Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Properties of Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Osmotic Dehydration
2.4. Vacuum Drying
2.5. Mathematical Modelling of Drying Kinetics
2.6. Effective Moisture Diffusivity
2.7. Color Analysis
2.8. Preparation of Extracts for Total Phenolic Content and Antioxidant Capacity
2.9. Determination of TPC and TAA
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics of Kumquat Slices
3.2. Modeling of Drying Data
3.3. Effective Moisture Diffusivity (Deff)
3.4. Total Phenolic Content (TPC)
3.5. Total Antioxidant Activity (TAA)
3.6. Color
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, R.H. Fresh fruit cultivars. In Fresh Citrus Fruit; Wardowski, V.F., Nagy, S., Grierson, W., Eds.; AVI Publishing: Westport, CT, USA, 1986; pp. 101–126. [Google Scholar]
- Schirra, M.; Palma, A.; Aquino, S.D.; Angioni, A.; Minello, E.V.; Melis, M.; Cabras, P. Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. J. Agric. Food Chem. 2008, 56, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Yıldız Turgut, D.; Topuz, A. Depolama süresinin farkli kurutma yöntemleri ile kurutulmuş kamkat dilimlerinin bazi kalite özelliklerine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Derg. 2020, 30, 44–56. [Google Scholar] [CrossRef]
- Palma, A.; D’Aquino, S. Kumquat—Fortunella japonica. In Exotic Fruits Reference Guide; Rodrigues, S., Silva, E.O., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 271–278. [Google Scholar]
- Lou, S.N.; Lai, Y.C.; De Huang, J.; Ho, C.T.; Ferng, L.H.A.; Chang, Y.C. Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chem. 2015, 171, 356–363. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Etlinger, M.; Mantur, S.M.; Patil, B.S. Radical scavenging capacities and inhibition of human prostate (LNCaP) cell proliferation by Fortunella Margarita. Food Chem. 2012, 131, 184–191. [Google Scholar] [CrossRef]
- Roowi, S.; Crozier, A. Flavonoids in tropical citrus species. J. Agric. Food Chem. 2011, 59, 12217–12225. [Google Scholar] [CrossRef] [PubMed]
- Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Quantitation of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 1999, 47, 3565–3571. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Albanese, D.; Mignogna, R.; Cinquanta, L.; Panfili, G.; Di Matteo, M. Degradation of carotenoids in apricot (Prunus armeniaca, L.) during drying process. Plant Foods Hum. Nutr. 2013, 68, 241–246. [Google Scholar] [CrossRef]
- Ozkan-Karabacak, A.; Acoğlu, B.; Yolci Ömeroğlu, P.; Çopur, Ö.U. Microwave pre-treatment for vacuum drying of orange slices: Drying characteristics, rehydration capacity and quality properties. J. Food Process. Eng. 2020, 43, e13511. [Google Scholar] [CrossRef]
- Amami, E.; Khezami, W.; Mezrigui, S.; Badwaik, L.S.; Bejar, A.K.; Perez, C.T.; Kechaou, N. Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrason. Sonochem. 2017, 36, 286–300. [Google Scholar] [CrossRef]
- Bromberger Soquetta, M.; Schmaltz, S.; Wesz Righes, F.; Salvalaggio, R.; de Marsillac Terra, L. Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. J. Food Process. Preserv. 2018, 42, e13393. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. [Google Scholar] [CrossRef] [PubMed]
- Sakooei-Vayghan, R.; Peighambardoust, S.H.; Hesari, J.; Peressini, D. Effects of osmotic dehydration (with and without Sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chem. 2020, 311, 125978. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Sachdev, T.R.; Sachdeva, R. Increasing fruit and vegetable consumption: Challenges and opportunities. Indian J. Community Med. 2013, 38, 192–197. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, G.M.G.C.; Silva, A.M.R.; de Carvalho, W.O.; Rech, C.R.; Loch, M.R. Perceived barriers for the consumption of fruits and vegetables in Brazilian adults. Ciênc. Saúde Colet. 2017, 24, 2461–2470. [Google Scholar]
- De Leon, A.; Jahns, L.; Casperson, S.L. Barriers and facilitators to following the dietary guidelines for vegetable intake: Follow-up of an intervention to increase vegetable intake. Food Qual. Prefer. 2020, 83, 103903. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of food components and emerging technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Jesionkowska, K.; Sijtsema, S.; Konopacka, D.; Symoneaux, R. Dried fruit and its functional properties from a consumer’s point of view. J. Hortic. Sci. Biotechnol. 2009, 84, 85–88. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res. Int. 2018, 116, 90–102. [Google Scholar] [CrossRef]
- Vermeulen, A.; Marvig, C.L.; Daelman, J.; Xhaferi, R.; Nielsen, D.S.; Devlieghere, F. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: The effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Food Microbiol. 2015, 45, 119–125. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Kowalska, H.; Czajkowska, K.; Lenart, A. Osmotic dehydration in production of sustainable and healthy food. Trends Food Sci. Technol. 2016, 50, 186–192. [Google Scholar] [CrossRef]
- Ispir, A.; Tòrul, I.T. The influence of application of pretreatment on the osmotic dehydration of apricots. J. Food Process. Preserv. 2009, 33, 58–74. [Google Scholar] [CrossRef]
- Torreggiani, D.; Bertolo, G. Osmotic pre-treatments in fruit processing: Chemical, physical and structural effects. J. Food Eng. 2001, 49, 247–253. [Google Scholar] [CrossRef]
- Deepika, S.; Sutar, P.P. Osmotic dehydration of lemon (Citrus Limon L.) slices: Modeling mass transfer kinetics correlated with dry matter holding capacity and juice sac losses. Dry. Technol. 2017, 35, 877–892. [Google Scholar] [CrossRef]
- Prithani, R.; Dash, K.K. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innov. Food Sci. Emerg. Technol. 2020, 64, 102407. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Rasia, M.C.; Mulet, A.; Cárcel, J.A. Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). Innov. Food Sci. Emerg. Technol. 2017, 41, 284–291. [Google Scholar] [CrossRef]
- Pavkov, I.; Radojčin, M.; Stamenković, Z.; Kešelj, K.; Tylewicz, U.; Sipos, P.; Ponjičan, O.; Sedlar, A. Effects of osmotic dehydration on the hot air drying of apricot halves: Drying kinetics, mass transfer, and shrinkage. Processes 2021, 9, 202. [Google Scholar] [CrossRef]
- Heredia, A.; Peinado, I.; Rosa, E.; Andrés, A.; Escriche, I. Volatile profile of dehydrated cherry tomato: Influences of osmotic pre-treatment and microwave power. Food Chem. 2012, 130, 889–895. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K. Some remarks on evaluation of drying models of red beet particles. Energy Convers. Manag. 2010, 51, 2967–2978. [Google Scholar] [CrossRef]
- Methakhup, S.; Chiewchan, N.; Devahastin, S. Effects of drying methods and conditions on drying kinetics and quality of indian gooseberry flake. LWT Food Sci. Technol. 2005, 38, 579–587. [Google Scholar] [CrossRef]
- Boris, H.; Shrilekha, D.; Sujata, J. Modelling of vacuum drying of cherry pepper. Asian J. Dairy Food Res. 2018, 37, 316–320. [Google Scholar] [CrossRef]
- Montgomery, S.W.; Goldschmidt, V.W.; Franchek, M.A. Vacuum assisted drying of hydrophilic plates: Static drying experiments. Int. J. Heat Mass Transf. 1998, 41, 735–744. [Google Scholar] [CrossRef]
- Péré, C.; Rodier, E. Microwave vacuum drying of porous media: Experimental study and qualitative considerations of internal transfers. Chem. Eng. Process. 2002, 41, 427–436. [Google Scholar] [CrossRef]
- İzli, G.; İzli, N.; Taşkın, O.; Yıldız, G. Convective drying of kumquat slices: Comparison of different drying temperatures on drying kınetics, colour, total phenolic content and antıoxidant capacity. Lat. Am. Appl. Res. 2018, 48, 37–42. [Google Scholar] [CrossRef]
- Ozcan-Sinir, G.; Ozkan-Karabacak, A.; Tamer, C.E.; Copur, O.U. The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of kumquat (Citrus japonica). Food Sci. Technol. 2019, 39, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Jahanbakhshi, A.; Kaveh, M.; Taghinezhad, E.; Sharabiani, V.R. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, shrinkage, and color in the pistachio kernel drying process in microwave drying with ultrasonic pretreatment. J. Food Process. Preserv. 2020, 44, e14449. [Google Scholar] [CrossRef]
- Vitali, D.; Dragojević, I.V.; Šebečić, B. Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem. 2009, 114, 1462–1469. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of thompson seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Bchir, B.; Bouaziz, M.A.; Ettaib, R.; Sebii, H.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Optimization of ultrasound-assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. J. Food Process. Preserv. 2020, 44, e14657. [Google Scholar] [CrossRef]
- Sobukola, O. Effect of pre-treatment on the drying characteristics and kinetics of okra (Abelmoschus esculetus (L.) Moench) slices. Int. J. Food Eng. 2009, 5, 1556–3758. [Google Scholar] [CrossRef]
- Kumar, D.G.P.; Hebbar, H.U.; Ramesh, M.N. Suitability of thin layer models for infrared-hot air-drying of onion slices. LWT Food Sci. Technol. 2006, 39, 700–705. [Google Scholar] [CrossRef]
- da Cunha, R.M.C.; Brandão, S.C.R.; de Medeiros, R.A.B.; da Silva Júnior, E.V.; Fernandes da Silva, J.H.; Azoubel, P.M. Effect of ethanol pretreatment on melon convective drying. Food Chem. 2020, 333, 127502. [Google Scholar] [CrossRef]
- Atalay, H. Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy 2019, 172, 1037–1052. [Google Scholar] [CrossRef]
- Zogzas, N.; Maroulis, Z.B. Moisture diffusitivy data compilation in foodstuff. Dry. Technol. 2007, 14, 2225–2253. [Google Scholar] [CrossRef]
- An, K.; Li, H.; Zhao, D.; Ding, S.; Tao, H.; Wang, Z. Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry. Technol. 2013, 31, 698–706. [Google Scholar] [CrossRef]
- Phahom, T.; Juntharat, N.; Premsuttarat, P.; Paosunthia, Y.; Roudau, G. Evaluation of desorption isotherms, drying characteristics and rehydration properties of crab stick by-product. Heat Mass Transf. 2021, 57, 1039–1052. [Google Scholar] [CrossRef]
- Djendoubi Mrad, N.; Boudhrioua, N.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process. 2012, 90, 433–441. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, Z.; Bi, J.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. Int. J. Food Sci. Technol. 2016, 51, 842–853. [Google Scholar] [CrossRef]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jin, T.Z.; Fan, X.; Xu, Y. Osmotic dehydration of blueberries pretreated with pulsed electric fields: Effects on dehydration kinetics, and microbiological and nutritional qualities. Dry. Technol. 2017, 35, 1543–1551. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Lech, K.; Nowicka, P. Osmotic dehydration as a pretreatment modulating the physicochemical and biological properties of the japanese quince fruit dried by the convective and vacuum-microwave method. Food Bioprocess Technol. 2020, 13, 1801–1816. [Google Scholar] [CrossRef]
- Kucner, A.; Klewicki, R.; Sójka, M. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) Fruits. Food Bioprocess Technol. 2013, 6, 2031–2047. [Google Scholar] [CrossRef] [Green Version]
- Dermesonlouoglou, E.; Chalkia, A.; Taoukis, P. Application of osmotic dehydration to improve the quality of dried goji berry. J. Food Eng. 2018, 232, 36–43. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Mahayothee, B.; Nohr, D.; Koza, A.; Müller, J. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT Food Sci. Technol. 2015, 60, 914–922. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. Var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Kıroğlu Zorlugenç, F.; Fenercioğlu, H. Ozmotik dehidrasyon ve sicak hava ile kurutma işleminin trabzon hurmasi meyvelerinin renk özellikleri üzerine etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Derg. 2012, 28, 149–159. [Google Scholar]
- Cháfer, M.; Ortolá, M.D.; Chiralt, A.; Fito, P. Orange peel products obtained by osmotic dehydration. In Osmotic Dehydration & Vacuum Impregnation Applications in Food Industries; Fito, P., Chiralt, A., Barat, J.M., Spiess, W.E.L., Behsnilian, D., Eds.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
Model Name | Non- Pretreated | OD/40 °C/30 min | OD/40 °C/60 min | OD/40 °C/90 min | OD/50 °C/30 min | OD/50 °C/60 min | OD/50 °C/ 90 min | ||
---|---|---|---|---|---|---|---|---|---|
Page | Model coefficient | n | 1.1754 | 1.0504 | 1.0326 | 1.0177 | 0.7871 | 0.9964 | 1.1563 |
k | 0.0074 | 0.0117 | 0.0136 | 0.0132 | 0.0404 | 0.0195 | 0.0097 | ||
R2 | 0.9994 | 0.9942 | 0.9970 | 0.9990 | 0.9911 | 0.9906 | 0.9976 | ||
RMSE | 0.001590 | 0.004824 | 0.003423 | 0.001635 | 0.004578 | 0.005208 | 0.002672 | ||
X2 | 0.000014 | 0.000269 | 0.000125 | 0.000029 | 0.000175 | 0.000226 | 0.000057 | ||
Modified Page | Model coefficient | n | 1.1754 | 1.0504 | 1.0326 | 1.0177 | 0.7871 | 0.9964 | 1.1563 |
k | 0.0154 | 0.0145 | 0.0156 | 0.0142 | 0.0169 | 0.0192 | 0.0181 | ||
R2 | 0.9994 | 0.9942 | 0.9970 | 0.9990 | 0.9911 | 0.9906 | 0.9976 | ||
RMSE | 0.001590 | 0.004824 | 0.003423 | 0.001635 | 0.004578 | 0.005208 | 0.002672 | ||
X2 | 0.000015 | 0.000269 | 0.000125 | 0.000029 | 0.000175 | 0.000226 | 0.000057 | ||
Logarithmic | Model coefficient | k | 0.0303 | 0.0464 | 0.0361 | 0.0393 | 0.0550 | 0.0530 | 0.0525 |
a | 1.0843 | 1.0411 | 1.2629 | 1.2825 | 1.8214 | 1.6706 | 2.4225 | ||
c | 0.1841 | 0.3429 | 0.3255 | 0.3688 | 0.4638 | 0.4520 | 0.6039 | ||
R2 | 0.9373 | 0.8943 | 0.9473 | 0.9410 | 0.9891 | 0.9564 | 0.9818 | ||
RMSE | 0.028489 | 0.045496 | 0.092439 | 0.098741 | 0.313986 | 0.271615 | 0.623710 | ||
X2 | 0.012275 | 0.027943 | 0.109375 | 0.124799 | 1.232343 | 0.922182 | 6.224232 | ||
Lewis | Model coefficient | k | 0.0159 | 0.0142 | 0.0155 | 0.0142 | 0.0195 | 0.0194 | 0.0161 |
R2 | 0.9871 | 0.9936 | 0.9965 | 0.9991 | 0.9884 | 0.9960 | 0.9895 | ||
RMSE | 0.009625 | 0.004251 | 0.003599 | 0.002097 | 0.009897 | 0.005198 | 0.007103 | ||
X2 | 0.001121 | 0.000183 | 0.000118 | 0.000040 | 0.000612 | 0.000169 | 0.000269 | ||
Henderson & Pabis | Model coefficient | k | 0.0171 | 0.0141 | 0.0158 | 0.0144 | 0.0186 | 0.0197 | 0.0167 |
a | 1.0846 | 1.0070 | 1.0105 | 1.0080 | 1.0296 | 1.0078 | 1.0151 | ||
R2 | 0.9935 | 0.9937 | 0.9968 | 0.9993 | 0.9925 | 0.9962 | 0.9918 | ||
RMSE | 0.009228 | 0.004914 | 0.003767 | 0.001054 | 0.004310 | 0.005035 | 0.006627 | ||
X2 | 0.001145 | 0.000279 | 0.000151 | 0.000015 | 0.000078 | 0.000217 | 0.000351 | ||
Two Term Exponential | Model coefficient | k | 0.0112 | 0.0094 | 0.0105 | 0.0096 | 0.0123 | 0.0131 | 0.0111 |
a | 0.5203 | 0.5017 | 0.5026 | 0.5020 | 0.5073 | 0.5019 | 0.5037 | ||
R2 | 0.9935 | 0.9937 | 0.9968 | 0.9993 | 0.9925 | 0.9962 | 0.9918 | ||
RMSE | 0.052050 | 0.062597 | 0.061812 | 0.003983 | 0.005885 | 0.002325 | 0.052887 | ||
X2 | 0.036424 | 0.045341 | 0.040755 | 0.000186 | 0.000092 | 0.000159 | 0.022376 | ||
Wang & Singh | Model coefficient | b | 0.00003 | 0.00006 | 0.00007 | 0.00002 | 0.0001 | 0.0001 | 0.0006 |
a | −0.0117 | −0.0131 | −0.0144 | −0.0134 | −0.0241 | −0.0188 | 0.0042 | ||
R2 | 0.8900 | 0.8810 | 0.9347 | 0.9680 | 0.8786 | 0.8141 | 0.7374 | ||
RMSE | 0.006476 | 0.004524 | 0.004120 | 0.003151 | 0.012696 | 0.013371 | 0.246608 | ||
X2 | 0.000564 | 0.000237 | 0.000181 | 0.000106 | 0.001343 | 0.001490 | 0.506795 |
L* | a* | b* | C* | h° | |
---|---|---|---|---|---|
Fresh | 61.04 ± 0.15 a | 16.27 ± 0.03 bc | 63.52 ± 0.18 a | 65.57 ± 0.17 a | 75.63 ± 0.06 a |
Non-pretreated | 27.43 ± 1.22 e | 14.23 ± 1.05 de | 35.48 ± 0.62 cd | 38.24 ± 0.59 de | 68.15 ± 1.61 bc |
OD/40 °C/30 min | 33.06 ± 0.41 cd | 11.82 ± 0.54 f | 32.48 ± 0.63 d | 34.57 ± 0.77 f | 70.01 ± 0.50 b |
OD/40 °C/60 min | 32.62 ± 1.49 d | 16.52 ± 0.68 abc | 36.47 ± 3.82 cd | 40.06 ± 3.54 cd | 65.51 ± 2.32 cd |
OD/40 °C/90 min | 30.70 ± 1.11 d | 15.38 ± 0.86 cd | 37.22 ± 0.79 c | 40.27 ± 1.05 cd | 67.56 ± 0.71 bcd |
OD/50 °C/30 min | 36.35 ± 0.38 b | 17.50 ± 0.39 ab | 41.74 ± 0.51 b | 45.26 ± 0.62 b | 67.26 ± 0.21 bcd |
OD/50 °C/60 min | 36.12 ± 1.67 b | 12.91 ± 0.08 ef | 35.20 ± 0.61 cd | 37.50 ± 0.59 de | 69.86 ± 0.22 b |
OD/50 °C/90 min | 35.65 ± 0.22 bc | 18.30 ± 0.78 a | 39.47 ± 1.78 bc | 43.50 ± 1.94 bc | 65.11 ± 0.17 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan-Karabacak, A.; Özcan-Sinir, G.; Çopur, A.E.; Bayizit, M. Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Properties of Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer. Foods 2022, 11, 2139. https://doi.org/10.3390/foods11142139
Özkan-Karabacak A, Özcan-Sinir G, Çopur AE, Bayizit M. Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Properties of Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer. Foods. 2022; 11(14):2139. https://doi.org/10.3390/foods11142139
Chicago/Turabian StyleÖzkan-Karabacak, Azime, Gülşah Özcan-Sinir, Ali Eren Çopur, and Murat Bayizit. 2022. "Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Properties of Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer" Foods 11, no. 14: 2139. https://doi.org/10.3390/foods11142139
APA StyleÖzkan-Karabacak, A., Özcan-Sinir, G., Çopur, A. E., & Bayizit, M. (2022). Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Properties of Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer. Foods, 11(14), 2139. https://doi.org/10.3390/foods11142139