17619362 | C4H10S3 | 154.3 | 1154 | 865.496 | 1.1932 |
104 | Methyl propyl trisulphide D | C17619362 | C4H10S3 | 154.3 | 1155.3 | 868.207 | 1.61442 |
105 | Butyl hexanoate | C626824 | C10H20O2 | 172.3 | 1207 | 971.657 | 1.46572 |
106 | Methyl salicylate | C119368 | C8H8O3 | 152.1 | 1208 | 973.543 | 1.20271 |
107 | 10 | unidentified | * | 0 | 1263.5 | 1084.592 | 1.59167 |
108 | Meta-Cresol | C108394 | C7H8O | 108.1 | 1264 | 1085.714 | 1.10663 |
109 | Dipropyl trisulphide M | C6028611 | C6H14S3 | 182.4 | 1331.9 | 1221.641 | 1.28633 |
110 | Dipropyl trisulphide D | C6028611 | C6H14S3 | 182.4 | 1333.1 | 1223.954 | 1.55637 |
111 | 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione M | C520456 | C8H8O4 | 168.1 | 1491.9 | 1541.69 | 1.25381 |
112 | 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione D | C520456 | C8H8O4 | 168.1 | 1492.7 | 1543.284 | 1.28589 |
113 | 11 | unidentified | * | 0 | 1539.6 | 1637.292 | 1.31797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Cao, S.; Li, J.; Wang, G. Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods 2022, 11, 2080. https://doi.org/10.3390/foods11142080
Zhang L, Cao S, Li J, Wang G. Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods. 2022; 11(14):2080. https://doi.org/10.3390/foods11142080
Chicago/Turabian StyleZhang, Ledao, Shiying Cao, Junfang Li, and Guoze Wang. 2022. "Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel" Foods 11, no. 14: 2080. https://doi.org/10.3390/foods11142080
APA StyleZhang, L., Cao, S., Li, J., & Wang, G. (2022). Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods, 11(14), 2080. https://doi.org/10.3390/foods11142080