Effect of High Pressure/Heating Combination on the Structure and Texture of Chinese Traditional Pig Trotter Stewed with Soy Sauce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures for Pig Trotter Stewed with Soy Sauce
2.2. Texture Profile Analysis (TPA) Measurements
2.3. Histochemical Morphology
2.4. Raman Spectroscopy
2.5. Determination of Cross-Links Degree, DCN and GAGs Content
2.6. Statistical Analysis
3. Results
3.1. The Textural Parameters
3.2. The Ultrastructure of Collagen Fibers
3.3. The Secondary Structure of Collagen Proteins
3.4. The Cross-Links, DCN, and GAGs Levels
4. Discussion
4.1. Effects of Different Treatments on the Textural Parameters
4.2. Effects of Different Treatment Condition on the Ultrastructure of Collagen Fibers
4.3. Effects of Different Treatment Conditions on the Secondary Structure of Collagen Proteins
4.4. Effects of Different Treatment Conditions on Cross-Links, DCN and GAGs Levels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Pan, D.; Sun, Y.; Wang, Y.; Xu, F.; Cao, J. 1H NMR-based metabolomics profiling and taste of stewed pork-hock in soy sauce. Food Res. Int. 2019, 121, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Pan, D.; Zhang, Y.; He, J.; Xia, Q.; Cao, J. The application of 1H NMR to explore the taste difference caused by taste-active metabolites of different Chinese sauce-stewed beef. Food Sci. Nutr. 2020, 8, 4868–4876. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Chien, J.T.; Inbaraj, B.S.; Chen, B.H. Formation and Inhibition of Cholesterol Oxidation Products during Marinating of Pig Feet. J. Agric. Food Chem. 2012, 60, 173–179. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, W.-L.; Lin, S.-J.; Jee, S.-H.; Chen, Y.-F.; Lin, L.-C.; So, P.T.; Dong, C.-Y. Investigating Mechanisms of Collagen Thermal Denaturation by High Resolution Second-Harmonic Generation Imaging. Biophys. J. 2006, 91, 2620–2625. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, C.; Zhao, F.; Lin, X.; Bai, Y.; Zhou, G. The Effects of Long-Duration Stewing Combined with Different Cooking and Heating Methods on the Quality of Pork Belly. J. Food Process. Preserv. 2016, 40, 94–102. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, X.; Zhang, W.; Yan, H.; Peng, Y.; Jia, C.; Li, M.; Qi, J.; Xiong, J.; Xu, X.; et al. Effect of stewing time on fatty acid composition, textural properties and microstructure of porcine subcutaneous fat from various anatomical locations. J. Food Compos. Anal. 2022, 105, 104240. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Jin, G.; Duan, J.; Zhang, Y.; Cao, J. The Texture Change of Chinese Traditional Pig Trotter with Soy Sauce during Stewing Processing: Based on a Thermal Degradation Model of Collagen Fibers. Foods 2022, 11, 1772. [Google Scholar] [CrossRef]
- Lou, X.; Ye, Y.; Wang, Y.; Sun, Y.; Pan, D.; Cao, J. Effect of high-pressure treatment on taste and metabolite profiles of ducks with two different vinasse-curing processes. Food Res. Int. 2018, 105, 703–712. [Google Scholar] [CrossRef]
- Pietrzak, D.; Fonberg-Broczek, M.; Mucka, A.; Windyga, B. Effects of high pressure treatment on the quality of cooked pork ham prepared with different levels of curing ingredients. High Press. Res. 2007, 27, 27–31. [Google Scholar] [CrossRef]
- Zamri, A.I.; Ledward, D.A.; Frazier, R.A. Effect of Combined Heat and High-Pressure Treatments on the Texture of Chicken Breast Muscle (Pectoralis Fundus). J. Agric. Food Chem. 2006, 54, 2992–2996. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-J.; Wang, Q.; Zhou, G.; Xu, X.-L.; Li, C. Influence of Weak Organic Acids and Sodium Chloride Marination on Characteristics of Connective Tissue Collagen and Textural Properties of Beef Semitendinosus Muscle. J. Texture Stud. 2010, 41, 279–301. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Q.; Xu, X.; Li, C.; Huang, M.; Zhou, G.; Dai, Y. Effect of Heat-Induced Changes of Connective Tissue and Collagen on Meat Texture Properties of Beef Semitendinosus Muscle. Int. J. Food Prop. 2011, 14, 381–396. [Google Scholar] [CrossRef]
- Ayala, M.D.; Santaella, M.; Martínez, C.; Periago, M.J.; Blanco, A.; Vázquez, J.M.; Albors, O.L. Muscle tissue structure and flesh texture in gilthead sea bream, Sparus aurata L., fillets preserved by refrigeration and by vacuum packaging. LWT Food Sci. Technol. 2011, 44, 1098–1106. [Google Scholar] [CrossRef]
- Gurniak, C.B.; Chevessier, F.; Jokwitz, M.; Jönsson, F.; Perlas, E.; Richter, H.; Matern, G.; Boyl, P.P.; Chaponnier, C.; Fürst, D.; et al. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur. J. Cell Biol. 2014, 93, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Smitha, B.; Donoghue, M. Clinical and histopathological evaluation of collagen fiber orientation in patients with oral sub-mucous fibrosis. J. Oral Maxillofac. Pathol. 2011, 15, 154–160. [Google Scholar] [CrossRef]
- Alix, A.; Pedanou, G.; Berjot, M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the Raman Amide I band. J. Mol. Struct. 1988, 174, 159–164. [Google Scholar] [CrossRef]
- Du, X.; Sun, Y.; Pan, D.; Wang, Y.; Ou, C.; Cao, J. The effect of structural change on the digestibility of sarcoplasmic proteins in Nanjing dry-cured duck during processing. Poult. Sci. 2018, 97, 4450–4457. [Google Scholar] [CrossRef] [PubMed]
- Dubost, A.; Micol, D.; Meunier, B.; Lethias, C.; Listrat, A. Relationships between structural characteristics of bovine intramuscular connective tissue assessed by image analysis and collagen and proteoglycan content. Meat Sci. 2013, 93, 378–386. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Li, J.; Guo, X.; Cui, B.; Peng, Z. Contribution of cross-links and proteoglycans in intramuscular connective tissue to shear force in bovine muscle with different marbling levels and maturities. LWT Food Sci. Technol. 2016, 66, 413–419. [Google Scholar] [CrossRef]
- Du, J.; Zhou, C.; Xia, Q.; Wang, Y.; Geng, F.; He, J.; Sun, Y.; Pan, D.; Cao, J. The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins. LWT Food Sci. Technol. 2022, 153, 112457. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, Y.; Zhou, C.; Pan, D.; Geng, F.; Cao, J.; Xia, Q. Kinetic response of conformational variation of duck liver globular protein to ultrasonic stimulation and its impact on the binding behavior of n-alkenals. LWT Food Sci. Technol. 2021, 150, 111890. [Google Scholar] [CrossRef]
- Hu, F.-H.; Lu, H.-X.; Chen, Q.; Li, J.-R. Effects of ultra-high pressure on gel properties of big head croaker (Collichthys lucidus) su-rimi. J. Fish. China 2010, 34, 329–335. [Google Scholar] [CrossRef]
- Ma, H.-J.; Ledward, D. High pressure/thermal treatment effects on the texture of beef muscle. Meat Sci. 2004, 68, 347–355. [Google Scholar] [CrossRef]
- Duranton, F.; Guillou, S.; Simonin, H.; Chéret, R.; de Lamballerie, M. Combined use of high pressure and salt or sodium nitrite to control the growth of endogenous microflora in raw pork meat. Innov. Food Sci. Emerg. Technol. 2012, 16, 373–380. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, S.; Abid, M.; Cao, J.; Jabbar, S.; Tume, R.K.; Zhou, G. Improved duck meat quality by application of high pressure and heat: A study of water mobility and compartmentalization, protein denaturation and textural properties. Food Res. Int. 2014, 62, 926–933. [Google Scholar] [CrossRef]
- Xu, S.; Gu, M.; Wu, K.; Li, G. Unraveling the role of hydroxyproline in maintaining the thermal stability of the collagen triple helix structure using simulation. J. Phys. Chem. B 2019, 123, 7754–7763. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Thitipramote, N.; Benjakul, S. Preparation and functional characterisation of fish skin gelatin and comparison with commercial gelatin. Int. J. Food Sci. Technol. 2013, 48, 1093–1102. [Google Scholar] [CrossRef]
- Collins, M.D.; Kim, C.U.; Gruner, S.M. High-Pressure Protein Crystallography and NMR to Explore Protein Conformations. Annu. Rev. Biophys. 2011, 40, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zheng, Y.; Zhou, C.; Pan, D.; Geng, F.; Cao, J.; Xia, Q. A structural explanation for enhanced binding behaviors between β-lactoglobulin and alkene-aldehydes upon heat-and ultrasonication-induced protein unfolding. Food Hydrocoll. 2022, 130, 107682. [Google Scholar] [CrossRef]
- Du, J.; Cao, J.; Zhou, C.; Pan, D.; Geng, F.; Wang, Y. Insight into the mechanism of myosin-fibrin gelation induced by non-disulfide covalent cross-linking. Food Res. Int. 2022, 156, 111168. [Google Scholar] [CrossRef]
- Komsa-Penkova, R.; Koynova, R.; Kostov, G.; Tenchov, B.G. Thermal stability of calf skin collagen type I in salt solutions. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 1996, 1297, 171–181. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Bank, R.; Agrawal, C. Effects of Collagen Unwinding and Cleavage on the Mechanical Integrity of the Collagen Network in Bone. Calcif. Tissue Res. 2002, 71, 186–192. [Google Scholar] [CrossRef]
- Avery, N.C.; Sims, T.J.; Warkup, C.; Bailey, A.J. Collagen cross-linking in porcine M-longissimus lumborum: Absence of a rela-tionship with variation in texture at pork weight. Meat Sci. 1996, 42, 355–369. [Google Scholar] [CrossRef]
- Lepetit, J. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci. 2007, 76, 147–159. [Google Scholar] [CrossRef]
- Gekko, K.; Koga, S. The Effect of Pressure on Thermal Stability and In Vitro Fibril Formation of Collagen. J. Agric. Chem. Soc. Jpn. 2006, 47, 1027–1033. [Google Scholar] [CrossRef]
- Heremans, K. High pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 1982, 11, 1–21. [Google Scholar] [CrossRef]
- Hummer, G.; Garde, S.; García, A.E.; Paulaitis, M.E.; Pratt, L.R. The Pressure Dependence of Hydrophobic Interactions is Consistent with the Ob-served Pressure Denaturation of Proteins. Proc. Natl. Acad. Sci. USA 1998, 95, 1552–1555. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R. Extracellular modifications to muscle collagen: Implications for meat quality. Poult. Sci. 1999, 78, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Judge, M.D.; Aberle, E.D. Effects of chronological age and postmortem aging on thermal shrinkage temperature of bovine intramuscular collagen. J. Anim. Sci. 1982, 54, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Sarupria, S.; Ghosh, T.; García, A.E.; Garde, S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010, 78, 1641–1651. [Google Scholar] [CrossRef]
- Gillies, A.R.; Lieber, R.L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011, 44, 318–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, I.T.; Harrison, R.; Iozzo, R.V. Model Structure of Decorin and Implications for Collagen Fibrillogenesis. J. Biol. Chem. 1996, 271, 31767–31770. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, T.; Futami, E.; Taneichi, A.; Mori, T.; Hattori, A. Decorin expression during development of bovine skeletal muscle and its role in morphogenesis of the intramuscular connective tissue. Cells Tissues Organs 2002, 171, 199–214. [Google Scholar] [CrossRef]
- Zhang, G.; Ezura, Y.; Chervoneva, I.; Robinson, P.S.; Beason, D.P.; Carine, E.T.; Soslowsky, L.J.; Iozzo, R.V.; Birk, D.E. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 2010, 98, 1436–1449. [Google Scholar] [CrossRef]
- Miura, T.; Kishioka, Y.; Wakamatsu, J.; Hattori, A.; Hennebry, A.; Berry, C.J.; Sharma, M.; Kambadur, R.; Nishimura, T. Decorin binds myostatin and modulates its activity to muscle cells. Biochem. Biophys. Res. Commun. 2006, 340, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.C.; Iozzo, R.V. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 2002, 19, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.E.; Kolset, S.O.; Sørensen, T.; Eggen, K.H. Sulfated glycosaminoglycans and collagen in two bovine muscles (M. Semiten-dinosus and M. Psoas major) differing in texture. J. Agric. Food Chem. 1999, 47, 1445–1452. [Google Scholar] [CrossRef]
Secondary Structure (%) | Different Treatment Conditions | |||||
---|---|---|---|---|---|---|
0.1 MPa | 150 MPa | 300 MPa | 0.1 MPa + 50 °C | 150 MPa + 50 °C | 300 MPa + 50 °C | |
α-helix | 36.93 ± 0.58 a | 33.35 ± 0.82 b | 31.12 ± 1.21 bc | 34.00 ± 0.62 ab | 34.06 ± 0.87 ab | 30.06 ± 1.27 c |
β-sheet | 33.08 ± 0.57 a | 31.60 ± 2.18 ab | 26.61 ± 2.36 bc | 35.25 ± 1.17 a | 31.16 ± 1.81 ab | 22.18 ± 1.39 c |
β-turn | 20.38 ± 1.00 b | 24.46 ± 1.80 a | 23.14 ± 1.14 a | 22.40 ± 1.60 a | 22.82 ± 1.75 a | 23.26 ± 1.21 a |
Random coil | 9.61 ± 0.47 c | 10.60 ± 1.11 c | 19.14 ± 2.59 b | 8.34 ± 0.40 c | 11.97 ± 1.94 c | 24.50 ± 1.13 a |
Indicators | Different Treatment Conditions | |||||
---|---|---|---|---|---|---|
0.1 MPa | 150 MPa | 300 MPa | 0.1 MPa + 50 °C | 150 MPa + 50 °C | 300 MPa + 50 °C | |
Cross-links (μmol/g collagen) | 12.43 ± 0.33 a | 11.64 ± 0.33 a | 12.58 ± 0.32 a | 11.63 ± 0.34 a | 12.07 ± 0.33 a | 10.49 ± 0.30 b |
Decorin (μg/g collagen) | 34.15 ± 0.89 a | 31.89 ± 0.81 a | 33.16 ± 0.86 a | 31.54 ± 0.73 a | 32.73 ± 0.85 a | 28.87 ± 0.89 b |
GAGs (mg/g collagen) | 1.29 ± 0.04 c | 1.60 ± 0.04 a | 1.66 ± 0.06 a | 1.45 ± 0.04 b | 1.30 ± 0.06 c | 0.97 ± 0.07 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sheng, Y.; Zhang, Y.; Geng, F.; Cao, J. Effect of High Pressure/Heating Combination on the Structure and Texture of Chinese Traditional Pig Trotter Stewed with Soy Sauce. Foods 2022, 11, 2248. https://doi.org/10.3390/foods11152248
Wang Y, Sheng Y, Zhang Y, Geng F, Cao J. Effect of High Pressure/Heating Combination on the Structure and Texture of Chinese Traditional Pig Trotter Stewed with Soy Sauce. Foods. 2022; 11(15):2248. https://doi.org/10.3390/foods11152248
Chicago/Turabian StyleWang, Ying, Yanan Sheng, Yuemei Zhang, Fang Geng, and Jinxuan Cao. 2022. "Effect of High Pressure/Heating Combination on the Structure and Texture of Chinese Traditional Pig Trotter Stewed with Soy Sauce" Foods 11, no. 15: 2248. https://doi.org/10.3390/foods11152248
APA StyleWang, Y., Sheng, Y., Zhang, Y., Geng, F., & Cao, J. (2022). Effect of High Pressure/Heating Combination on the Structure and Texture of Chinese Traditional Pig Trotter Stewed with Soy Sauce. Foods, 11(15), 2248. https://doi.org/10.3390/foods11152248