Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Rice Starch Preparation
2.1.2. Sample Preparation
2.2. Pasting Characteristics of the Mixed System
2.3. Particle Size Properties of the Mixed System
2.4. Rheological Properties of the Mixed System
2.5. Tribological Properties of the Mixed System
2.6. Data Processing
3. Results and Analysis
3.1. RVA Gelatinization Characteristics
3.2. Particle Properties
3.3. Rheological Properties
3.4. Tribological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, H.V.; Sievenpiper, J.L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A.L.; Vuksan, V. The effect of oat beta-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016, 116, 1369–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Obadi, M.; Shi, J.; Xu, B.; Shi, Y.-C. Rheological and thermal properties of oat flours and starch affected by oat lipids. J. Cereal Sci. 2021, 102, 103337. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, K. Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. J. Cereal Sci. 2014, 60, 317–322. [Google Scholar] [CrossRef]
- Li, Y.; Obadi, M.; Shi, J.; Sun, J.; Chen, Z.; Xu, B. Determination of moisture, total lipid, and bound lipid contents in oats using low-field nuclear magnetic resonance. J. Food Compos. Anal. 2020, 87, 103401. [Google Scholar] [CrossRef]
- Li, X.; Oey, I.; Kebede, B. Effect of industrial processing on the volatiles, enzymes and lipids of wholegrain and rolled oats. Food Res. Int. 2022, 157, 111243. [Google Scholar] [CrossRef]
- Shukri, R.; Alavi, S.; Dogan, H.; Shi, Y.C. Properties of extruded cross-linked waxy maize starches and their effects on extruded oat flour. Carbohydr. Polym. 2021, 253, 117259. [Google Scholar] [CrossRef]
- Sadiq Butt, M.; Tahir-Nadeem, M.; Khan, M.K.; Shabir, R.; Butt, M.S. Oat: Unique among the cereals. Eur. J. Nutr. 2008, 47, 68–79. [Google Scholar] [CrossRef]
- Stewart, D.; McDougall, G. Oat agriculture, cultivation and breeding targets: Implications for human nutrition and health. Br. J. Nutr. 2014, 112 (Suppl. S2), S50–S57. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Robards, K.; Glennie-Holmes, M.; Helliwell, S. Effects of enzyme treatment and processing on pasting and thermal properties of oats. J. Sci. Food Agric. 2000, 80, 1486–1494. [Google Scholar] [CrossRef]
- Zhou, M.; Robards, K.; Glennie-Holmes, M.; Helliwell, S. Effects of oat lipids on groat meal pasting properties. J. Sci. Food Agric. 1999, 79, 585–592. [Google Scholar] [CrossRef]
- Berski, W.; Krystyjan, M.; Buksa, K.; Zięć, G.; Gambuś, H. Chemical, physical and rheological properties of oat flour affected by the isolation of beta-glucan preparation. J. Cereal Sci. 2014, 60, 533–539. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.-L. Gelatinization and rheological properties of starch. Starch-Stärke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Ashwar, B.A.; Gani, A.; Gani, A.; Shah, A.; Masoodi, F.A. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chem. 2018, 239, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Loubes, M.A.; Barrera, G.N.; Tolaba, M.P. High-impact wet-milling: Effects of steeping conditions on rice starch attributes. Starch-Stärke 2016, 68, 1095–1102. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Zhang, F.; Fang, C.; Liu, C.; Luo, S. Freeze-thaw stability of rice starch modified by Improved Extrusion Cooking Technology. Carbohydr. Polym. 2016, 151, 113–118. [Google Scholar] [CrossRef]
- González, L.C.; Loubes, M.A.; Bertotto, M.M.; Baeza, R.I.; Tolaba, M.P. Flow behavior and syneresis of ball milled rice starch and their correlations with starch structure. Carbohydr. Polym. Technol. Appl. 2021, 2, 100168. [Google Scholar] [CrossRef]
- Li, C.; You, Y.; Chen, D.; Gu, Z.; Zhang, Y.; Holler, T.P.; Ban, X.; Hong, Y.; Cheng, L.; Li, Z. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci. Technol. 2021, 107, 389–400. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Ji, H.; Dong, J.; Li, X.; Liu, J.; Jin, Z. Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocoll. 2022, 124, 107289. [Google Scholar] [CrossRef]
- Bemiller, J.N.; Bemiller, J.N. Carbohydrate Chemistry for Food Scientists. Food Aust. 1997, 60, 146. [Google Scholar]
- Kim, C.; Lee, S.P.; Yoo, B. Dynamic Rheology of Rice Starch-Galactomannan Mixtures in the Aging Process. Starch-Strke 2010, 58, 35–43. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, B. Rheological properties of rice starch–xanthan gum mixtures. J. Food Eng. 2006, 75, 120–128. [Google Scholar] [CrossRef]
- Shi, X.; Bemiller, J.N. Effects of food gums on viscosities of starch suspensions during pasting. Carbohydr. Polym. 2002, 50, 7–18. [Google Scholar] [CrossRef]
- Techawipharat, J.; Suphantharika, M.; Bemiller, J.N. Effects of cellulose derivatives and carrageenans on the pasting, paste, and gel properties of rice starches. Carbohydr. Polym. 2008, 73, 417–426. [Google Scholar] [CrossRef]
- Banchathanakij, R.; Suphantharika, M. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch. Food Chem. 2009, 114, 5–14. [Google Scholar] [CrossRef]
- Panyoo, A.E.; Emmambux, M.N. Amylose-lipid complex production and potential health benefits: A mini-review. Starch-Stärke 2017, 69, 1600203. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Shi, Z.; Chen, L.; Zheng, B. Effect of stearic acid on the microstructural, rheological and 3D printing characteristics of rice starch. Int. J. Biol. Macromol. 2021, 189, 590–596. [Google Scholar] [CrossRef]
- Sun, Q.; Xiong, C.S. Functional and pasting properties of pea starch and peanut protein isolate blends. Carbohydr. Polym. 2014, 101, 1134–1139. [Google Scholar] [CrossRef]
- Nakamura, K.; Taniguchi, Y.; Taira, M.; Ito, H. Prediction of Specific Japanese Sponge Cake Volume Using Pasting Properties of Flour. Cereal Chem. 2010, 87, 505–510. [Google Scholar] [CrossRef]
- Dang, J.M.C.; Bason, M.L. AACCI Approved Methods Technical Committee Report: Collaborative Study on a Method for Determining the Gelatinization Temperature of Milled Rice Flour Using the Rapid Visco Analyser. Cereal Foods World 2014, 59, 31–34. [Google Scholar] [CrossRef]
- Tavares, L.; Santos, L.; Noreña, C.P.Z. Microencapsulation of organosulfur compounds from garlic oil using β-cyclodextrin and complex of soy protein isolate and chitosan as wall materials: A comparative study. Powder Technol. 2021, 390, 103–111. [Google Scholar] [CrossRef]
- Pang, Z.; Bourouis, I.; Sun, M.; Cao, J.; Liu, P.; Sun, R.; Chen, C.; Li, H.; Liu, X. Physicochemical properties and microstructural behaviors of rice starch/soy proteins mixtures at different proportions. Int. J. Biol. Macromol. 2022, 209, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, M.; Hoshahili, A.R.T.; Ramaswamy, H.S. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int. 2001, 34, 695–703. [Google Scholar] [CrossRef]
- Nguyen, P.T.M.; Bhandari, B.; Prakash, S. Tribological method to measure lubricating properties of dairy products. J. Food Eng. 2016, 168, 27–34. [Google Scholar] [CrossRef]
- Joyner Melito, H.S.; Pernell, C.W.; Daubert, C.R. Impact of formulation and saliva on acid milk gel friction behavior. J. Food Sci. 2014, 79, E867–E880. [Google Scholar] [CrossRef]
- Punia, S.; Sandhu, K.S.; Dhull, S.B.; Siroha, A.K.; Purewal, S.S.; Kaur, M.; Kidwai, M.K. Oat starch: Physico-chemical, morphological, rheological characteristics and its applications—A review. Int. J. Biol. Macromol. 2020, 154, 493–498. [Google Scholar] [CrossRef]
- Atkin, N.J.; Abeysekera, R.M.; Robards, A.W. The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydr. Polym. 1998, 36, 193–204. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Xie, F.; Chen, L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
- Baxter, G.; Blanchard, C.; Zhao, J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. J. Cereal Sci. 2014, 60, 414–420. [Google Scholar] [CrossRef]
- Khatun, A.; Waters, D.L.E.; Liu, L. The impact of rice protein on in vitro rice starch digestibility. Food Hydrocoll. 2020, 109, 106072. [Google Scholar] [CrossRef]
- Chen, Z.; Du, Y.; Mao, Z.; Zhang, Z.; Li, P.; Cao, C. Grain starch, fatty acids, and amino acids determine the pasting properties in dry cultivation plus rice cultivars. Food Chem. 2022, 373, 131472. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Xiao, Y.; Cui, B.; Fang, Y.; Guo, L. In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase. Int. J. Biol. Macromol. 2019, 136, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Zhang, X.; Eizo, T. Thermal denaturation of soybean proteins using DSC. J. China Agric. Univ. 2001, 6, 93–96. [Google Scholar]
- Hoover, R.; Manuel, H. The Effect of Heat–Moisture Treatment on the Structure and Physicochemical Properties of Normal Maize, Waxy Maize, Dull Waxy Maize and Amylomaize V Starches. J. Cereal Sci. 1996, 23, 153–162. [Google Scholar] [CrossRef]
- Pang, Z.; Safdar, B.; Wang, Y.; Sun, M.; Liu, X. Improvement of tribo-rheological properties of acid soymilk gels by reinforcement of 7S or 11S proteins. Food Hydrocoll. 2021, 110, 106173. [Google Scholar] [CrossRef]
- Chen, J.; Stokes, J.R. Rheology and tribology: Two distinctive regimes of food texture sensation. Trends Food Sci. Technol. 2012, 25, 4–12. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, H.; Cornacchia, L.; Sala, G.; Scholten, E. Effect of gelatinization and swelling degree on the lubrication behavior of starch suspensions. Carbohydr. Polym. 2022, 291, 119523. [Google Scholar] [CrossRef]
Time | Type | Set Value |
---|---|---|
00:00:00 | Temperature | 50 °C |
00:00:00 | Rotate speed | 960 r/min |
00:00:00 | Rotate speed | 160 r/min |
00:01:00 | Temperature | 50 °C |
00:04:42 | Temperature | 95 °C |
00:07:12 | Temperature | 95 °C |
11:11:00 | Temperature | 50 °C |
00:13:00 | End of test | - |
Sample | Gelatinization Temperature °C | Peak Viscosity cp | Peak Time min | Minimum Viscosity cp | Final Viscosity cp | Attenuation Value cp | Rebound Value cp |
---|---|---|---|---|---|---|---|
RS/OF 10/0 | 85.55 ± 1.2 a | 1461 ± 2 c | 6.30 ± 0.05 a | 720 ± 6 a | 1769 ± 37 a | 741 ± 4 f | 1028 ± 42 a |
RS/OF 9/1 | 94.13 ± 0.60 b | 1842 ± 86 g | 6.93 ± 0.00 b | 1165 ± 52 b | 2929 ± 156 e | 677 ± 34 e | 1764 ± 209 fg |
RS/OF 8/2 | 94.5 ± 0.00 b | 1838 ± 124 fg | 6.97 ± 0.14 b | 1192 ± 42 b | 3347 ± 178 fg | 646 ± 82 e | 2155 ± 220 ij |
RS/OF 7/3 | 94.75 ± 0.21 b | 1682 ± 140 d | 7.64 ± 0.05 d | 1165 ± 24 b | 3282 ± 55 f | 517 ± 116 de | 2117 ± 31 hi |
RS/OF 6/4 | 94.90 ± 0.57 b | 1644 ± 22 d | 7.27 ± 0.57 c | 1202 ± 36 bc | 3206 ± 76 f | 443 ± 14 d | 2005 ± 112 h |
RS/OF 5/5 | 94.50 ± 1.06 b | 1708 ± 86 de | 7.00 ± 0.10 bc | 1246 ± 52 bc | 3231 ± 70 f | 463 ± 34 d | 1985 ± 18 g |
RS/OF 4/6 | 95.10 ± 0.28 bc | 1505 ± 115 bc | 7.14 ± 0.09 c | 1190 ± 112 bd | 2755 ± 321 de | 316 ± 1 c | 1566 ± 209 ef |
RS/OF 3/7 | 95.03 ± 0.04 c | 1485 ± 60 ac | 7.24 ± 0.05 c | 1223 ± 35 c | 2647 ± 11 d | 262 ± 25 b | 1425 ± 46 e |
RS/OF 2/8 | 94.83 ± 0.11 b | 1370 ± 88 a | 7.30 ± 0.04 d | 1145 ± 38 b | 2418 ± 148 b | 225 ± 49 a | 1273 ± 110 b |
RS/OF 1/9 | 95.05 ± 0.00 b | 1480 ± 115 ac | 7.37 ± 0.05 d | 1256 ± 69 cd | 2557 ± 3 c | 224 ± 47 a | 1302 ± 66 c |
RS/OF 0/10 | 95.35 ± 0.00 b | 1435 ± 3 ab | 7.00 ± 0.05 bc | 1124 ± 24 b | 2444 ± 130 b | 311 ± 21 c | 1320 ± 106 cd |
Sample | Lagging Ring Area ΔA (1/s·Pa) | Yield Stress (Pa) | Consistency Coefficient (Pa·sn) | Flow Behavior Index n | Viscosity (at 50 s−1) η50 |
---|---|---|---|---|---|
RS/OF 0/10 | 2085 ± 106 bc | 9.99 ± 0.59 d | 8.38 ± 0.81 f | 0.37 ± 0.05 a | 1.30 ± 0.22 bc |
RS/OF 1/9 | 1562 ± 100 a | 4.70 ± 0.45 a | 6.63 ± 0.35 e | 0.44 ± 0.01 b | 1.37 ± 0.02 g |
RS/OF 2/8 | 2070 ± 189 b | 6.42 ± 0.21 bc | 3.35 ± 0.08 cd | 0.59 ± 0.02 c | 1.02 ± 0.06 b |
RS/OF 3/7 | 2051 ± 19 b | 7.63 ± 0.73 cd | 2.89 ± 0.27 bc | 0.60 ± 0.02 c | 1.18 ± 0.02 cd |
RS/OF 4/6 | 2390 ± 164 cd | 8.69 ± 0.18 d | 2.82 ± 0.27 b | 0.64 ± 0.01 cd | 1.20 ± 0.04 e |
RS/OF 5/5 | 2107 ± 200 b | 8.83 ± 0.98 cd | 2.67 ± 0.19 ab | 0.63 ± 0.01 cd | 1.31 ± 0.01 f |
RS/OF 6/4 | 2812 ± 89 d | 11.70 ± 0.66 e | 3.51 ± 0.52 d | 0.64 ± 0.04 cd | 1.26 ± 0.07 e |
RS/OF 7/3 | 2159 ± 52 bc | 8.31 ± 0.32 d | 2.12 ± 0.18 a | 0.67 ± 0.01 d | 1.12 ± 0.06 cd |
RS/OF 8/2 | 2004 ± 177 b | 8.42 ± 0.08 d | 2.25 ± 0.12 ab | 0.67 ± 0.01 d | 1.14 ± 0.06 bc |
RS/OF 9/1 | 1251 ± 103 a | 5.37 ± 0.01 ab | 2.11 ± 0.09 a | 0.65 ± 0.01 d | 0.88 ± 0.01 a |
RS/OF 10/0 | 1385 ± 59 a | 14.48 ± 0.42 f | 4.03 ± 0.16 d | 0.68 ± 0.00 d | 1.43 ± 0.04 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Liu, P.; Cao, J.; Ouyang, Z.; Pang, Z. Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions. Foods 2022, 11, 2115. https://doi.org/10.3390/foods11142115
Chen C, Liu P, Cao J, Ouyang Z, Pang Z. Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions. Foods. 2022; 11(14):2115. https://doi.org/10.3390/foods11142115
Chicago/Turabian StyleChen, Cunshe, Ping Liu, Jinnuo Cao, Zhixuan Ouyang, and Zhihua Pang. 2022. "Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions" Foods 11, no. 14: 2115. https://doi.org/10.3390/foods11142115
APA StyleChen, C., Liu, P., Cao, J., Ouyang, Z., & Pang, Z. (2022). Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions. Foods, 11(14), 2115. https://doi.org/10.3390/foods11142115